SV波入射下饱和地层浅埋平行隧道动力响应机制

禹海涛, 王治坤, 陈峰军, 刘中宪

禹海涛,王治坤,陈峰军,刘中宪. 2022. SV波入射下饱和地层浅埋平行隧道动力响应机制. 地震学报,44(1):132−144. DOI: 10.11939/jass.20210097
引用本文: 禹海涛,王治坤,陈峰军,刘中宪. 2022. SV波入射下饱和地层浅埋平行隧道动力响应机制. 地震学报,44(1):132−144. DOI: 10.11939/jass.20210097
Yu H T,Wang Z K,Chen F J,Liu Z X. 2022. Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves. Acta Seismologica Sinica44(1):132−144. DOI: 10.11939/jass.20210097
Citation: Yu H T,Wang Z K,Chen F J,Liu Z X. 2022. Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves. Acta Seismologica Sinica44(1):132−144. DOI: 10.11939/jass.20210097

SV波入射下饱和地层浅埋平行隧道动力响应机制

基金项目: 国家自然科学基金项目(41922059,42177134)、上海市科委重点课题(18DZ1205106)和中央高校基本科研业务费专项共同资助
详细信息
    作者简介:

    禹海涛,博士,教授,主要从事地下结构抗震基础理论与应用研究,e-mail: chenfengjun@scgtc.com.cn

    通讯作者:

    陈峰军,硕士,高级工程师,主要从事地下工程建造技术研究,e-mail:chenfengjun@scgtc.com.cn

  • 中图分类号: TU435

Dynamic response mechanism of shallow parallel tunnels in saturated strata under incident of SV waves

  • 摘要: 目前城市核心区交叠紧邻的隧道群大量涌现,其抗震安全性问题日益突出,但近邻隧道之间以及与地层的动力相互作用机制尚不清晰。本文针对饱和地层浅埋平行隧道,基于Biot两相介质理论,采用边界积分方程法分别建立了饱和地层水平和竖向双线隧道动力作用分析模型,并与典型算例精确解对比验证了本模型的有效性;在此基础上,研究了SV波入射频率变化和双线隧道间距变化对隧道结构及周围地层孔隙水压力的影响机制,并以单条隧道分析结果为参照进行对比分析。结果表明:相比单条隧道,相邻隧道的存在改变了既有隧道的动力响应特征,且随着隧道间距的减小隧道响应变化更为明显,同时衬砌环向应力峰值显著增加;双线隧道周围地层孔隙水压力分布主要集中在隧道之间的区域内,且SV波低频入射下孔隙水压力峰值随间距的变小而增大;水平双线隧道的动力响应特征与竖向双线隧道不同,随着相邻隧道间距的减小,水平双线隧道的存在会显著放大隧道结构及周围地层的动力响应,而竖向双线隧道则会对垂直入射的SV波的传播起到阻滞作用,从而导致隧道及上部地表动力响应减弱。本研究可为饱和地层浅埋平行隧道抗震设计提供科学依据。
    Abstract: At present, a large number of overlapping and adjacent tunnel groups have emerged in the core urban area, and the seismic safety problem of these tunnels has become increasingly prominent. However, the dynamic interaction mechanism between adjacent tunnels and the stratum remains unclear. This paper focuses on shallow parallel tunnels in saturated strata. Based on the Biot poroelasticity theory, the boundary integral equation method is used to establish the dynamic analysis models of horizontal and vertical double-line tunnels in saturated strata, and the proposed model is verified by providing comparisons with the known solutions of typical examples. Furthermore, the response mechanism of the tunnel structure and surrounding pore water pressure under the change of tunnel spacing and SV wave incidence frequency is studied, and the results of a single tunnel were compared and analyzed. The results show that the existence of adjacent tunnels changes the dynamic response characteristics of the existing tunnel compared with a single tunnel, and the tunnel response changes more obviously with the decrease of tunnel spacing. In the meantime, the peak stress of lining increased significantly. The distribution of formation pore water pressure around the double-track tunnel is mainly concentrated in the area between the tunnels, and it increases with the decrease of spacing under the low frequency incidence of SV wave. The dynamic response characteristics of the horizontal double-track tunnel are different from those of the vertical double-track tunnel. As the distance between adjacent tunnels decreases, the existence of horizontal double-track tunnels will significantly amplify the dynamic response of the tunnel structure and surrounding strata, while the vertical double-line tunnel will block the propagation of the vertical incident SV wave, which leads to the decrease of dynamic response of the tunnel and the upper surface. The research can provide a scientific basis for the seismic design of shallow parallel tunnels in saturated strata.
  • 根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2020年6月23日15时29分04秒(UTC),墨西哥南部瓦哈卡州发生了一次矩震级MW7.4的地震,NEIC初步确定的震中(preliminary determination epicenter, 缩写为PDE)位于(15.916 3°N,95.953 3°W),震源深度为20 km。美国地质调查局(USGS,2020)和全球矩心矩张量组(GCMT,2020)随后发布了这次地震的矩心矩张量解(表1)。根据USGS (2020)发布的地震目录,在该主震发生后的48小时内发生了9次较大余震,其中最大余震震级达到MW5.4,5次事件深达35 km。

    表  1  不同机构所得墨西哥MW7.4地震矩心矩张量解的比较
    Table  1.  Comparison of the centroid moment tensor solutions for the MW7.4 Mexico earthquake obtained by different institutions
    机构矩张量/(1020 N·m)矩心参数
    MrrMttMppMrtMrpMtpτc/s北纬/°西经/°矩心深度/km
    GCMT (2020) 0.729 −0.737 0.008 1.220 −0.712 0.200 7.0 16.04 96.06 20
    USGS (2020)(W震相) 0.731 −0.752 0.020 1.104 −0.479 0.168 13.2 15.93 95.90 21.5
    USGS (2020)(体波反演) 0.527 −0.544 0.017 0.504 −0.289 0.101 16.04 95.90 32
    本文 0.700 −0.789 0.089 0.825 −0.491 0.218 8.0 15.96 95.89 22
    下载: 导出CSV 
    | 显示表格

    类似于上述两个组织的工作(Dziewonski et al,1981Kanamori,Rivera,2008Duputel et al,2012Ekström et al,2012),我们收集了震中距处于32.5°—88.9°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和数字地震台网联盟(International Federation of Digital Seismograph Networks,缩写为FDSN)的42个台站的长周期垂直分量数据,基于AK135模型计算格林函数(Wang,1999),利用我们自主研发的反演软件(张喆,许力生,2020),通过反演0.01—0.05 Hz频带内的P波波形得到了这次地震的矩心矩张量解。根据反演结果(图1),矩心时间为8 s,矩心震中位于(15.96°N,95.89°W),矩心深度为22 km,标量地震矩为1.24×1024 N·m,相当于MW7.4。基于矩心矩张量解(表1图2),我们也求得了相应的最佳双力偶解(图2表2),最佳双力偶成分占97%。最后,我们利用反演结果计算了合成波形,并与观测波形进行了比较,结果如图3所示,可见二者之间的相关系数平均值达到0.93,大多数台站的相关系数在0.90以上,均方根误差达1.33×10−5 m。

    图  1  矩心矩张量反演过程
    (a) 矩心时间搜索;(b) 矩心搜索;(c) 矩心深度搜索;(d) PDE位置(灰色)和矩心位置(红色)反演得到的矩张量解
    Figure  1.  Inversion process of the centroid moment tensor
    (a) Search for the centroid time;(b) Search for the centroid;(c) Search for the centroid depth; (d) The moment tensor solutions at the PDE (gray) and centroid (red) locations
    图  2  矩心矩张量反演参数以及台站分布与反演结果
    Figure  2.  The parameters of the centroid moment tensor inversion,the station distribution and the inversion results
    表  2  不同机构所得墨西哥MW7.4地震的最佳双偶解
    Table  2.  The best double-couple solutions for the MW7.4 Mexico earthquake obtained by different institutes
    机构标量地震矩
    /(1020 N·m)
    双力偶成分
    占比
    节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    GCMT (2020) 1.600 100% 270 16 62 118 76 97
    USGS (2020)(W震相) 1.423 96% 271 17 70 112 74 96
    USGS (2020)(体波) 0.797 99% 266 24 63 114 69 101
    本文 1.236 97% 266 22 60 118 71 101
    下载: 导出CSV 
    | 显示表格
    图  3  观测波形与合成波形的比较
    Figure  3.  Comparison between the observed (blue) and synthetic (red) waveforms

    与USGS和GCMT的结果相比(图4),我们反演所得矩心位置(15.96°N,95.89°W,深度22 km)、矩心时间、最佳双力偶解均与其非常相近。根据最佳双力解的节面参数、矩心位置、余震分布以及地震所处的构造环境,我们判断走向266°、倾角22°、滑动角60°的节面为真实的发震断层面(图4)。这是一次以逆冲为主、具有相当走滑分量的断层错动,或者说这是一次发生在俯冲带的斜滑事件。

    图  4  主震震源机制解与余震分布
    不同颜色的沙滩球和正方形代表不同机构确定的震源机制解及其矩心位置,小圆圈表示余震(来自USGS地震目录),大圆圈表示主震的PDE位置,圆圈和正方形的填充色显示了震源深度
    Figure  4.  The focal mechanism solutions of the mainshock and the aftershock distribution
    Colored beach-balls and squares represent the focal mechanism solutions and centroid locations determined by the various institutions,the small circles refer to the aftershocks (from the USGS catalog),and the large circle indicates the PED locations of the mainshock. The colors filled in the circles and squares indicate the focal depths

    本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!

  • 图  1   计算模型

    Figure  1.   Calculation model

    图  2   波场构造示意图

    Figure  2.   Schematic diagram of wave field structure

    图  3   地表水平(左)和竖向(右)位移幅值与解析解对比

    Figure  3.   Comparison of the horizontal (left) and vertical (right) displacement amplitudes of the surface with analytical solutions

    图  4   本文环向应力(左)和地表位移幅值(右)与精确解对比

    Figure  4.   Comparison of the hoop stress (left) and surface displacement (right) in this paper with the exact solution

    图  5   水平双线隧道地表x (a)和y (b)方向无量纲位移幅值曲线

    Figure  5.   The amplitude curves of the ground x-direction (a) and y-direction (b) displacement of the horizontal twin tunnels

    图  6   竖向双线隧道地表x (a)和y (b)方向无量纲位移幅值曲线

    Figure  6.   The amplitude curves of the ground x-direction (a) and y-direction (b) displacement of the vertical twin tunnels

    图  7   水平双线隧道(a)和竖向双线隧道(b)的动应力集中因子$ \sigma _{\theta \theta }^*$幅值曲线

    Figure  7.   Amplitude curves of dynamic stress concentration factor of the horizontal twin tunnels (a) and the vertical twin tunnels (b)

    图  8   不同频率入射下单隧道周围地层孔隙水压力分布图

    Figure  8.   Distribution of pore water pressure around a single tunnel under different incident frequencies

    图  9   不同频率入射下隧道间距比为3 (a),5 (b),8 (c)时水平双线隧道周围地层的孔隙水压力分布图

    Figure  9.   Distribution of pore water pressure in the formation around the horizontal twin tunnels under different incident frequencies for tunnel spacing ratio S=3 (a),5 (b),8 (c)

    图  10   不同频率入射下隧道间距比为3 (a),5 (b),8 (c)时竖向双线隧道周围地层的孔隙水压力分布图

    Figure  10.   Distribution of pore water pressure in the formation around the vertical twin tunnels under different incident frequencies for tunnel spacing ratio S=3 (a),5 (b),8 (c)

  • 陈波. 2008. 地下洞室群对弹性波的散射[D]. 天津: 天津大学: 30–47.

    Chen B. 2008. Scattering of Elastic Waves by Underground Group Cavities[D]. Tianjin: Tianjin University: 30–47 (in Chinese).

    李鹏,刘光磊,宋二祥. 2014. 饱和地基中地下结构地震反应若干问题研究[J]. 地震工程学报,36(4):843–849. doi: 10.3969/j.issn.1000-0844.2014.04.0843

    Li P,Liu G L,Song E X. 2014. Research on seismic response of underground structures in saturated foundation[J]. China Earthquake Engineering Journal,36(4):843–849 (in Chinese).

    李玉峰,彭立敏,雷明锋. 2015. 高速铁路交叉隧道动力学问题研究综述[J]. 现代隧道技术,52(2):8–15.

    Li Y F,Peng L M,Lei M F. 2015. Dynamics issues regarding high-speed railway crossing tunnels[J]. Modern Tunnelling Technology,52(2):8–15 (in Chinese).

    梁建文,张浩,Lee V W. 2004. 平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报,26(6):815–819. doi: 10.3321/j.issn:1000-4548.2004.06.017

    Liang J W,Zhang H,Lee V W. 2004. An analytical solution for dynamic stress concentration of underground cavities under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering,26(6):815–819 (in Chinese).

    梁建文,张季,巴振宁. 2012. 层状半空间中洞室群对地震动的时域放大作用[J]. 土木工程学报,45(增刊):152–157.

    Liang J W, Zhang J, Ba Z N. 2012. Time-domain amplification of seismic ground motion by group cavities in layered half-space[J]. China Civil Engineering Journal. 45(S1): 152-157 (in Chinese).

    刘中宪,琚鑫,梁建文. 2015. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报,37(9):1599–1612.

    Liu Z X,Ju X,Liang J W. 2015. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering,37(9):1599–1612 (in Chinese).

    王国波,徐海清,于艳丽. 2013. “群洞效应”对紧邻交叠盾构隧道及场地土地震响应影响的初步分析[J]. 岩土工程学报,35(5):968–973.

    Wang G B,Xu H Q,Yu Y L. 2013. Effect of group cavities on seismic response of adjacent overlapping shield tunnels and site soils[J]. Chinese Journal of Geotechnical Engineering,35(5):968–973 (in Chinese).

    王国波,王亚西,于艳丽,陈斌. 2015. 土体-隧道群相互作用体系地震响应研究[J]. 中国公路学报,28(7):66–76. doi: 10.3969/j.issn.1001-7372.2015.07.009

    Wang G B,Wang Y X,Yu Y L,Chen B. 2015. Study on seismic responses of soil-tunnel group interaction system[J]. China Journal of Highway and Transport,28(7):66–76 (in Chinese).

    Alielahi H,Adampira M. 2016. Effect of twin-parallel tunnels on seismic ground response due to vertically in-plane waves[J]. Int J Rock Mech Min Sci,85:67–83. doi: 10.1016/j.ijrmms.2016.03.010

    Balendra T,Thambiratnam D P,Koh C G,Lee S L. 1984. Dynamic response of twin circular tunnels due to incident SH-waves[J]. Earthq Eng Struct Dyn,12(2):181–201. doi: 10.1002/eqe.4290120204

    Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys,33(4):1482–1498. doi: 10.1063/1.1728759

    Fang X Q,Jin H X,Wang B L. 2015. Dynamic interaction of two circular lined tunnels with imperfect interfaces under cylindrical P-waves[J]. Int J Rock Mech Min Sci,79:172–182.

    Hashash Y M A,Hook J J,Schmidt B,Yao J I C. 2001. Seismic design and analysis of underground structures[J]. Tunn Undergr Space Technol,16(4):247–293. doi: 10.1016/S0886-7798(01)00051-7

    Lin S Y,Hung H H,Yang J P,Yang Y B. 2017. Seismic analysis of twin tunnels by a finite/infinite element approach[J]. Int J Geomech,17(9):04017060. doi: 10.1061/(ASCE)GM.1943-5622.0000940

    Liu Q J,Wang R Y. 2012. Dynamic response of twin closely-spaced circular tunnels to harmonic plane waves in a full space[J]. Tunn Undergr Space Technol,32:212–220. doi: 10.1016/j.tust.2012.07.001

    Liu Z X,Ju X,Wu C Q,Liang J W. 2017. Scattering of plane P1 waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space[J]. Tunn Undergr Space Technol,67:71–84. doi: 10.1016/j.tust.2017.04.017

    Luco J E,De Barros F C P. 1994. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthq Eng Struct Dyn,23(3):321–340. doi: 10.1002/eqe.4290230307

    Tsinidis G. 2018. Response of urban single and twin circular tunnels subjected to transversal ground seismic shaking[J]. Tunn Undergr Space Technol,76:177–193. doi: 10.1016/j.tust.2018.03.016

  • 期刊类型引用(1)

    1. 杨天春,朱德兵,付国红,杨追,黄睿. 天然电场选频法在高压线干扰环境下的浅层地下水勘探. 中国科技论文. 2024(10): 1065-1072 . 百度学术

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  111
  • PDF下载量:  37
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-02-16
  • 发布日期:  2022-03-17

目录

    /

    返回文章
    返回