基于轮廓似然估计的广义极值分布在地震中长期预测中的应用

赵宜宾, 张艳芳, 王福昌, 任晴晴

赵宜宾,张艳芳,王福昌,任晴晴. 2022. 基于轮廓似然估计的广义极值分布在地震中长期预测中的应用. 地震学报,44(6):1061−1071. DOI: 10.11939/jass.20210067
引用本文: 赵宜宾,张艳芳,王福昌,任晴晴. 2022. 基于轮廓似然估计的广义极值分布在地震中长期预测中的应用. 地震学报,44(6):1061−1071. DOI: 10.11939/jass.20210067
Zhao Y B,Zhang Y F,Wang F C,Ren Q Q. 2022. Application of generalized extreme value distribution based on profile likelihood estimation in long term earthquake prediction. Acta Seismologica Sinica44(6):1061−1071. DOI: 10.11939/jass.20210067
Citation: Zhao Y B,Zhang Y F,Wang F C,Ren Q Q. 2022. Application of generalized extreme value distribution based on profile likelihood estimation in long term earthquake prediction. Acta Seismologica Sinica44(6):1061−1071. DOI: 10.11939/jass.20210067

基于轮廓似然估计的广义极值分布在地震中长期预测中的应用

基金项目: 河北省高等学校科学技术研究项目(Z2020224)、中央高校基本科研业务费项目(Z2020224)和河北省高等教育教学改革与实践项目(2020GJJG351)共同资助
详细信息
    作者简介:

    赵宜宾,教授,主要从事系统建模与仿真、灾害损失预测与评估等方面的研究,e-mail:zhaoyibin5326@126.com

    通讯作者:

    张艳芳,硕士,副教授,主要研究方向为系统优化与决策、统计分析建模等,e-mail:zyf_o@126.com

  • 中图分类号: P315.75

Application of generalized extreme value distribution based on profile likelihood estimation in long term earthquake prediction

  • 摘要: 为描述强震预测的不确定性,在地震预报极值分析模型的参数估计中,引入轮廓似然估计法。对广义极值分布中形状参数和地震重现水平的轮廓似然估计原理及数值算法进行了详细地阐述,并利用构建的广义极值分布模型对东昆仑地震带进行了地震危险性分析。关于形状参数和重现水平的点估计,以及10年以内的重现水平置信区间的估计,轮廓似然估计法与极大似然估计法效果基本相同,但在中长期地震重现水平置信区间的预测中,轮廓似然估计法得到的关于置信水平不对称的置信区间,在强震水平下对预测震级的不确定性表达更准确,预测结果更加有效。
    Abstract: To describe the uncertainty of strong earthquake prediction, we introduced the profile likelihood estimation into parameter estimation of extreme value model for earthquake prediction. It is elaborated that the profile likelihood estimation principle and numerical algorithm of shape parameters and earthquake return level in generalized extreme value distribution. Meanwhile, a model of generalized extreme value distribution was created and was used to analyze the seismic risk of the East Kunlun seismic belt. The results showed that profile likelihood estimation and maximum likelihood estimation generated basically the same effect in point estimation of shape parameters and return level as well as the estimation of confidence interval of earthquake return level within 10 years. However, in the confidence interval estimation of moderate and long interval earthquake return level, the asymmetric confidence interval of return level obtained through the profile likelihood estimation can more accurately express the uncertainty of predicted magnitude of a strong earthquake and more effectively predict the outcome.
  • 图  1   东昆仑地震带的地震分布规律

    (a) 地震空间分布;(b) M-t

    Figure  1.   Distribution law of earthquakes in East Kunlun seismic zone

    (a) Spatial distribution of earthquakes;(b) M-t diagram

    图  2   形状参数与轮廓对数似然函数之间的关系

    Figure  2.   Relationship between shape parameters and profile log likelihood function

    图  3   GEV分布模型适应性检验图

    (a) 密度曲线与直方图;(b) P-P 检验

    Figure  3.   Adaptability test of GEV distribution model

    (a) Density curves and histograms;(b) P-P test

    图  4   重现水平及置信区间的轮廓似然估计

    (a) 20年重现期;(b) 50年重现期;(c) 100年重现期;(d) 500年重现期

    Figure  4.   The reappearance level and confidence interval of the profile likelihood estimation

    (a) 20-year return period;(b) 50-year return period;(c)100-year return period;(d) 500-year return period

    图  5   重现水平的轮廓似然估计与极大似然估计对比

    Figure  5.   Comparation of the reproduction level between profile likelihood estimation and maximum likelihood estimation

    表  1   轮廓似然估计与极大似然估计GEV的分布结果对比

    Table  1   Comparation of the profile likelihood estimation and maximum likelihood estimationof GEV distribution

    模型分析项目轮廓似然估计极大似然估计
    参数估计(−0.204 0,0.847 5,4.834 5)(−0.204 4,0.847 8,4.834 8)
    形状参数置信区间 [ −0.259 0,−0.134 0 ] [ −0.268 8,−0.140 1 ]
    震级理论上限MS8.989 1MS8.981 9
    地震带最大震级均值MS5.178 9MS5.179 0
    下载: 导出CSV

    表  2   极大似然估计与轮廓似然估计的重现水平对比

    Table  2   Comparation of the recurrence level between profile likelihood estimation and maximum likelihood estimation

    重现期
    /年
    极大似然估计
    重现水平
    极大似然估计95%
    置信区间
    轮廓似然估计
    重现水平
    轮廓似然估计95%
    置信区间
    轮廓估计重现水平
    两侧区间长度比
    1MS5.13 [ 4.97,5.29 ] MS5.13 [ 4.98,5.29 ] 1.07
    5MS6.36 [ 6.15,6.57 ] MS6.36 [ 6.17,6.59 ] 1.21
    10MS6.72 [ 6.48,6.96 ] MS6.72 [ 6.51,7.00 ] 1.33
    20MS7.03 [ 6.75,7.30 ] MS7.03 [ 6.79,7.37 ] 1.42
    50MS7.36 [ 7.03,7.69 ] MS7.36 [ 7.10,7.80 ] 1.69
    100MS7.58 [ 7.20,7.95 ] MS7.58 [ 7.29,8.10 ] 1.79
    500MS7.97 [ 7.48,8.46 ] MS7.97 [ 7.63,8.68 ] 2.09
    下载: 导出CSV
  • 陈虹,黄忠贤. 1995. 应用混合极值理论及最大似然法估计中国大陆地震危险性[J]. 地震学报,17(2):264–269.

    Chen H,Huang Z X. 1995. Estimation of seismic risk in China mainland using mixed extreme value theory and maximum likelihood method[J]. Acta Seismologica Sinica,17(2):264–269 (in Chinese).

    陈凌,刘杰,陈颙,陈龙生. 1998. 地震活动性分析中余震的删除[J]. 地球物理学报,41(增刊):244–252.

    Chen L,Liu J,Chen Y,Chen L S. 1998. Aftershock deletion in seismicity analysis[J]. Acta Geophysica Sinica,41(S1):244–252 (in Chinese).

    陈培善,林邦慧. 1973. 极值理论在中长期地震预报中的应用[J]. 地球物理学报,16(1):6–24.

    Chen P S,Lin B H. 1973. An application of statistical theory of extreme values to moderate and long interval earthquake prediction[J]. Acta Geophysica Sinica,16(1):6–24 (in Chinese).

    高孟潭,贾素娟. 1988. 极值理论在工程地震中的应用[J]. 地震学报,10(3):317–326.

    Gao M T,Jia S J. 1988. The application of extremum analysis to earthquake engineering problems[J]. Acta Seismologica Sinica,10(3):317–326 (in Chinese).

    黄玮琼,李文香,曹学锋. 1994. 中国大陆地震资料完整性研究之二:分区地震资料基本完整的起始年分布图象[J]. 地震学报,16(4):423–432.

    Huang W Q,Li W X,Cao X F. 1994. Seismic data integrity in mainland China II:The initial year distribution image of basically completion for subdistrict seismic data[J]. Acta Seismologica Sinica,16(4):423–432 (in Chinese).

    鲁帆,王浩,严登华,张冬冬,肖伟华. 2013. 轮廓似然函数在水文气象极值推断不确定性分析中的应用[J]. 中国科学:技术科学,43(12):1299–1308.

    Lu F,Wang H,Yan D H,Zhang D D,Xiao W H. 2013. Application of profile likelihood function to the uncertainty analysis of hydrometeorological extreme inference[J]. Science China Technological Sciences,56(12):3151–3160. doi: 10.1007/s11431-013-5421-0

    钱小仕,王福昌,曹桂荣,任晴晴. 2012. 广义极值分布在地震危险性分析中的应用[J]. 地震研究,35(1):73–78. doi: 10.3969/j.issn.1000-0666.2012.01.013

    Qian X S,Wang F C,Cao G R,Ren Q Q. 2012. Application of the generalized extreme value distribution in seismic hazard analysis[J]. Journal of Seismological Research,35(1):73–78 (in Chinese).

    钱小仕,王福昌,盛书中. 2013. 基于广义帕累托分布的地震震级分布尾部特征分析[J]. 地震学报,35(3):341–350. doi: 10.3969/j.issn.0253-3782.2013.03.006

    Qian X S,Wang F C,Sheng S Z. 2013. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution[J]. Acta Seismologica Sinica,35(3):341–350 (in Chinese).

    史道济. 2006. 实用极值统计方法[M]. 天津: 天津科学技术出版社: 11–13.

    Shi D J. 2006. Practical Extremum Statistical Method[M]. Tianjin: Tianjin Science and Technology Press: 11–13 (in Chinese).

    史宁中. 2008. 统计检验的理论与方法[M]. 北京: 科学技术出版社: 59–68.

    Shi N Z. 2008. The Theory and Method of Statistical Test[M]. Beijing: Science and Technology Press: 59–68 (in Chinese).

    汪素云,高阿甲,冯义钧,和锐. 2010. 中国地震目录间的对比及标准化[J]. 地震,30(2):38–45. doi: 10.3969/j.issn.1000-3274.2010.02.005

    Wang S Y,Gao A J,Feng Y J,He R. 2010. Comparison and standardization of the Chinese earthquake catalogs[J]. Earthquake,30(2):38–45 (in Chinese).

    张国民,马宏生,王辉,王新岭. 2005. 中国大陆活动地块边界带与强震活动[J]. 地球物理学报,48(3):602–610. doi: 10.3321/j.issn:0001-5733.2005.03.018

    Zhang G M,Ma H S,Wang H,Wang X L. 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics,48(3):602–610 (in Chinese). doi: 10.1002/cjg2.693

    Bhunya P K,Singh R D,Berndtsson R,Panda S N. 2012. Flood analysis using generalized logistic models in partial duration series[J]. J Hydrol,420-421:59–71. doi: 10.1016/j.jhydrol.2011.11.037

    De Haan L. 1970. On regular Variation and its Application to the Weak Convergence of Sample Extremes[M]. Amsterdam: Mathe-matisch Centrum: 124.

    De Haan L. 1971. A form of regular variation and its application to the domain of attraction of the double exponential distribution[J]. Z Wahrsch Geb,17(3):241–258. doi: 10.1007/BF00536760

    Epstein B,Lomnitz C. 1966. A model for the occurrence of large earthquakes[J]. Nature,211(5052):954–956.

    Fisher R A,Tippett L H C. 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Math Proc Camb Phil Soc,24(2):180–190. doi: 10.1017/S0305004100015681

    Fréchet M. 1927. Sur la loi de probabilité de l’écart maximum[J]. Ann Soc Polon Math Cracovie,6:93–116.

    Gilli M,Këllezi E. 2006. An application of extreme value theory for measuring financial risk[J]. Comput Econ,27(2):207–228.

    Gnedenko B. 1943. Sur la distribution limite du terme maximum d'une serie aleatoire[J]. Ann Math,44(3):423–453. doi: 10.2307/1968974

    Jenkinson A F. 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quart J Roy Meteor Soc,81(348):158–171. doi: 10.1002/qj.49708134804

    Murphy S A,Van der Vaart A W. 2000. On profile likelihood[J]. J Am Stat Assoc,95(450):449–465. doi: 10.1080/01621459.2000.10474219

    Nordquist J M. 1945. Theory of largest values applied to earthquake magnitudes[J]. Trans AGU,26(1):29–31. doi: 10.1029/TR026i001p00029

    Rao C R. 1965. Linear Statistical Inference and its Applications[M]. New York: John Wiley and Sons: 155–209.

    Tajvidi N. 2003. Confidence intervals and accuracy estimation for heavy-tailed generalized Pareto distributions[J]. Extremes,6(2):111–123. doi: 10.1023/B:EXTR.0000025662.09067.3b

    von Bortkiewicz L. 1922. Variationsbreite und mittlerer Fehler[J]. Sitzungsber Berlin Math Ges,21:3–11.

    von Mises R. 1923. Uber die Variationsbreite einer Beobachtungsreihe[J]. Sitzungsber Berlin Math Ges,22:3–8.

    Yegulalp T M,Kuo J T. 1974. Statistical prediction of the occurrence of maximum magnitude earthquakes[J]. Bull Seismol Soc Am,64(2):393–414. doi: 10.1785/BSSA0640020393

  • 期刊类型引用(1)

    1. 陈子煜. 基于极值理论的海浪灾害损失拟合及风险评估. 福建商学院学报. 2024(05): 51-58 . 百度学术

    其他类型引用(1)

图(5)  /  表(2)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  120
  • PDF下载量:  78
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-05-09
  • 修回日期:  2021-12-01
  • 网络出版日期:  2022-10-17
  • 发布日期:  2022-12-12

目录

    /

    返回文章
    返回