Application of generalized extreme value distribution based on profile likelihood estimation in long term earthquake prediction
-
摘要: 为描述强震预测的不确定性,在地震预报极值分析模型的参数估计中,引入轮廓似然估计法。对广义极值分布中形状参数和地震重现水平的轮廓似然估计原理及数值算法进行了详细地阐述,并利用构建的广义极值分布模型对东昆仑地震带进行了地震危险性分析。关于形状参数和重现水平的点估计,以及10年以内的重现水平置信区间的估计,轮廓似然估计法与极大似然估计法效果基本相同,但在中长期地震重现水平置信区间的预测中,轮廓似然估计法得到的关于置信水平不对称的置信区间,在强震水平下对预测震级的不确定性表达更准确,预测结果更加有效。Abstract: To describe the uncertainty of strong earthquake prediction, we introduced the profile likelihood estimation into parameter estimation of extreme value model for earthquake prediction. It is elaborated that the profile likelihood estimation principle and numerical algorithm of shape parameters and earthquake return level in generalized extreme value distribution. Meanwhile, a model of generalized extreme value distribution was created and was used to analyze the seismic risk of the East Kunlun seismic belt. The results showed that profile likelihood estimation and maximum likelihood estimation generated basically the same effect in point estimation of shape parameters and return level as well as the estimation of confidence interval of earthquake return level within 10 years. However, in the confidence interval estimation of moderate and long interval earthquake return level, the asymmetric confidence interval of return level obtained through the profile likelihood estimation can more accurately express the uncertainty of predicted magnitude of a strong earthquake and more effectively predict the outcome.
-
-
表 1 轮廓似然估计与极大似然估计GEV的分布结果对比
Table 1 Comparation of the profile likelihood estimation and maximum likelihood estimationof GEV distribution
模型分析项目 轮廓似然估计 极大似然估计 参数估计 (−0.204 0,0.847 5,4.834 5) (−0.204 4,0.847 8,4.834 8) 形状参数置信区间 [ −0.259 0,−0.134 0 ] [ −0.268 8,−0.140 1 ] 震级理论上限 MS8.989 1 MS8.981 9 地震带最大震级均值 MS5.178 9 MS5.179 0 表 2 极大似然估计与轮廓似然估计的重现水平对比
Table 2 Comparation of the recurrence level between profile likelihood estimation and maximum likelihood estimation
重现期
/年极大似然估计
重现水平极大似然估计95%
置信区间轮廓似然估计
重现水平轮廓似然估计95%
置信区间轮廓估计重现水平
两侧区间长度比1 MS5.13 [ 4.97,5.29 ] MS5.13 [ 4.98,5.29 ] 1.07 5 MS6.36 [ 6.15,6.57 ] MS6.36 [ 6.17,6.59 ] 1.21 10 MS6.72 [ 6.48,6.96 ] MS6.72 [ 6.51,7.00 ] 1.33 20 MS7.03 [ 6.75,7.30 ] MS7.03 [ 6.79,7.37 ] 1.42 50 MS7.36 [ 7.03,7.69 ] MS7.36 [ 7.10,7.80 ] 1.69 100 MS7.58 [ 7.20,7.95 ] MS7.58 [ 7.29,8.10 ] 1.79 500 MS7.97 [ 7.48,8.46 ] MS7.97 [ 7.63,8.68 ] 2.09 -
陈虹,黄忠贤. 1995. 应用混合极值理论及最大似然法估计中国大陆地震危险性[J]. 地震学报,17(2):264–269. Chen H,Huang Z X. 1995. Estimation of seismic risk in China mainland using mixed extreme value theory and maximum likelihood method[J]. Acta Seismologica Sinica,17(2):264–269 (in Chinese).
陈凌,刘杰,陈颙,陈龙生. 1998. 地震活动性分析中余震的删除[J]. 地球物理学报,41(增刊):244–252. Chen L,Liu J,Chen Y,Chen L S. 1998. Aftershock deletion in seismicity analysis[J]. Acta Geophysica Sinica,41(S1):244–252 (in Chinese).
陈培善,林邦慧. 1973. 极值理论在中长期地震预报中的应用[J]. 地球物理学报,16(1):6–24. Chen P S,Lin B H. 1973. An application of statistical theory of extreme values to moderate and long interval earthquake prediction[J]. Acta Geophysica Sinica,16(1):6–24 (in Chinese).
高孟潭,贾素娟. 1988. 极值理论在工程地震中的应用[J]. 地震学报,10(3):317–326. Gao M T,Jia S J. 1988. The application of extremum analysis to earthquake engineering problems[J]. Acta Seismologica Sinica,10(3):317–326 (in Chinese).
黄玮琼,李文香,曹学锋. 1994. 中国大陆地震资料完整性研究之二:分区地震资料基本完整的起始年分布图象[J]. 地震学报,16(4):423–432. Huang W Q,Li W X,Cao X F. 1994. Seismic data integrity in mainland China II:The initial year distribution image of basically completion for subdistrict seismic data[J]. Acta Seismologica Sinica,16(4):423–432 (in Chinese).
鲁帆,王浩,严登华,张冬冬,肖伟华. 2013. 轮廓似然函数在水文气象极值推断不确定性分析中的应用[J]. 中国科学:技术科学,43(12):1299–1308. Lu F,Wang H,Yan D H,Zhang D D,Xiao W H. 2013. Application of profile likelihood function to the uncertainty analysis of hydrometeorological extreme inference[J]. Science China Technological Sciences,56(12):3151–3160. doi: 10.1007/s11431-013-5421-0
钱小仕,王福昌,曹桂荣,任晴晴. 2012. 广义极值分布在地震危险性分析中的应用[J]. 地震研究,35(1):73–78. doi: 10.3969/j.issn.1000-0666.2012.01.013 Qian X S,Wang F C,Cao G R,Ren Q Q. 2012. Application of the generalized extreme value distribution in seismic hazard analysis[J]. Journal of Seismological Research,35(1):73–78 (in Chinese).
钱小仕,王福昌,盛书中. 2013. 基于广义帕累托分布的地震震级分布尾部特征分析[J]. 地震学报,35(3):341–350. doi: 10.3969/j.issn.0253-3782.2013.03.006 Qian X S,Wang F C,Sheng S Z. 2013. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution[J]. Acta Seismologica Sinica,35(3):341–350 (in Chinese).
史道济. 2006. 实用极值统计方法[M]. 天津: 天津科学技术出版社: 11–13. Shi D J. 2006. Practical Extremum Statistical Method[M]. Tianjin: Tianjin Science and Technology Press: 11–13 (in Chinese).
史宁中. 2008. 统计检验的理论与方法[M]. 北京: 科学技术出版社: 59–68. Shi N Z. 2008. The Theory and Method of Statistical Test[M]. Beijing: Science and Technology Press: 59–68 (in Chinese).
汪素云,高阿甲,冯义钧,和锐. 2010. 中国地震目录间的对比及标准化[J]. 地震,30(2):38–45. doi: 10.3969/j.issn.1000-3274.2010.02.005 Wang S Y,Gao A J,Feng Y J,He R. 2010. Comparison and standardization of the Chinese earthquake catalogs[J]. Earthquake,30(2):38–45 (in Chinese).
张国民,马宏生,王辉,王新岭. 2005. 中国大陆活动地块边界带与强震活动[J]. 地球物理学报,48(3):602–610. doi: 10.3321/j.issn:0001-5733.2005.03.018 Zhang G M,Ma H S,Wang H,Wang X L. 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics,48(3):602–610 (in Chinese). doi: 10.1002/cjg2.693
Bhunya P K,Singh R D,Berndtsson R,Panda S N. 2012. Flood analysis using generalized logistic models in partial duration series[J]. J Hydrol,420-421:59–71. doi: 10.1016/j.jhydrol.2011.11.037
De Haan L. 1970. On regular Variation and its Application to the Weak Convergence of Sample Extremes[M]. Amsterdam: Mathe-matisch Centrum: 124.
De Haan L. 1971. A form of regular variation and its application to the domain of attraction of the double exponential distribution[J]. Z Wahrsch Geb,17(3):241–258. doi: 10.1007/BF00536760
Epstein B,Lomnitz C. 1966. A model for the occurrence of large earthquakes[J]. Nature,211(5052):954–956.
Fisher R A,Tippett L H C. 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Math Proc Camb Phil Soc,24(2):180–190. doi: 10.1017/S0305004100015681
Fréchet M. 1927. Sur la loi de probabilité de l’écart maximum[J]. Ann Soc Polon Math Cracovie,6:93–116.
Gilli M,Këllezi E. 2006. An application of extreme value theory for measuring financial risk[J]. Comput Econ,27(2):207–228.
Gnedenko B. 1943. Sur la distribution limite du terme maximum d'une serie aleatoire[J]. Ann Math,44(3):423–453. doi: 10.2307/1968974
Jenkinson A F. 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quart J Roy Meteor Soc,81(348):158–171. doi: 10.1002/qj.49708134804
Murphy S A,Van der Vaart A W. 2000. On profile likelihood[J]. J Am Stat Assoc,95(450):449–465. doi: 10.1080/01621459.2000.10474219
Nordquist J M. 1945. Theory of largest values applied to earthquake magnitudes[J]. Trans AGU,26(1):29–31. doi: 10.1029/TR026i001p00029
Rao C R. 1965. Linear Statistical Inference and its Applications[M]. New York: John Wiley and Sons: 155–209.
Tajvidi N. 2003. Confidence intervals and accuracy estimation for heavy-tailed generalized Pareto distributions[J]. Extremes,6(2):111–123. doi: 10.1023/B:EXTR.0000025662.09067.3b
von Bortkiewicz L. 1922. Variationsbreite und mittlerer Fehler[J]. Sitzungsber Berlin Math Ges,21:3–11.
von Mises R. 1923. Uber die Variationsbreite einer Beobachtungsreihe[J]. Sitzungsber Berlin Math Ges,22:3–8.
Yegulalp T M,Kuo J T. 1974. Statistical prediction of the occurrence of maximum magnitude earthquakes[J]. Bull Seismol Soc Am,64(2):393–414. doi: 10.1785/BSSA0640020393
-
期刊类型引用(1)
1. 陈子煜. 基于极值理论的海浪灾害损失拟合及风险评估. 福建商学院学报. 2024(05): 51-58 . 百度学术
其他类型引用(1)