基于地震探测的盐源盆地构造特征及动力学意义

张平川, 于常青, 瞿辰, 邱隆君, 李恒强

张平川,于常青,瞿辰,邱隆君,李恒强. 2021. 基于地震探测的盐源盆地构造特征及动力学意义. 地震学报,43(5):569−583. DOI: 10.11939/jass.20200119
引用本文: 张平川,于常青,瞿辰,邱隆君,李恒强. 2021. 基于地震探测的盐源盆地构造特征及动力学意义. 地震学报,43(5):569−583. DOI: 10.11939/jass.20200119
Zhang P C,Yu C Q,Qu C,Qiu L J,Li H Q. 2021. Structural characteristics of Yanyuan basin deduced from seismic survey and its dynamic implication. Acta Seismologica Sinica43(5):569−583. DOI: 10.11939/jass.20200119
Citation: Zhang P C,Yu C Q,Qu C,Qiu L J,Li H Q. 2021. Structural characteristics of Yanyuan basin deduced from seismic survey and its dynamic implication. Acta Seismologica Sinica43(5):569−583. DOI: 10.11939/jass.20200119

基于地震探测的盐源盆地构造特征及动力学意义

基金项目: 国家自然科学基金项目(41761134096)和国家重点研发计划(2016YFC0600306-5)联合资助
详细信息
    通讯作者:

    于常青: e-mail:geoyucq@hotmail.com

  • 中图分类号: P315.2

Structural characteristics of Yanyuan basin deduced from seismic survey and its dynamic implication

  • 摘要: 基于覆盖盐源盆地的短周期天然地震台阵和布设的一条人工地震测线所获得的地震数据,从中提取地震能量属性,并通过地震层析成像获得该地区的浅部地震速度结构,继而对短周期地震台阵一个月的噪声数据进行互相关得到经验格林函数,再通过时频分析获得相速度频散曲线,反演获得不同深度的S波速度分布。研究结果显示,盐源盆地地震特征主要分为三层:浅部为低速新生代沉积地层,P波速度为1.0—2.1 km/s,反射轴明显、连续性好,反射能量强,S波速度为中高南低,南部低速体与盐源断裂走向一致,新生代盆地整体呈南深北浅,沉积发育和构造形态受盐源断裂控制;中部为中低速三叠系地层,P波速度为3.5—4.5 km/s,反射轴不连续,反射能量较弱,S波速度逐渐变大,整体变化变小;深部为高速古生代地层,地震反射较为杂乱,反射能量弱;上地壳存在滑脱面,该界面为沉积盖层与结晶基底的分界面,且向浅部发育一系列断层,其中金河—箐河断裂为盐源盆地与康滇地块的分界线,这些断裂带也是盐源盆地地震频发的部位。
    Abstract: In this paper, an artificial seismic line and a short period natural seismic array covering Yanyuan basin are set up. The seismic energy attribute is extracted from the artificial seismic data, and the seismic velocity structure is obtained by seismic tomography. Meanwhile the S-wave velocity distribution at different depths is obtained by inverting the empirical Green’s functions retrieved from cross-correlation of the ambient noise data recorded by the short period seismic array. The results show that Yanyuan basin is mainly divided into three layers by seismic characteristics. The shallow layer is the Cenozoic sedimentary stratum with low P wave velocity ranging from 1.0 km/s to 2.1 km/s, and it is characterized by good continuity and strong reflection. The S wave velocity is low in the south and high in the middle of Yanyuan basin, and the trend of the low-velocity anomaly in the south is in agreement with the strike of Yanyuan fault. Cenozoic basin is thick in the south and thin in the north, where the sedimentary and structure are controlled by Yanyuan fault. The middle layer is medium-low P wave velocity ranging from 3.5 km/s to 4.5 km/s, and it is characterized by discontinuous reflection axis and weak reflection, which can be interpreted as Triassic strata. The S-velocity becomes higher gradually and the change becomes smaller in general. The deep layer is high velocity, characterized by chaotic seismic reflection and weak reflection energy, interpreted as Paleozoic strata. Furthermone, there is a detachment surface in the upper crust, which is the interface between sedimentary and basement. A series of faults are developed from the detachment to the surface, and these faults are also an earthquake-prone area in Yanyuan basin. One of the faults is Jinhe-Qinghe fault, which is the boundary fault between Yanyuan basin and Kangdian block.
  • 图  1   盐源盆地所处位置及其地质构造 [ 修改自卢海建等(2015) ]

    Figure  1.   Location of Yanyuan basin and its geological structure modified from Lu et al (2015

    图  2   盐源地区强地震分布(a)及地震台阵与测线布设(b)

    F1:金河—箐河断裂;F2:盐源断裂;F3:小金河断裂

    Figure  2.   Distribution of strong earthquakes (a) and location of seismic array and the seismic line (b) in Yanyuan area

    F1:Jinhe-Jinghe fault;F2:Yanyuan fault;F3:Xiaojinhe fault

    图  3   (a) 部分台站对的互相关波形(0.2—2 Hz带通滤波);(b) 不同周期T的瑞雷波群速度对S波速度的敏感核;(c) 瑞雷波群速度频散曲线测量图,红色圆点表示所提取的频散点

    Figure  3.   (a) The cross-correlation seismograms between some stations (0.2—2 Hz);(b) Depth sensitivity kernels of Rayleigh wave group velocity to the S-wave velocity at different periods T;(c) Rayleigh wave group velocity measurements from empirical Green’s functions with red dots as the extracted dispersion points

    图  4   盐源盆地不同深度h下的短周期S波速度异常(AA′为地震测线)

    Figure  4.   The short period S-wave velocity anomalies in Yanyuan basin at different depths hAA′ is the seismic line)

    图  5   盐源盆地人工反射地震叠后偏移剖面(AA′线)

    Figure  5.   The migrated seismic reflection profile AA′ of the Yanyuan basin

    图  6   盐源盆地地震剖面处理与解释图

    (a) 地震能量剖面图;(b) 地震反演所得P波速度结构图;(c) 地震解释剖面,图中震源机制解引自GCMT (2018)

    Figure  6.   Seismic profile processing and interpretation for Yanyuan basin

    (a) Seismic energy profile;(b) The seismic P-wave velocity structure profile by inversion;(c) Interpretation profile where the focal mechanism solution after GCMT (2018)

  • 程万正,杨永林. 2002. 川滇地块边界构造带形变速率变化与成组强震[J]. 大地测量与地球动力学,22(4):21–25.

    Cheng W Z,Yang Y L. 2002. Deformation rate changes of tectonic belts along boundaries of Yunnan-Sichuan block and their relation to grouped strong earthquakes[J]. Journal of Geodesy and Geodynamics,22(4):21–25 (in Chinese).

    董蕾,沈旭章,钱银苹. 2020. 青藏高原东南缘Moho面速度密度跃变研究[J]. 地球物理学报,63(3):915–927. doi: 10.6038/cjg2020N0168

    Dong L,Shen X Z,Qian Y P. 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,63(3):915–927 (in Chinese).

    葛肖虹. 1984. 川西盐源推覆构造的探讨[J]. 长春地质学院学报,(1):36–43.

    Ge X H. 1984. A discussion on nappe structure in Yanyuan,west Sichuan[J]. Journal of Changchun College of Geology,(1):36–43 (in Chinese).

    金胜,魏文博,汪硕,叶高峰,邓明,谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报,53(10):2376–2385.

    Jin S,Wei W B,Wang S,Ye G F,Deng M,Tan H D. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics,53(10):2376–2385 (in Chinese).

    李立,金国元. 1987. 攀西裂谷带及龙门山断裂带地壳上地幔的大地电磁测深研究[J]. 物探与化探,11(3):161–169.

    Li L,Jin G Y. 1987. Telluric electromagnetic sounding study of crust and upper mantle in the Panxi “rift zone” and the Longmenshan faulted zone[J]. Geophysical &Geochemical Exploration,11(3):161–169 (in Chinese).

    李生. 2004. 四川锦屏山地区推覆构造带特征及其研究意义[J]. 沉积与特提斯地质,24(1):70–77. doi: 10.3969/j.issn.1009-3850.2004.01.011

    Li S. 2004. Nappe structures in the Jinpingshan area,Sichuan and their geological implications[J]. Sedimentary Geology and Tethyan Geology,24(1):70–77 (in Chinese).

    李勇,侯中健,司光影,周荣军,梁兴中. 2001. 青藏高原东南缘晚第三纪盐源构造逸出盆地的沉积特征与构造控制[J]. 矿物岩石,21(3):34–43. doi: 10.3969/j.issn.1001-6872.2001.03.006

    Li Y,Hou Z J,Si G Y,Zhou R J,Liang X Z. 2001. Sedimentary characteristics and tectonic controls in Neogene Yanyuan tectonic escape basin in southeastern Qinghai-Tibet Plateau[J]. Journal of Mineralogy and Petrology,21(3):34–43 (in Chinese).

    廖忠礼,邓永福,廖光宇. 2003. 四川锦屏地区新生代冲断作用[J]. 大地构造与成矿学,27(2):152–159. doi: 10.3969/j.issn.1001-1552.2003.02.008

    Liao Z L,Deng Y F,Liao G Y. 2003. Formation and evolution of Mesozoic thrust fold belt in Jinping area,Sichuan[J]. Geotectonica et Metallogenia,27(2):152–159 (in Chinese).

    刘家铎,刘文周. 1995. 盐源盆地演化及早三叠世青天堡组沉积环境[J]. 成都理工学院学报,22(3):70–74.

    Liu J D,Liu W Z. 1995. The evolution of Yanyuan basin and the sedimentary environment of the Early Triassic Qingtianbao group[J]. Journal of Chengdu Institute of Technology,22(3):70–74 (in Chinese).

    刘薇,邵昌盛,李大虎,顾勤平. 2018. 利用重力、航磁资料研究木里—盐源弧形构造带及邻区的深部孕震环境[J]. 成都理工大学学报(自然科学版),45(2):250–256. doi: 10.3969/j.issn.1671-9727.2018.02.12

    Liu W,Shao C S,Li D H,Gu Q P. 2018. Application of gravity and aeromagnetic data to the study of deep seismogenic environment of the Muli-Yanyuan arc structure belt and its adjacent area in Sichuan,China[J]. Journal of Chengdu University of Technology (Science &Technology Edition),45(2):250–256 (in Chinese).

    卢海建,王二七,李仕虎,李海兵. 2015. 青藏高原东南缘构造旋转变形分析:以四川盐源盆地古地磁研究为例[J]. 中国地质,42(5):1188–1201. doi: 10.3969/j.issn.1000-3657.2015.05.002

    Lu H J,Wang E Q,Li S H,Li H B. 2015. Rotational deformation of the southeastern margin of Tibet:A paleomagnetic study of the Yanyuan basin,Sichuan Province[J]. Geology in China,42(5):1188–1201 (in Chinese).

    骆耀南,俞如龙. 2002. 西南三江地区造山演化过程及成矿时空分布[J]. 地球学报,23(5):417–422. doi: 10.3321/j.issn:1006-3021.2002.05.005

    Luo Y N,Yu R L. 2002. Orogenic evolution and Metallogenic time-space distribution in Jinshajiang-Lancangjiang-Nujiang region,Southwest China[J]. Acta Geoscientia Sinica,23(5):417–422 (in Chinese).

    牟雅元,代宽宏,张振勋,邱发青,吴今生,胡德军,王松,代放,刘德安,胡方良. 2004. 2003年8月21日盐源5.0级地震的预测与分析[J]. 国际地震动态,(2):9–13. doi: 10.3969/j.issn.0253-4975.2004.02.003

    Mou Y Y,Dai K H,Zhang Z X,Qiu F Q,Wu J S,Hu D J,Wang S,Dai F,Liu D A,Hu F L. 2004. Prediction of the Yanyuan MS5.0 earthquake on Aug. 21,2003 and the relevant analysis[J]. Recent Developments in World Seismology,(3):9–13 (in Chinese).

    四川省地质矿产研究所专题研究组. 1987. 盐源—丽江地区三叠纪地层及沉积相[M]. 北京: 地质出版社: 107−116.

    Special Research Group of Sichuan Institute of Geology and Mineral Resources. 1987. The Triassic Strata and Sedimentary Facies in Yanyuan-Lijiang District[M]. Beijing: Geological Publishing House: 107−116 (in Chinese).

    孙洁,晋光文,白登海,王立凤. 2003. 青藏高原东缘地壳、上地幔电性结构探测及其构造意义[J]. 中国科学:D辑,33(增刊1):173–180.

    Sun J,Jin G W,Bai D H,Wang L F. 2003. Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet Plateau and its tectonic significance[J]. Science in China:Series D,46(2):243–253.

    谭捍东,姜枚,吴良士,魏文博. 2006. 青藏高原电性结构及其对岩石圈研究的意义[J]. 中国地质,33(4):906–911. doi: 10.3969/j.issn.1000-3657.2006.04.020

    Tan H D,Jiang M,Wu L S,Wei W B. 2006. Electrical conductivity structure of the Qinghai-Tibet Plateau and its significance for the study of the lithosphere[J]. Geology in China,33(4):906–911 (in Chinese).

    唐若龙. 1987. 木里—盐源推覆构造特征与金铜、铅锌的成矿关系[J]. 四川地质学报,7(2):3–9.

    Tang R L. 1987. Relationship between the characteristics of Muli-Yanyuan nappe structure and the mineralization of gold,copper,lead and zinc[J]. Acta Geologica Sichuan,7(2):3–9 (in Chinese).

    滕吉文,尹周勋,刘宏兵,张中杰,胡家富,孙克忠,魏计春. 1994. 青藏高原岩石层三维和二维结构与大陆动力学[J]. 地球物理学报,37(增刊2):117–130.

    Teng J W,Yin Z X,Liu H B,Zhang Z J,Hu J F,Sun K Z,Wei J C. 1994. The 2D and 3D lithosphere structure and continental dynamics of Qinghai-Xizang Plateau[J]. Acta Geophysica Sinica,37(S2):117–130 (in Chinese).

    王椿镛,吴建平,楼海,常利军,苏伟. 2006. 青藏高原东部壳幔速度结构和地幔变形场的研究[J]. 地学前缘,13(5):349–359. doi: 10.3321/j.issn:1005-2321.2006.05.010

    Wang C Y,Wu J P,Lou H,Chang L J,Su W. 2006. Study of crustal and upper mantle’s structure and mantle deformation field beneath the eastern Tibetan Plateau[J]. Earth Science Frontiers,13(5):349–359 (in Chinese).

    王夫运,段永红,杨卓欣,张成科,赵金仁,张建狮,张先康,刘启元,朱艾斓,徐锡伟,刘宝峰. 2008. 川西盐源—马边地震带上地壳速度结构和活动断裂研究:高分辨率地震折射实验结果[J]. 中国科学:D辑,38(5):611–621.

    Wang F Y,Duan Y H,Yang Z Y,Zhang C K,Zhao J R,Zhang J S,Zhang X K,Liu Q Y,Zhu A L,Xu X W,Liu B F. 2008. Velocity structure and active fault of Yanyuan-Mabian seismic zone:The result of high-resolution seismic refraction experiment[J]. Science in China:Series D,51(9):1284–1296. doi: 10.1007/s11430-008-0098-0

    王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学:地球科学,44(11):2440–2450.

    Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532–2542. doi: 10.1007/s11430-014-4908-2

    汪一鹏,沈军,王琪,熊熊. 2003. 川滇块体的侧向挤出问题[J]. 地学前缘,10(增刊1):188–192.

    Wang Y P,Shen J,Wang Q,Xiong X. 2003. On the lateral extrusion of Sichuan-Yunnan block (Chuan-Dian block)[J]. Earth Science Frontiers,10(S1):188–192 (in Chinese).

    王正和,邓敏,程锦翔,张海全. 2018. 康滇古陆西侧断裂及岩浆活动对油气保存条件的影响:以盐源盆地为例[J]. 地球科学,43(10):3616–3624.

    Wang Z H,Deng M,Cheng J X,Zhang H Q. 2018. Influence of fault and magmatism on oil and gas preservation condition,to the west of Kangdian ancient continent:Taking Yanyuan basin as an example[J]. Earth Science,43(10):3616–3624 (in Chinese).

    韦伟,孙若昧,石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨[J]. 中国科学:地球科学,40(7):831–839.

    Wei W,Sun R M,Shi Y L. 2010. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China Earth Sciences,53(9):1252–1259. doi: 10.1007/s11430-010-4037-5

    魏文博,金胜,叶高峰,邓明,景建恩,Martyn U,Alan J G. 2009. 藏南岩石圈导电性结构与流变性:超宽频带大地电磁测深研究结果[J]. 中国科学:D辑,39(11):1591–1606.

    Wei W B,Jin S,Ye G F,Deng M,Jing J E,Martyn U,Alan J G. 2010. Conductivity structure and rheological property of lithosphere in southern Tibet inferred from super-broadband magnetotelluric sounding[J]. Science in China:Series D,53(2):189–202. doi: 10.1007/s11430-010-0001-7

    韦一,张宗言,何卫红,吴年文,杨兵. 2014. 上扬子地区中生代沉积盆地演化[J]. 地球科学:中国地质大学学报,39(8):1065–1078.

    Wei Y,Zhang Z Y,He W H,Wu N W,Yang B. 2014. Evolution of sedimentary basins in the Upper Yangtze during Mesozoic[J]. Earth Science:Journal of China University of Geosciences,39(8):1065–1078 (in Chinese). doi: 10.3799/dqkx.2014.095

    向宏发,徐锡伟,虢顺民,张晚霞,李洪武,于贵华. 2002. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义:陆内活动地块横向构造的屏蔽作用[J]. 地震地质,24(2):188–198. doi: 10.3969/j.issn.0253-4967.2002.02.006

    Xiang H F,Xu X W,Guo S M,Zhang W X,Li H W,Yu G H. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance:Shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology,24(2):188–198 (in Chinese).

    徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊1):151–162.

    Xu X W,We X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,46(2):210–226.

    杨文采,侯遵泽,于常青. 2015. 青藏高原地壳的三维密度结构和物质运动[J]. 地球物理学报,58(11):4223–4234.

    Yang W C,Hou Z Z,Yu C Q. 2015. Three-dimensional density structure of the Tibetan Plateau and crustal mass movement[J]. Chinese Journal of Geophysics,58(11):4223–4234 (in Chinese).

    杨文采,侯遵泽,徐义贤,颜萍. 2017. 青藏高原下地壳热变形和管道流研究[J]. 地质论评,63(5):1141–1152.

    Yang W C,Hou Z Z,Xu Y X,Yan P. 2017. A study on thermal deformation and lower crust channel flows in Qinghai-Xizang (Tibet) Plateau[J]. Geological Review,63(5):1141–1152 (in Chinese).

    杨文采,瞿辰,任浩然,黄联捷,胥颐,于常青,刘晓宇. 2019a. 青藏高原软流圈与特提斯洋板块俯冲[J]. 地质论评,65(3):521–532.

    Yang W C,Qu C,Ren H R,Huang L J,Xu Y,Yu C Q,Liu X Y. 2019a. The asthenosphere of the Qinghai-Xizang (Tibetan) Plateau and subduction of the Tethys Ocean[J]. Geological Review,65(3):521–532 (in Chinese).

    杨文采,瞿辰,任浩然,黄连捷,胥颐,于常青. 2019b. 青藏高原地壳地震纵波速度的层析成像[J]. 地质论评,65(1):2–14.

    Yang W C,Qu C,Ren H R,Huang L J,Xu Y,Yu C Q. 2019b. Crustal P-wave seismic tomography of the Qinghai-Xizang (Tibetan) Plateau[J]. Geological Review,65(1):2–14 (in Chinese).

    杨文采,金胜,张罗磊,瞿辰,胡祥云,魏文博,于常青,于鹏. 2020. 青藏高原岩石圈三维电性结构[J]. 地球物理学报,63(3):817–827. doi: 10.6038/cjg2020N0197

    Yang W C,Jin S,Zhang L L,Qu C,Hu X Y,Wei W B,Yu C Q,Yu P. 2020. The three-dimensional resistivity structures of the lithosphere beneath the Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics,63(3):817–827 (in Chinese).

    杨妍. 2019. 川滇地区地壳速度结构及方位各向异性的联合反演研究[D]. 合肥: 中国科学技术大学: 21−24.

    Yang Y. 2019. Joint Inversion for Crustal Velocity Structure and Azimuthal Anisotropy: Application to the Sichuan-Yunnan Region, SW China[D]. Hefei: University of Science and Technology of China: 21−24 (in Chinese).

    杨卓欣,王夫运,段永红,张成科,赵金仁,张建狮,刘宝峰. 2011. 川滇活动地块东南边界基底结构:盐源—西昌—昭觉—马湖深地震测深剖面结果[J]. 地震学报,33(4):431–442. doi: 10.3969/j.issn.0253-3782.2011.04.003

    Yang Z X,Wang F Y,Duan Y H,Zhang C K,Zhao J R,Zhang J S,Liu B F. 2011. Basement structure of southeastern boundary region of Sichuan-Yunnan active block:Analysis result of Yanyuan-Xichang-Zhaojue-Mahu deep seismic sounding profile[J]. Acta Seismologica Sinica,33(4):431–442 (in Chinese).

    曾融生,朱介寿,周兵,丁志峰,何正勤,朱露培,骆循,孙为国. 1992. 青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型[J]. 地震学报,11(增刊1):523–533.

    Zeng R S,Zhu J S,Zhou B,Ding Z F,He Z Q,Zhu L P,Luo X,Sun W G. 1992. Three dimensional seismic wave velocity structure and continental collision model in Qinghai-Tibet Plateau and its eastern neighbor area[J]. Acta Seismologica Sinica,11(S1):523–533 (in Chinese).

    张丽敏,张志斌,崔文玲. 2014. 川西盐源两个碳酸岩杂岩体的厘定及其地质意义[J]. 大地构造与成矿学,38(1):131–139.

    Zhang L M,Zhang Z B,Cui W L. 2014. Discovery of two carbonatite intrusive complexes in Yanyuan area of western Sichuan and its geological significance[J]. Geotectonica et Metallogenia,38(1):131–139 (in Chinese).

    张岳桥,李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系[J]. 中国地质,43(6):1829–1852.

    Zhang Y Q,Li H L. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system[J]. Geology in China,43(6):1829–1852 (in Chinese).

    钟康惠,刘肇昌,施央申,李凡友,舒良树. 2004. 盐源—丽江构造带是新生代陆内造山带[J]. 地质学报,78(1):36–43. doi: 10.3321/j.issn:0001-5717.2004.01.005

    Zhong K H,Liu Z C,Shi Y S,Li F Y,Shu L S. 2004. Yanyuan-Lijiang tectonic zone:A Cenozoic intracontinental orogenic belt[J]. Acta Geologica Sinica,78(1):36–43 (in Chinese).

    中国地震台网中心. 2020. 历史查询[EB/OL]. [2020-12-12]. http://www.ceic.ac.cn/history.

    China Earthquake Networks Center. 2020. History query[EB/OL]. [2020-12-12]. http://www.ceic.ac.cn/history (in Chinese).

    朱民,陈汉林,周静,杨树锋. 2016. 上扬子西南盐源盆地早三叠世物源体系及构造意义[J]. 地球科学,41(8):1309–1321.

    Zhu M,Chen H L,Zhou J,Yang S F. 2016. Provenance of Early Triassic in Yanyuan basin,upper Yangtze and its implication for the tectonic evolution[J]. Earth Science,41(8):1309–1321 (in Chinese).

    周友华. 1986. 我国川滇菱形地块运动的探讨[J]. 地震研究,9(1):89–99.

    Zhou Y H. 1986. Discussion on the movement of Sichuan-Yunnan rhombus block in China[J]. Journal of Seismological Research,9(1):89–99 (in Chinese).

    Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830

    Bao X W,Sun X X,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Li H,Yu D Y,Huang Z C,Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth Planet Sci Lett,415:16–24. doi: 10.1016/j.jpgl.2015.01.020

    Beaumont C,Jamieson R A,Nguyen M H,Medvedev S. 2004. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J]. J Geophys Res:Solid Earth,109(B6):B06406.

    Burg J P,Chen G M. 1984. Tectonics and structural zonation of southern Tibet,China[J]. Nature,311(5983):219–223. doi: 10.1038/311219a0

    GCMT. 2018. Global CMT catalog search[EB/OL]. [2018-12-04]. https://www.globalcmt.org/CMTsearch.html.

    Hodges K V,Parrish R R,Housh T B,Lux D R,Burchfiel B C,Royden L H,Chen Z. 1992. Simultaneous Miocene extension and shortening in the Himalayan orogen[J]. Science,258(5087):1466–1470. doi: 10.1126/science.258.5087.1466

    Molnar P,Tapponnier P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision:Application of slip-line field theory to large-scale continental tectonics[J]. Geology,5(4):212–216. doi: 10.1130/0091-7613(1977)5<212:ROTTOE>2.0.CO;2

    Molnar P,Tapponnier P. 1978. Active tectonics of Tibet[J]. J Geophys Res:Solid Earth,83(B11):5361–5375. doi: 10.1029/JB083iB11p05361

    Replumaz A,Tapponnier P. 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks[J]. J Geophys Res:Solid Earth,108(B6):2285.

    Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,276(5313):788–790. doi: 10.1126/science.276.5313.788

    Schoenbohm L M,Burchfiel B C,Chen L Z. 2006. Propagation of surface uplift,lower crustal flow,and Cenozoic tectonics of the southeast margin of the Tibetan Plateau[J]. Geology,34(10):813–816. doi: 10.1130/G22679.1

    Shapiro N M,Ritzwoller M H,Molnar P,Levin V. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy[J]. Science,305(5681):233–236. doi: 10.1126/science.1098276

    Yang L,Liu H B,Zhao J M. 2009. Characteristic of crustal structure beneath the rifts in southern Tibetan Plateau[J]. Earthquake Science,22(4):373–377. doi: 10.1007/s11589-009-0373-y

    Zhang G,Wang X B,Fang H,Guo Z M,Zhang Z B,Luo W,Cai X L,Li J,Li Z,Wu X. 2015. Crust and upper mantle electrical resistivity structure in the Panxi region of the eastern Tibetan Plateau and its significance[J]. Acta Geologica Sinica,89(2):531–541. doi: 10.1111/1755-6724.12445

    Zhao W L,Yuen D A. 1987. Injection of Indian crust into Tibetan lower crust:A temperature-dependent viscous model[J]. Tectonics,6(4):505–514. doi: 10.1029/TC006i004p00505

图(6)
计量
  • 文章访问数:  1135
  • HTML全文浏览量:  476
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2021-02-19
  • 网络出版日期:  2021-07-20
  • 发布日期:  2021-09-29

目录

    /

    返回文章
    返回