大西洋中北部双频微地动特征

方益志 薛梅

方益志,薛梅. 2021. 大西洋中北部双频微地动特征. 地震学报,43(2):204−214 doi: 10.11939/jass.20200103
引用本文: 方益志,薛梅. 2021. 大西洋中北部双频微地动特征. 地震学报,43(2):204−214 doi: 10.11939/jass.20200103
Fang Y Z,Xue M. 2021. Characteristics of double-frequency microseisms in the central and northern Atlantic Ocean. Acta Seismologica Sinica,43(2):204−214 doi: 10.11939/jass.20200103
Citation: Fang Y Z,Xue M. 2021. Characteristics of double-frequency microseisms in the central and northern Atlantic Ocean. Acta Seismologica Sinica43(2):204−214 doi: 10.11939/jass.20200103

大西洋中北部双频微地动特征

doi: 10.11939/jass.20200103
基金项目: 国家自然科学基金面上项目(42076064)和上海佘山地球物理国家野外科学观测研究站开放基金(2020K03)共同资助
详细信息
    通讯作者:

    薛梅,e-mail:meixue@tongji.edu.cn

  • 中图分类号: P315.3+1

Characteristics of double-frequency microseisms in the central and northern Atlantic Ocean

  • 摘要: 本文对大西洋中北部两侧五个地震台站2015年记录到的地震数据进行处理,计算噪声功率谱密度和概率密度函数,并通过极化分析对双频微地动不同周期的主导源区方位角分布进行了分析。研究结果显示:大西洋中北部台站双频微地动发生显著分裂,各台站的峰值周期各不同,且来自相同方向和不同方向的双频微地动都有可能产生双频微地动分裂;大西洋中北部的噪声功率谱密度随季节变化复杂,部分台站冬季的功率谱密度振幅比夏季强,部分台站夏季的比冬季强;而大西洋中北部台站源区方位受季节影响不大,台站主要源区的方位不变,且两季的源区方位角在大范围内重合;大西洋东岸中北部台站,夏季受台站以南大西洋源区影响更多,冬季受台站以北大西洋源区影响更多;靠近加勒比海位于大西洋西岸的台站,其双频微地动源区方向在冬季和夏季都更多地指向加勒比海;大西洋西岸纬度最低的台站MPG,其双频微地动在冬季主要受台站以北大西洋源区的影响,而在夏季则同时受到台站以北大西洋源区和台站西南方位很可能源于太平洋源区的共同影响。

     

  • 图  1  本文所用台站分布

    Figure  1.  Distribution of the stations used in this study

    图  2  台站PFVI (a),MBO (b),FDF (c),MPG (d)和HDC (e) 2015年背景噪声的功率谱密度图(空白部分表示地震数据空缺)

    Figure  2.  Power spectral density of ambient noise for the stations PFVI (a),MBO (b),FDF (c),MPG (d),and HDC (e) in the year 2015 (Blank part represents the absence of seismic data)

    图  3  台站PFVI (a),MBO (b),FDF (c),MPG (d)和HDC (e) 2015年背景噪声的概率密度函数PDF (箭头代表双频微地动的峰值)

    Figure  3.  Probability density functions (PDF) of ambient noise for the stations PFVI (a),MBO (b),FDF (c),MPG (d),and HDC (e) in 2015. The arrows indicate the peak of double-frequency microseisms

    图  4  台站PFVI (a),MBO (b),FDF (c),MPG (d)和HDC (e) 2015年双频微地动的源区方位角θH分布图

    两条竖虚线给出了周期2 s与10 s之间的双频微地动范围,θH从正北顺时针旋转计数

    Figure  4.  Distribution of source azimuth θH for double-frequency microseisms at the stations PFVI (a),MBO (b),FDF (c),MPG (d),and HDC (e) in 2015

    The two vertical dashed lines indicate the range of double-frequency microseisms between period 2 s and 10 s,and θH is counted clockwise from the north

    图  5  台站PFVI (a),MBO (b),FDF (c),MPG (d)和HDC (e) 2015年双频微地动源区方位角θH的季节变化图(圆圈上的数字表示方位角数据的个数)

    Figure  5.  Seasonal variations of source azimuth θH for double-frequency microseisms at the stations PFVI (a),MBO (b),FDF (c),MPG (d),and HDC (e) in 2015 where the numbers on the circles denote the number of azimuth data

  • 郑露露,林建民,倪四道,祝捍皓,郑红. 2017. 台风激发的第二类地脉动特征及激发模式分析[J]. 地球物理学报,60(1):187–197.
    Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinses Journal of Geophysics,60(1):187–197 (in Chinese).
    Bataille K,Chiu J M. 1991. Polarization analysis of high-frequency,three-component seismic data[J]. Bull Seismol Soc Am,81(2):622–642.
    Bromirski P D. 2001. Vibrations from the “Perfect Storm”[J]. Geochem Geophys Geosyst,2(7):1030. doi: 10.1029/2000gc000119
    Bromirski P D,Duennebier F K. 2002. The near-coastal microseism spectrum:Spatial and temporal wave climate relationships[J]. J Geophys Res,107(B8):ESE 5-1–ESE 5-20. doi: 10.1029/2001jb000265
    Bromirski P D,Flick R E,Graham N. 1999. Ocean wave height determined from inland seismometer data:Implications for investigating wave climate changes in the NE Pacific[J]. J Geophys Res:Oceans,104(C9):20753–20766. doi: 10.1029/1999jc900156
    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009. doi: 10.1029/2004gc000768
    Bromirski P D. 2009. Earth vibrations[J]. Science,324(5930):1026–1027.
    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177
    Haubrich R A,McCamy K. 1969. Microseisms:Coastal and pelagic sources[J]. Rev Geophys,7(3):539–571. doi: 10.1029/RG007i003p00539
    Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5
    Koper K D,Burlacu R. 2015. The fine structure of double-frequency microseisms recorded by seismometers in North America[J]. J Geophys Res:Solid Earth,120(3):1677–1691. doi: 10.1002/2014jb011820
    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35. doi: 10.1098/rsta.1950.0012
    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
    McNamara D E, Boaz R I. 2006. Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package, Open-File Report 2005–1438[R]. Reston, Virginia: U.S. Geological Survey: 1−29.
    Obrebski M J,Ardhuin F,Stutzmann E,Schimmel M. 2012. How moderate sea states can generate loud seismic noise in the deep ocean[J]. Geophys Res Lett,39(11):L11601. doi: 10.1029/2012gl051896
    Park J,Vernon F L,Lindberg C R. 1987. Frequency dependent polarization analysis of high-frequency seismograms[J]. J Geophys Res,92(B12):12664–12674. doi: 10.1029/JB092iB12p12664
    Peterson J. 1993. Observations and Modeling of Seismic Background Noise, Open-File Report 93–322[R]. Albuquerque, New Mexico: U.S. Geological Survey: 1–94.
    Samson J C. 1983. Pure states,polarized waves,and principal components in the spectra of multiple,geophysical time-series[J]. Geophys J R astr Soc,72(3):647–664. doi: 10.1111/j.1365-246X.1983.tb02825.x
    Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res,111(B10):B10306. doi: 10.1029/2005jb004237
    Stutzmann E,Schimmel M,Patau G,Maggi A. 2009. Global climate imprint on seismic noise[J]. Geochem Geophys Geosyst,10(11):Q11004. doi: 10.1029/2009GC002619
    Sun T,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3/4):431–448. doi: 10.1007/s11001-013-9204-6
    Tanimoto T,Ishimaru S,Alvizuri C. 2006. Seasonality in particle motion of microseisms[J]. Geophys J Int,166(1):253–266. doi: 10.1111/j.1365-246X.2006.02931.x
    Xiao H,Xue M,Pan M H,Gao J Y. 2018a. Characteristics of microseisms in South China[J]. Bull Seismol Soc Am,108(5A):2713–2723. doi: 10.1785/0120170237
    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018b. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017jb015291
  • 加载中
图(6)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  362
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 修回日期:  2020-11-06
  • 网络出版日期:  2021-02-26
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回