Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer
-
摘要: 针对井下弱磁观测环境狭小,测量精度要求高,但方便实时上传数据,可实现自动测量等特点,设计并制作了一种适用于井下绝对观测的氦光泵磁力仪单片机的频率计。频率计基于Cortex-M3内核的ARM芯片,通过定时器的外部时钟模式进行定时计数,在中断函数中进行计算,得到信号频率。多次实验后,为进一步提高测量精度,使用32 MHz有源温补晶振为芯片提供主频信号,提高了主频精度,减少程序对CPU的资源占用率。实验结果表明:频率计精度较高,满足项目需求。系统误差稳定,在840.70 kHz—1.96 MHz的弱磁测量范围内,误差均为1 Hz,易结合误差原因通过软件补偿实现高精度测量。Abstract: We designed and made a kind of microcontrollers frequency meter for borehole geomagnetic absolute observation by helium optically pumped magnetometer, which is suitable for the narrow space, high measurement accuracy, an easy access to upload data and automatic measurement. This frequency meter is based on ARM Cortex-M3 microcontroller, using timers’ external clock mode to count and calculate the frequency result in the interrupt service function. After many experiments, in order to further improve the measurement accuracy, the 32 MHz active temperature-compensated crystal oscillator is used to provide the main frequency signal for the chip, which improves the main frequency accuracy and reduces the code’s resource occupation rate of the CPU. The results show that the frequency meter has enough high precision that can meet the project requirements. The system error is stable, and the systemerror is 1 Hz in the range of 840.70 kHz to 1.96 MHz. Considering the specific reason for this error, we can easily compensate it by software codes and then realize a high-precision measurement.
-
-
表 1 二定时器法主要配置参数
Table 1 Main configuration parameters of two timers method
寄存器名称 TIM3 TIM2 TIMx_ARR 65536-1 60000-1 TIMx_PSC 0 1200-1 表 2 四定时器法主要配置参数
Table 2 Main configuration parameters of four timers method
寄存器名称 TIM3 TIM4 TIM8 TIM2 TIMx_ARR 65536-1 65536-1 50000-1 20-1 TIMx_PSC 0 0 72-1 0 表 3 同源实验结果
Table 3 Experiment result using the same signal source
输入信号/kHz 二定时器法 四定时器法 测量值/Hz 绝对误差/Hz 相对误差 测量值/Hz 绝对误差/Hz 相对误差 62.5 62 500 0 0 62 500 0 0 250 250 000 0 0 25 0000 0 0 500 499 999 1.0 2.0×10−6 500 000 1.0 2.0×10−6 1000 999 997 3.0 3.0×10−6 999 999 1.0 1.0×10−6 2000 1 999 993 7.0 3.5×10−6 1 999 999 1.0 5.0×10−7 表 4 独立有源温补晶振作为信号源时的实验结果
Table 4 Experiment results using independent active TCXO as signal source
输入信号/kHz 实际测量值/Hz 绝对误差/Hz 相对误差 1 000 999 999 1 1.0×10−6 100 000 0 0 2 000 1 999 999 1 5.0×10−7 3 000 2 999 998 1 3.3×10−7 2 999 999 2 6.7×10−7 表 5 高精度信号发生器作为信号源时的实验结果
Table 5 Experiment results using high-precision signal generator as signal source
输入信号/kHz 四定时器法测量/Hz 绝对误差/Hz 相对误差 输入信号/kHz 四定时器法测量/Hz 绝对误差/Hz 相对误差 500 500 000 0 0 2 200 2 199 999 1.0 4.5×10−7 600 599 999 1.0 1.7×10−6 2 300 2 299 999 1.0 4.3×10−7 700 699 999 1.0 1.4×10−6 2 400 2 399 999 1.0 4.2×10−7 800 799 999 1.0 1.3.×10−6 2 500 2 499 999 1.0 4.0×10−7 900 899 999 1.0 1.1×10−6 2 600 2 599 999 1.0 3.8×10−7 1 000 999 999 1.0 1.0×10−6 2 700 2 699 999 1.0 3.7×10−7 1 500 1 499 999 1.0 6.7×10−7 2 800 2 799 999 1.0 3.6×10−7 2 000 1 999 999 1.0 5.0×10−7 2 900 2 899 999 1.0 3.4×10−7 2 100 2 099 999 1.0 4.7×10−7 3 000 2 999 999 1.0 3.3×10−7 表 6 微波频率计超高频段测量的实验结果
Table 6 Experiment results of microwave frequency meter in ultra-high frequency measurement
输入频率/Hz 实测频率/Hz 绝对误差/Hz 相对误差 5 000 000 000 5 000 000 373.12 373.12 7.5×10−8 5 100 000 000 5 100 000 326.17 326.17 6.4×10−8 5 270 000 000 5 269 999 878.63 121.37 2.3×10−8 5 520 000 000 5 520 000 061.08 61.08 1.1×10−8 5 603 000 000 5 603 000 047.03 47.03 8.4×10−9 表 7 CPLD频率计中频测量的实验结果
Table 7 Experiment results of frequency memter of CPLD in intermediate frequency measurement
输入频率/Hz 实测频率/Hz 绝对误差/Hz 相对误差 56 000.000 56 000.00 0 0 104 523.687 104 522.00 1.687 1.6×10−5 504 258.741 504 252.03 6.711 1.3×10−5 774 519.638 774 508.00 11.638 1.5×10−5 1 000 000.000 999 986.00 14.000 1.4×10−5 表 8 FPGA频率计中低频段测量的实验结果
Table 8 Experimental results of FPGA frequency memter in low frequency range measurement
输入频率/Hz 实测频率/Hz 绝对误差/Hz 相对误差 1 000 999 1.0 1.0×10−3 10 000 10 000 0 0 20 000 20 001 1.0 5.0×10−5 200 000 200 004 4.0 2.0×10−5 表 9 软件校正后以独立的有源温补晶振作为信号源
Table 9 Independent active TCXO as signal source with software calibration
输入信号/kHz 实际测量值/kHz 绝对误差/Hz 相对误差 1 000 1 000.000 0 0 2 000 2 000.000 0 0 3 000 2 999.999 0 0 3 000.000 1.0 3.3×10−7 -
胡睿帆. 2017. 数字式氦光泵磁力仪的工程样机设计[D]. 长春: 吉林大学: 10–11. Hu R F. 2017. Design of Engineering Prototype for Digital Helium Optically Pumped Magnetometer[D]. Changchun: Jilin University: 10–11 (in Chinese).
胡星星,滕云田,张炼,王晓美,谢凡. 2011. 井下磁力计的研制[J]. 地球物理学进展,26(5):1849–1858. doi: 10.3969/j.issn.1004-2903.2011.05.042 Hu X X,Teng Y T,Zhang L,Wang X M,Xie F. 2011. Design of borehole magnetometer[J]. Progress in Geophysics,26(5):1849–1858 (in Chinese).
马献果,焦阳. 2004. 频率测量方法的改进[J]. 仪器仪表学报,25(增刊):120–121. Ma X G,Jiao Y. 2004. Improvement on traditional frequency measurement methods[J]. Chinese Journal of Scientific Instrument,25(S1):120–121 (in Chinese).
任烨,周华根,刘佳敏,尹继尧. 2012. 上海崇明长江农场深井综合地震观测系统地磁观测数据质量分析[J]. 地震研究,35(3):353–359. doi: 10.3969/j.issn.1000-0666.2012.03.010 Ren Y,Zhou H G,Liu J M,Yin J Y. 2012. Quality analysis of geomagnetic observation data recorded by comprehensive seismic observation system in deep borehole on Changjiang farm in Shanghai[J]. Journal of Seismological Research,35(3):353–359 (in Chinese).
孙敏,黎敏强,陈中平,王占奎. 2013. 一种宽温高精度温补晶振的研制[J]. 电子科技,26(8):90–92. doi: 10.3969/j.issn.1007-7820.2013.08.029 Sun M,Li M Q,Chen Z P,Wang Z K. 2013. A high precision temperature compensated crystal oscillator in wide temperature range[J]. Electronic Science and Technology,26(8):90–92 (in Chinese).
王永超. 2012. 光泵磁力仪的频率采集系统的设计与实现[D]. 武汉: 武汉理工大学: 10–43. Wang Y C. 2012. Optical Pumping Magnetometer Frequency Acquisition System Design and Implementation[D]. Wuhan: Wuhan University of Technology: 10–43 (in Chinese).
谢尚豪,张硕,许波. 2018. 一种高精度频率测量电路设计[J]. 电子测量技术,41(18):115–121. Xie S H,Zhang S,Xu B. 2018. Design of high precision frequency measurement circuit[J]. Electronic Measurement Technology,41(18):115–121 (in Chinese).
许军. 1998. 以单片机为核心的测频系统测量误差[J]. 工业仪表与自动化装置,(5):37–40. Xu J. 1998. Measurement error of frequency measurement system based on single chip microcomputer[J]. Industrial Instrumentation &Automation,(5):37–40 (in Chinese).
徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003 Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).
姚休义,滕云田,杨冬梅,姚远,陈俊. 2016. 地磁观测数据重构技术研究[J]. 地震学报,38(6):878–888. doi: 10.11939/jass.2016.06.007 Yao X Y,Teng Y T,Yang D M,Yao Y,Chen J. 2016. On reconstruction technique of geomagnetic observation data[J]. Acta Seismologica Sinica,38(6):878–888 (in Chinese).
张前毅. 2007. 基于CPLD的微波频率计研究[D]. 成都: 电子科技大学: 44. Zhang Q Y. 2007. Research on Microwave Frequency Meter Based on CPLD[D]. Chengdu: University of Electronic Science and Technology of China: 44 (in Chinese).
张振宇,程德福,王君,周志坚. 2011a. 光泵磁力仪中压控振荡器的设计与实现[J]. 仪器仪表学报,32(2):279–283. Zhang Z Y,Cheng D F,Wang J,Zhou Z J. 2011a. Design and implementation of the voltage controlled oscillator in optically pumped magnetometer[J]. Chinese Journal of Scientific Instrument,32(2):279–283 (in Chinese).
张振宇,程德福,王君,周志坚,连明昌. 2011b. 光泵磁力仪中磁共振光学检测方法研究[J]. 吉林大学学报(信息科学版),29(3):252–257. Zhang Z Y,Cheng D F,Wang J,Zhou Z J,Lian C M. 2011b. Research of magnetic resonance’s optical detection method in optically pumped magnetometer[J]. Journal of Jilin University (Information Science Edition)
,29(3):252–257 (in Chinese). 张振宇,程德福,连明昌,周志坚,王君. 2011c. 氦光泵磁力仪信号的分析及检测[J]. 仪器仪表学报,32(12):2656–2661. Zhang Z Y,Cheng D F,Lian M C,Zhou Z J,Wang J. 2011c. Analysis and detection of 4He optically pumped magnetometer signal[J]. Chinese Journal of Scientific Instrument,32(12):2656–2661 (in Chinese).
张振宇,程德福,连明昌,周志坚,王君. 2011d. 氦光泵磁力仪信号检测控制回路的设计[J]. 电子测量与仪器学报,25(4):366–371. Zhang Z Y,Cheng D F,Lian M C,Zhou Z J,Wang J. 2011d. Design of 4He optically pumped magnetometer’s signal detection and control loop[J]. Journal of Electronic Measurement and Instrument,25(4):366–371 (in Chinese). doi: 10.3724/SP.J.1187.2011.00366
Chéron B,Gilles H,Hamel J,Moreau O,Noël E. 1996. 4He optical pumping with frequency modulated light[J]. J Phys Ⅱ,EDP Sci,6(2):175–185.
Gilles H,Hamel J,Chéron B. 2001. Laser pumped 4He magnetometer[J]. Rev Sci Instrum,72(5):2253–2260. doi: 10.1063/1.1364667
McGregor D D. 1987. High-sensitivity helium resonance magnetometers[J]. Rev Sci Instrum,58(6):1067–1076. doi: 10.1063/1.1139609
Němec F,Santolík O,Parrot M,Berthelier J J. 2008. Spacecraft observations of electromagnetic perturbations connected with seismic activity[J]. Geophys Res Lett,35(5):L05109.