一种新的地震危险性表达方法研究

张萌, 潘华

张萌,潘华. 2022. 一种新的地震危险性表达方法研究. 地震学报,44(6):1099−1110. DOI: 10.11939/jass.20210106
引用本文: 张萌,潘华. 2022. 一种新的地震危险性表达方法研究. 地震学报,44(6):1099−1110. DOI: 10.11939/jass.20210106
Zhang M,Pan H. 2022. A new method for expressing seismic hazards. Acta Seismologica Sinica44(6):1099−1110. DOI: 10.11939/jass.20210106
Citation: Zhang M,Pan H. 2022. A new method for expressing seismic hazards. Acta Seismologica Sinica44(6):1099−1110. DOI: 10.11939/jass.20210106

一种新的地震危险性表达方法研究

基金项目: 中国地震局地球物理研究所基本科研业务费专项(DQJB22Z03)和中国地震局地球物理研究所自主立项项目(JY2022Z53)联合资助
详细信息
    作者简介:

    张萌,博士,助理研究员,研究方向为地震活动性和地震危险性分析,e-mail:zmgeophysics@163.com

    通讯作者:

    潘华,博士,研究员,主要从事地震区划、概率地震危险性分析、地震活动性等方面的研究,e-mail:panhua.mail@163.com

  • 中图分类号: P315.9

A new method for expressing seismic hazards

  • 摘要: 为了寻找一种精度较高、超越概率范围较广并且便于应用的方式来表达地震危险性,本文回顾了当前常用的几种地震危险性表达方法,提出基于一个新函数来拟合地震危险性曲线的“特征系数法”,并使用《中国地震动参数区划图》(GB 18306—2015)的基础数据对该函数的拟合效果进行了验证。结果表明,新函数与地震危险性曲线拟合良好,与极值函数相比有明显的提升,能够充分地表达一个场点的地震危险性。另外,本文结果还显示该函数中表征曲线形状的参数k (文中称为特征系数)与场点面临的地震环境有关,k值较低的场点危险性贡献基本来自近场,而k值较高的场点中远距离的贡献是不能忽视的。
    Abstract: The aim is to find a way to express seismic hazards with high accuracy, a wide range of exceedance probabilities and convenient application. We reviewed several commonly used methods for seismic hazards expression, and the "characteristic coefficient method" based on a new function to fit the seismic hazard curve is proposed, and the effect of this function was also verified by using the base data of the Seismic Parameter Zoning Map of China (GB 18306−2015). The results show that the new function could effectively fit the seismic hazard curve, with a significant improvement compared to the extreme value function, and can adequatelyexpress the seismic hazards of a site. In addition, it is found that the parameter k (referred to as the characteristic coefficient in the paper), which characterizes the shape of the curve in this function, is related to the seismic environment faced by the site, that is, the hazard contribution for sites with low values of k essentially came from the near field, while the contribution for sites with high values of k from long distances could not be ignored.
  • 图  1   某城市PGA危险性曲线与极值函数的拟合

    Figure  1.   Results of the PGA hazard curve fitting the extreme value function for a city

    图  2   某城市PGA危险性曲线与新函数的拟合

    Figure  2.   Results of the PGA hazard curve fitting the new function for a city

    图  3   全国0.2°×0.2°间隔2万4 043个场点特征系数k的频数分布

    Figure  3.   Distribution of the frequency of the characteristic coefficient k for the national 24 043 sites with interval of 0.2°×0.2°

    图  4   特征系数法的拟合残差Res统计对比

    Figure  4.   Statistical comparison of fitting residuals for shape parameter method at 24 043 sites

    图  5   四个城市基于特征系数法拟合得到的地震危险性曲线

    Figure  5.   Seismic hazard curves based on the characteristic coefficient method for the four cities

    图  6   某城市基于特征系数法的谱加速度危险性曲线拟合结果

    Figure  6.   Results of fitting for the spectral acceleration hazard curve of a city based on the characteristic coefficient method

    图  7   拉萨和常德两场点PGA年超越概率曲线对比

    Figure  7.   Comparison of the annual PGA exceedance probability curves for the two sites in Lhasa and Changde

    图  8   拉萨和常德两场点PGA危险性曲线分解结果对比

    横坐标表示计算时离散化微元到场点的距离,纵坐标代表不同距离微元贡献的百分比即概率密度函数PDF(a) 50年超越概率10%的PGA;(b) 50年超越概率2%的PGA

    Figure  8.   Comparison of the results of the PGA hazard curve decomposition at the Lhasa and Changde sites

    The horizontal coordinate represents the distance from the discretized microelements to the field point at the time of calculation,and the vertical coordinate represents the percentage of contribution from microelements at different distances, that is,the probability density function PDF (a) PGA for 10% probability being exceeded in 50 years; (b)PGA for 2% probability being exceeded in 50 years

    图  9   拉萨和常德两场点潜在震源区分布

    Figure  9.   Distribution of potential source areas at the sites of Lhasa and Changde

    表  1   4个城市特征系数法拟合的地震危险性曲线相对残差Res结果

    Table  1   Fitting results of the relative residuals for seismic hazard curves by the characteristic coefficient method for four cities

    超越概率PGAfit/g PGAcal/g Res
    北京上海兰州成都 北京上海兰州成都 北京上海兰州成都
    50年63% 0.068 0.025 0.053 0.038 0.064 0.025 0.053 0.038 6.70% 2.70% 0.20% 0.80%
    50年50% 0.109 0.041 0.083 0.056 0.104 0.040 0.080 0.056 4.80% 2.40% 4.40% 1.50%
    50年5% 0.350 0.138 0.259 0.150 0.347 0.141 0.268 0.150 0.80% 2.00% 3.10% 0.20%
    50年2% 0.500 0.200 0.368 0.202 0.483 0.205 0.381 0.204 3.50% 2.30% 3.70% 1.00%
    50年0.5% 0.806 0.328 0.585 0.301 0.730 0.338 0.586 0.305 9.40% 3.00% 0.00% 1.30%
    下载: 导出CSV

    表  2   k值场点期望距离计算结果

    Table  2   Calculated expected distances for low k-value sites

    序号场点名称东经/° 北纬/°PGA475/gkPGA475期望距离/kmPGA2475期望距离/km
    1临沂118.6 35.00.1990.2524.6317.97
    2宿迁118.4 34.00.1760.2827.2219.01
    3唐山118.1 39.60.2450.3021.4216.51
    4黄山118.4 29.80.0340.3020.8414.15
    5佛山113.0 23.00.0710.3026.3019.99
    6漳州117.6 24.60.1150.2827.7118.28
    7渭南109.6 34.40.1990.2826.6019.37
    8临汾111.6 36.20.2380.2920.9617.50
    9当雄90.6 30.20.4100.3121.3817.93
    10格尔木91.6 36.00.2560.2827.6720.14
    11若羌县91.4 38.80.2560.2726.6319.93
    12白银104.6 36.80.2600.2925.1319.16
    13常德111.8 29.40.1780.2714.6911.86
    14松原124.8 45.20.1760.3017.0813.55
    15锡林浩特116.0 44.00.0540.2921.4416.35
    16赤峰119.0 42.00.1420.2819.3214.21
    下载: 导出CSV

    表  3   k值场点期望距离计算结果

    Table  3   Calculated expected distances for high k-value sites

    序号场点名称东经/° 北纬/°PGA475/gkPGA475期望距离/kmPGA2475期望距离/km
    1济宁116.6 35.40.0640.4346.0839.69
    2淮安119.2 33.40.0570.4150.5539.62
    3开封114.2 34.80.0830.4249.7147.54
    4晋城112.8 35.60.0590.4149.4739.00
    5沧州117.4 38.20.0630.4552.5343.20
    6东营118.6 37.40.0740.4250.9239.77
    7衡水116.0 37.60.0670.4249.1346.09
    8秦皇岛119.6 40.00.0690.4249.8847.00
    9鹤壁114.8 35.80.1160.4347.9244.00
    10济南117.2 36.60.0610.4242.6736.23
    11林周县91.4 30.00.1700.4558.5453.83
    12林芝94.6 30.00.1760.4343.2536.59
    13那曲地区92.2 31.60.1320.4960.9053.21
    14白银104.4 36.40.1190.4157.6656.34
    15临沧100.0 23.80.1780.4739.3934.42
    16凉山彝族自治州103.2 27.60.1340.5040.2235.96
    下载: 导出CSV
  • 高孟潭,卢寿德. 2006. 关于下一代地震区划图编制原则与关键技术的初步探讨[J]. 震灾防御技术,1(1):1–6. doi: 10.3969/j.issn.1673-5722.2006.01.001

    Gao M T,Lu S D. 2006. The discussion on principles of seismic zonation of the next generation[J]. Technology for Earthquake Disaster Prevention,1(1):1–6 (in Chinese).

    高孟潭. 2015. GB 18306—2015《中国地震动参数区划图》宣贯教材[M]. 北京: 中国质检出版社: 206–210.

    Gao M T. 2015. Propagation Materials of GB 183062015 "Earthquake Parameter Zoning Map of China"[M]. Beijing: China Quality Supervision and Inspection Press: 206–210 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 354.

    Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 354 (in Chinese).

    潘华,高孟潭,谢富仁. 2013. 新版地震区划图地震活动性模型与参数确定[J]. 震灾防御技术,8(1):11–23. doi: 10.3969/j.issn.1673-5722.2013.01.002

    Pan H,Gao M T,Xie F R. 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention,8(1):11–23 (in Chinese).

    俞言祥,李山有,肖亮. 2013. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术,8(1):24–33. doi: 10.3969/j.issn.1673-5722.2013.01.003

    Yu Y X,Li S Y,Xiao L. 2013. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention,8(1):24–33 (in Chinese).

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB 18306—2015 中国地震动参数区划图[S]. 北京: 中国标准出版社: 4.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. 2016. GB 18306—2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: Standards Press of China: 4 (in Chinese).

    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 33.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 33 (in Chinese).

    周本刚,陈国星,高战武,周庆,李姜一. 2013. 新地震区划图潜在震源区划分的主要技术特色[J]. 震灾防御技术,8(2):113–124. doi: 10.3969/j.issn.1673-5722.2013.02.001

    Zhou B G,Chen G X,Gao Z W,Zhou Q,Li J Y. 2013. The technical highlights in identifying the potential seismic sources for the update of national seismic zoning map of China[J]. Technology for Earthquake Disaster Prevention,8(2):113–124 (in Chinese).

    ASCE. 2010. ASCE 7-10 Minimum Design Loads for Buildings and Other Structures[S]. Reston, Virginia: American Society of Civil Engineers: 207–211.

    Bommer J J,Pinho R. 2006. Adapting earthquake actions in Eurocode 8 for performance-based seismic design[J]. Earthq Eng Struct Dyn,35(1):39–55. doi: 10.1002/eqe.530

    European Committee for Standardization. 2004. Eurocode 8: Design of Structures For Earthquake Resistance[S]. London: Commission of the European Communities: 40–43

    Cornell C A. 1968. Engineering seismic risk analysis[J]. Bull Seismol Soc Am,58(5):1583–1606. doi: 10.1785/BSSA0580051583

    Crowley H,Colombi M,Borzi B,Faravelli M,Onida M,Lopez M,Polli D,Meroni F,Pinho R. 2009. A comparison of seismic risk maps for Italy[J]. Bull Earthq Eng,7(1):149–180. doi: 10.1007/s10518-008-9100-7

    FEMA. 2009. Recommended Seismic Provisions for New Buildings and Other Structures: NEHRP P-750[R]. Washington, DC: Federal Emergency Management Agency: 5–8.

    Giardini D, Wössner J, Danciu L. 2014. Mapping Europe’s seismic hazard[J]. Eos, Trans AGU, 95(29): 261–262.

    Grant D N,Bommer J J,Pinho R,Calvi G M,Goretti A,Meroni F. 2007. A prioritization scheme for seismic intervention in school buildings in Italy[J]. Earthq Spectra,23(2):291–314. doi: 10.1193/1.2722784

    James E. 2002. A review of seismic hazard description in US design code and procedures[J]. Prog Struct Eng Mat,4(1):46–63.

    Kennedy R C, Short S A. 1994. Basis for Seismic Provisions of DOE-STD-1020[R]. Washington, DC: U. S. Department of Energy: 21–26.

    McGuire R K. 1976. Fortran Computer Program for Seismic Risk Analysis[R]. Washington, D C: U. S. Geological Survey: 67–76.

    Petersen M D, Moschetti M P, Powers P M, Mueller C S, Haller K M, Frankel A D, Zeng Y H, Rezaeian S, Harmsen S C, Boyd O S, Field N, Chen R, Rukstales K S, Luco N, Wheeler R L, Williams R A, Olsen A H. 2014. Documentation for the 2014 Update of the United States National Seismic Hazard Maps[R]. Washington, DC: U. S. Geological Survey: 7–10.

图(9)  /  表(3)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  293
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2021-09-26
  • 网络出版日期:  2022-10-17
  • 发布日期:  2022-12-12

目录

    /

    返回文章
    返回