新生破裂影响地震破裂跨越断层阶区传播过程的扩展有限单元法模拟

崔泽飞, 朱守彪

崔泽飞,朱守彪. 2023. 新生破裂影响地震破裂跨越断层阶区传播过程的扩展有限单元法模拟. 地震学报,45(6):959−969. DOI: 10.11939/jass.20210050
引用本文: 崔泽飞,朱守彪. 2023. 新生破裂影响地震破裂跨越断层阶区传播过程的扩展有限单元法模拟. 地震学报,45(6):959−969. DOI: 10.11939/jass.20210050
Cui Z F,Zhu S B. 2023. Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover. Acta Seismologica Sinica45(6):959−969. DOI: 10.11939/jass.20210050
Citation: Cui Z F,Zhu S B. 2023. Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover. Acta Seismologica Sinica45(6):959−969. DOI: 10.11939/jass.20210050

新生破裂影响地震破裂跨越断层阶区传播过程的扩展有限单元法模拟

基金项目: 国家自然科学基金(41874060,41574041)资助
详细信息
    作者简介:

    崔泽飞,在读博士研究生,主要从事地球动力学研究。e-mail:cuizefei2021@163.com

    通讯作者:

    朱守彪,博士,研究员,现主要从事地壳动力学、地震活动性及地震预报方法研究,e-mail:zhusb@pku.edu.cn

  • 中图分类号: P315.8

Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover

  • 摘要:

    采用扩展有限元方法计算了断层阶区内介质产生的新生破裂对地震破裂跨越断层阶区传播过程的影响。模型中新生的断层扩展遵循最大剪应力破坏准则,当最大剪应力超过岩石的承受极限时,完整介质产生破裂形成新的断层,并且新断层的扩展方向为最大剪应力方向。扩展有限元法模拟结果表明,断层阶区内新生的断层改变了断层阶区的几何形态,同时也改变了断层破裂后的应力状态。新生破裂可以改变库仑应力在空间的分布格局,特别是可以提高断层上的应力水平,从而提高地震破裂跨越断层阶区的能力。模拟结果还显示,断层阶区内新生破裂的产生,可以使得地震破裂跨越10 km宽的断层阶区,若阶区内部介质没有产生新生破裂,则地震破裂无法跨越该断层阶区。本研究有助于进一步认识地震破裂跨越断层阶区的传播过程,特别是对地震震源过程分析及地震灾害评估等具有重要的科学意义。

    Abstract:

    The step over plays a significant controlling role in the propagation process of seismic rupture. Researchers, based on geological survey results of multiple strike-slip earthquakes globally, have indicated that it is challenging for seismic rupture to cross step over wider than 5 km. Results from numerous numerical simulations also demonstrate that seismic rupture, under conditions such as uniform elastic media and uniform stress fields, cannot extend beyond step over wider than 5 km. However, as research progresses, it has been observed that in few earthquakes, rupture does cross step over wider than 5 km. And research fellows offer various explanations for this phenomenon, including higher stress near step over, changes in material properties due to rock damage, or the presence of concealed faults, among others. Drawing inspiration from previous studies, this paper proposes a novel explanation.  In numerical simulations of the seismic rupture process, it is commonly assumed that rupture occurs only on pre-existing faults. Nevertheless, it is highly likely that new ruptures may generate outside pre-existing faults during seismic events, giving rise to new faults. The rocks near step over are relatively brittle and are more likely to generate new ruptures during seismic events, thereby allowing rupture to cross wider step over. This study employs the extended finite element method to investigate the influence of newly generated ruptures near step over on the seismic rupture propagation process. A step over model with a width of 10 km is established. The newly generated ruptures in the model follow the maximum shear stress failure criterion; when the maximum shear stress exceeds the rock’ s ultimate limit, a new fault is formed in the intact medium, and the direction of the new rupture’ s expansion corresponds to the direction of maximum shear stress. According to the results of rock physical experiments, the model medium’ s maximum shear stress limit is set as 72 MPa.  The simulation results using the extended finite element method in this study show that after an earthquake occurs, the rupture first propagates to the end of the pre-existing fault, and then new ruptures occur near the step over. The expansion direction of the new rupture is nearly perpendicular to the strike of the pre-existing fault, and the fault continues to expand for 1.8 s, with an expansion length of approximately 8.2 km and an expansion velocity of approximately 4 556 m/s. This study also establishes a model that does not consider newly generated ruptures for comparison. Without considering new ruptures, the rupture cannot cross a 10 km wide step over. The paper compares Coulomb stress distribution maps at a specific moment in these two scenarios. According to the Coulomb stress distribution, it is evident that without considering newly generated ruptures, the rupture in this model can only cross step over for the model approximately 5 km wide. The new ruptures alter the geometry of the step over and greatly change the spatial distribution pattern of Coulomb stress, especially by elevating stress levels on the fault, thereby enhancing the ability of seismic rupture to cross step over and allowing it to cross step over 10 km wide. This study contributes to a deeper understanding of the propagation process of seismic rupture across step over, particularly for seismic source process analysis and seismic hazard assessment.

  • 图  4   模型2中不同时刻新生断层扩展长度的变化

    Figure  4.   Variation of the length of newly-generated fault at different time in Model 2

    图  1   断层阶区几何

    Figure  1.   Fault step geometry

    图  2   模型1中断层破裂在不同时刻质点振动速度等值线云图的快照

    Figure  2.   Snap shots of spatial contour distributions of particle velocities at different times in fault rupture propagation in Model 1

    图  3   模型2中断层破裂传播过程中,不同时刻质点振动速度等值线云图快照

    图中黑线表示新产生的断层 (下同),长度大约8.2 km,方向与断层1和断层2几乎垂直

    Figure  3.   Contour distributions of particle velocities at different time in fault rupture propagation in Model 2

    The newly-created fault is shown as black line (the same below),and it is about 8.2 km long and is almost perpendicular to the strikes of faults 1 and 2

    图  5   模型1 (a)和模型2 (b)中库仑应力空间分布图

    Figure  5.   The spatial distributions of Coulomb stresses in Model 1 and 2

    表  1   模型参数

    Table  1   Model parameters

    初始正应力
    σ/MPa
    初始剪应力
    τ/MPa
    横波速度
    vS/(m·s−1
    纵波速度
    vP/(m·s−1
    介质密度
    ρ/(kg·m−3
    成核区长度
    /km
    岩石承受的最大剪应力
    /MPa
    100565 9593 2942 700272
    下载: 导出CSV
  • 李录贤,王铁军. 2005. 扩展有限元法(XFEM)及其应用[J]. 力学进展,35(1):5–20. doi: 10.3321/j.issn:1000-0992.2005.01.002

    Li L X,Wang T J. 2005. The extended finite element method and its applications:A review[J]. Advances in Mechanics,35(1):5–20 (in Chinese).

    刘书文. 2021. 循环荷载作用下不同强度岩石动力特性实验研究[D]. 衡阳:南华大学:40−49.

    Liu S W. 2021. Experimental Study on Dynamic Characteristics of Rocks With Different Strength under Cyclic Loading[D]. Hengyang:University of South China:40−49 (in Chinese).

    万永革,沈正康,王敏,张祖胜,甘卫军,王庆良,盛书中. 2008. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布[J]. 地球物理学报,51(4):1074–1084. doi: 10.3321/j.issn:0001-5733.2008.04.016

    Wan Y G,Shen Z K,Wang M,Zhang Z S,Gan W J,Wang Q L,Sheng S Z. 2008. Coseismic slip distribution of the 2001 Kunlun mountain pass west earthquake constrained using GPS and InSAR data[J]. Chinese Journal of Geophysics,51(4):1074–1084 (in Chinese).

    王鹏,李安贵,蔡美峰,杨同. 2005. 基于随机-模糊理论的岩石抗剪强度参数的确定[J]. 岩石力学与工程学报,24(4):547–552. doi: 10.3321/j.issn:1000-6915.2005.04.001

    Wang P,Li A G,Cai M F,Yang T. 2005. Random-fuzzy monovariant linear regression method for determining the shear strength parameters of rock[J]. Chinese Journal of Rock Mechanics and Engineering,24(4):547–552 (in Chinese).

    袁杰,朱守彪. 2014. 断层阶区对震源破裂传播过程的控制作用研究[J]. 地球物理学报,57(5):1510–1521. doi: 10.6038/cjg20140515

    Yuan J,Zhu S B. 2014. Effects of stepover on rupture propagation[J]. Chinese Journal of Geophysics,57(5):1510–1521 (in Chinese).

    朱守彪,袁杰. 2018. 2008年汶川大地震中北川地区极重震害的物理机制研究[J]. 地球物理学报,61(5):1863–1873. doi: 10.6038/cjg2018M0111

    Zhu S B,Yuan J. 2018. Physical mechanism for extremely serious seismic damage in the Beichuan area caused by the great 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,61(5):1863–1873 (in Chinese).

    Ando R,Tada T,Yamashita T. 2004. Dynamic evolution of a fault system through interactions between fault segments[J]. J Geophys Res: Solid Earth,109(B5):B05303.

    Andrews D J. 1976. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679

    Barth T J,Sethian J A. 1998. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains[J]. J Comput Phys,145(1):1–40. doi: 10.1006/jcph.1998.6007

    Bradley B A,Razafindrakoto H N T,Nazer M A. 2017. Strong ground motion observations of engineering interest from the 14 November 2016 MW7.8 Kaikoura,New Zealand earthquake[J]. Bull NZ Soc Earthq Eng,50(2):85–93.

    Brune J N. 2002. Precarious-rock constraints on ground motion from historic and recent earthquakes in southern California[J]. Bull Seismol Soc Am,92(7):2602–2611. doi: 10.1785/0120000606

    Childs C,Holdsworth R E,Jackson C A L,Manzocchi T,Walsh J J,Yielding G. 2017. Introduction to the geometry and growth of normal faults[J]. Geol Soc Lond, Spec Publ,439:1–9. doi: 10.1144/SP439.24

    Chu S S,Lin M L,Huang W C,Nien W T,Liu H C,Chan P C. 2015. Simulation of growth normal fault sandbox tests using the 2D discrete element method[J]. Comput Geosci,74:1–12. doi: 10.1016/j.cageo.2014.10.006

    Cui Z F,Zhu S B. 2022. Effect of real-world frictional strengthening layer near the Earth’s free surface on rupture characteristics with different friction laws:Implication for scarcity of supershear earthquakes[J]. Tectonophysics,837:229447. doi: 10.1016/j.tecto.2022.229447

    Duan B C,Oglesby D D. 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. J Geophys Res: Solid Earth,111(B5):B05309.

    Finzi Y,Langer S. 2012. Predicting rupture arrests,rupture jumps and cascading earthquakes[J]. J Geophys Res: Solid Earth,117(B12):B12303.

    Gerdes K. 2000. A review of infinite element methods for exterior Helmholtz problems[J]. J Comput Acoust,8(1):43–62. doi: 10.1142/S0218396X00000042

    Harris R A,Day S M. 1993. Dynamics of fault interaction:Parallel strike-slip faults[J]. J Geophys Res: Solid Earth,98(B3):4461–4472. doi: 10.1029/92JB02272

    Harris R A,Day S M. 1999. Dynamic 3D simulations of earthquakes on en echelon faults[J]. Geophys Res Lett,26(14):2089–2092. doi: 10.1029/1999GL900377

    Harris R A,Dolan J F,Hartleb R,Day S M. 2002. The 1999 Izmit,Turkey,earthquake:A 3D dynamic stress transfer model of intra earthquake triggering[J]. Bull Seismol Soc Am,92(1):245–255. doi: 10.1785/0120000825

    Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796

    Kase Y,Kuge K. 1998. Numerical simulation of spontaneous rupture processes on twonon-coplanar faults:The effect of geometry on fault interaction[J]. Geophys J Int,135(3):911–922. doi: 10.1046/j.1365-246X.1998.00672.x

    Knuepfer P L K. 1989. Implications of the Characteristics of End-Points of Historical Surface Fault Ruptures for the Nature of Fault Segmentation[R]. California:United States Geological Survey:193−228.

    Lin A M,Fu B H,Guo J M,Zeng Q L,Dang G M,He W G,Zhao Y. 2002. Co-seismic strike-slip and rupture length produced by the 2001 MS8.1 Central Kunlun earthquake[J]. Science,296(5575):2015–2017. doi: 10.1126/science.1070879

    Lozos J C. 2010. The Effects of Strike-Slip Fault Stepovers on Rupture Behavior and Ground Motion Distribution[D]. California:University of California:22−67.

    Lozos J C,Oglesby D D,Brune J N,Olsen K B. 2012. Small intermediate fault segments can either aid or hinder rupture propagation at stepovers[J]. Geophys Res Lett,39(18):l18305.

    Magistrale H,Day S. 1999. 3D simulations of multi-segment thrust fault rupture[J]. Geophys Res Lett,26(14):2093–2096. doi: 10.1029/1999GL900401

    Melenk J M,Babuška I. 1996. The partition of unity finite element method:Basic theory and applications[J]. Comput Methods Appl Mech Eng,139(1/2/3/4):289–314.

    Moës N,Gravouil A,Belytschko T. 2002. Non-planar 3D crack growth by the extended finite element and level sets,Part I:Mechanical model[J]. Int J Numer Meth Eng,53(11):2549–2568. doi: 10.1002/nme.429

    Oglesby D. 2008. Rupture termination and jump on parallel offset faults[J]. Bull Seismol Soc Am,98(1):440–447. doi: 10.1785/0120070163

    Osher S,Sethian J A. 1988. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys,79(1):12–49. doi: 10.1016/0021-9991(88)90002-2

    Segall P,Pollard D D. 1980. Mechanics of discontinuous faults[J]. J Geophys Res: Solid Earth,85(B8):4337–4350. doi: 10.1029/JB085iB08p04337

    Sethian J A. 1999. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer Vision,and Materials Science[M]. 2nd ed. Cambridge:Cambridge University Press:15−42.

    Sibson R H. 1985. Stopping of earthquake ruptures at dilational fault jogs[J]. Nature,316(6025):248–251. doi: 10.1038/316248a0

    Stolarska M,Chopp D L,Moës N,Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method[J]. Int J Numer Meth Eng,51(8):943–960. doi: 10.1002/nme.201

    Wald D J,Heaton T H. 1994. Spatial and temporal distribution of slip for the 1992 Landers,California,earthquake[J]. Bull Seismol Soc Am,84(3):668–691. doi: 10.1785/BSSA0840030668

    Wang H,Liu M,Duan B C,Cao J L. 2020. Rupture propagation along stepovers of strike-slip faults:Effects of initial stress and fault geometry[J]. Bull Seismol Soc Am,110(3):1011–1024. doi: 10.1785/0120190233

    Wesnousky S G. 2006. Predicting the endpoints of earthquake ruptures[J]. Nature,444(7117):358–360. doi: 10.1038/nature05275

    Xu X W,Chen W B,Ma W T,Yu G H,Chen G H. 2002. Surface rupture of the Kunlunshan earthquake ( MS8.1),northern Tibetan Plateau,China[J]. Seismol Res Lett,73(6):884–892. doi: 10.1785/gssrl.73.6.884

    Xu X W,Yu G H,Klinger Y,Tapponnier P,van der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake ( MW7.8),northern Tibetan Plateau,China[J]. J Geophys Res: Solid Earth,111(B5):B05316.

    Yang H F,Yao S L,He B,Newman A V. 2019a. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth Planet Sci Lett,520:10–17. doi: 10.1016/j.jpgl.2019.05.030

    Yang H F,Yao S L,He B,Newman A V,Weng H H. 2019b. Deriving rupture scenarios from interseismic locking distributions along the subduction megathrust[J]. J Geophys Res: Solid Earth,124(10):10376–10392. doi: 10.1029/2019JB017541

    Yao S L,Yang H F. 2020. Rupture dynamics of the 2012 Nicoya MW7.6 earthquake:Evidence for low strength on the megathrust[J]. Geophys Res Lett,47(13):e2020GL087508. doi: 10.1029/2020GL087508

    Zhu S,Zhang P. 2013. Fem simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake[J]. Tectonophysics,584:64–80. doi: 10.1016/j.tecto.2012.06.024

    Zhu S,Miao M. 2015. How did the 2013 Lushan earthquake ( MS=7.0) trigger its aftershocks? Insights from static Coulomb stress change calculations[J]. Pure Appl Geophy,172(10):2481–2494. doi: 10.1007/s00024-015-1064-3

  • 期刊类型引用(4)

    1. 赵一帆,王毅. 基于三重震相波形模拟的东北亚地区上地幔S波速度结构研究. 物探化探计算技术. 2024(02): 137-145 . 百度学术
    2. 苏慧,魏荣强,周元泽,崔清辉,李国辉. 东北亚边缘地区地幔过渡带内滞留太平洋板片上界面的三重震相研究. 地球物理学报. 2023(06): 2431-2444 . 百度学术
    3. 崔辉辉,周元泽,石耀霖,王晓冉,李国辉. 华北克拉通东部滞留板块下方低速异常的地震三重震相探测. 地球物理学报. 2016(04): 1309-1320 . 百度学术
    4. 李国辉,眭怡,周元泽. 基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探. 地球物理学报. 2014(07): 2362-2371 . 百度学术

    其他类型引用(11)

图(5)  /  表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  41
  • PDF下载量:  58
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-04-10
  • 修回日期:  2023-06-11
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回