Shallow S-wave velocity structure in Chongqing area
-
摘要: 基于重庆台网及邻区固定台站自2011年1月至2018年10月观测到的远震波形记录,利用接收函数直达P波振幅约束浅层结构的方法计算了重庆及周边地区台站下方浅层S波速度结构,结果表明:重庆浅层S波速度结构与盆山构造明显相关,盆地内表现为低速异常,与沉积层特征相对应,大巴山、大娄山区域则表现为相对高速的特征;华蓥山断裂S波速度高于断裂两侧的沉积层速度,表现出四川盆地沉积层中间薄两边厚的特点;华蓥山以东的川东地区多为套滑脱层构造,其浅层S波速度表现为低速异常。最后讨论了2010年以来重庆5次显著地震的孕震环境:川东滑脱构造地区的垫江MS4.4地震和石柱MS4.5地震与该区明显的低速异常有关;荣昌MS4.7和MS4.8地震的震源区无明显的高低速特征,可能与注水相关;武隆MS5.0地震发生在高低速交界部位的有利于积累应变的高速体一侧。Abstract: Based on the teleseismic waveform data recorded at permanent stations in Chongqing and its adjacent area from January 2011 to October 2018, the shallow S-wave velocity structure beneath the stations of Chongqing and its surrounding area is calculated by the method to constrain shallow structure based on direct P-wave amplitude in receiver functions. The results indicated that, the velocity structure of shallow S-wave in Chongqing is obviously related to the basin mountain structure, the low velocity anomaly in the basin corresponds to the characteristics of sedimentary layer, and the Daba mountain and Dalou mountain regions show relatively high velocity anomalies. The S-wave velocity of Huayingshan fault is higher than that of sedimentary layers on both sides of the fault, implying that the sedimentary layers in Sichuan basin are thin in the middle and thick on both sides. Finally, we discussed the seismogenic environment of five earthquakes in Chongqing since 2010. The Dianjiang MS4.4 earthquake and the Shizhu MS4.5 earthquake located in the east Sichuan detachment structure area are related to the obvious low velocity anomaly. The Rongchang MS4.7 and MS4.8 earthquakes have no obvious characteristics of high or low velocities, which may be related to water injection. The Wulong MS5.0 earthquake occurred on the high velocity body side that is conducive to strain accumulation of the high and low velocity junction.
-
-
-
丁仁杰, 李克昌. 2004. 重庆地震研究[M]. 北京: 地震出版社: 107. Ding R J, Li K C. 2004. Earthquake Research of Chongqing[M]. Beijing: Seismological Press: 107 (in Chinese).
范军,朱介寿,江晓涛,吴朋. 2015. 利用接收函数方法研究四川地区地壳结构[J]. 地震,35(1):65–76. doi: 10.3969/j.issn.1000-3274.2015.01.008 Fan J,Zhu J S,Jiang X T,Wu P. 2015. Crustal structure of Sichuan from receiver functions[J]. Earthquake,35(1):65–76 (in Chinese).
黄世源,李翠平,王赞军,高见,郭卫英. 2020. 重庆垫江MS4.4地震:一个可能发生在浅地表的地震[J]. 地震学报,42(1):34–43. doi: 10.11939/jass.20190094 Huang S Y,Li C P,Wang Z J,Gao J,Guo W Y. 2020. Dianjiang,Chongqing,MS4.4 earthquake:A possible shallow surface earthquake[J]. Acta Seismologica Sinica,42(1):34–43 (in Chinese).
雷兴林,李霞颖,李琦,马胜利,付碧宏,崔银祥. 2014. 沉积岩储藏系统小断层在油气田注水诱发地震中的作用:以四川盆地为例[J]. 地震地质,36(3):625–643. doi: 10.3969/j.issn.0253-4967.2014.03.007 Lei X L,Li X Y,Li Q,Ma S L,Fu B H,Cui Y X. 2014. Role of immature faults in injection-induced seismicity in oil/gas reservoirs:A case study of the Sichuan basin,China[J]. Seismology and Geology,36(3):625–643 (in Chinese).
李翠平,唐茂云,郭卫英,黄世源,王小龙,高见. 2019. 2017年11月23日重庆武隆MS5.0地震序列重定位及发震断层分析[J]. 地震地质,41(3):603–618. doi: 10.3969/j.issn.0253-4967.2019.03.005 Li C P,Tang M Y,Guo W Y,Huang S Y,Wang X L,Gao J. 2019. Relocation of the 23 November 2017 Wulong MS5.0 earthquake sequence and analysis of its seismogenic fault[J]. Seismology and Geology,41(3):603–618 (in Chinese).
李建有,石宝文,徐晓雅,胡家富. 2018. 利用远震接收函数探测四川盆地及周边地区的地壳结构[J]. 地球物理学报,61(7):2719–2735. doi: 10.6038/cjg2018L0652 Li J Y,Shi B W,Xu X Y,Hu J F. 2018. Crustal structure beneath the Sichuan basin and adjacent regions revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,61(7):2719–2735 (in Chinese).
钱银苹,沈旭章,李翠芹,梅秀苹,焦煜媛. 2018. 利用接收函数方法确定青藏高原东北缘近地表S波速度[J]. 地球物理学报,61(10):3951–3963. Qian Y P,Shen X Z,Li C Q,Mei X P,Jiao Y Y. 2018. Constraining the sub-surface S-wave velocity of the northeastern margin of Tibetan Plateau with receiver functions[J]. Chinese Journal of Geophysics,61(10):3951–3963.
宋晓东,李江涛,鲍学伟,李思田,王良书,任建业. 2015. 中国西部大型盆地的深部结构及对盆地形成和演化的意义[J]. 地学前缘,22(1):126–136. doi: 10.13745/j.esf.2015.01.011 Song X D,Li J T,Bao X W,Li S T,Wang L S,Ren J Y. 2015. Deep structure of major basins in western China and implications for basin formation and evolution[J]. Earth Science Frontiers,22(1):126–136 (in Chinese).
王海燕,高锐,卢占武,李文辉,郭华,熊小松,酆少英,李洪强,赵玉莲. 2017. 四川盆地深部地壳结构:深地震反射剖面探测[J]. 地球物理学报,60(8):2913–2923. doi: 10.6038/cjg20170801 Wang H Y,Gao R,Lu Z W,Li W H,Guo H,Xiong X S,Feng S Y,Li H Q,Zhao Y L. 2017. Deep crustal structure in Sichuan basin:Deep seismic reflection profiling[J]. Chinese Journal of Geophysics,60(8):2913–2923 (in Chinese).
王娟娟,姚华建,王伟涛,王宝善,李成,魏斌,冯磊. 2018. 基于背景噪声成像方法的新疆呼图壁储气库地区近地表速度结构研究[J]. 地球物理学报,61(11):4436–4447. doi: 10.6038/cjg2018M0025 Wang J J,Yao H J,Wang W T,Wang B S,Li C,Wei B,Feng L. 2018. Study of the near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics,61(11):4436–4447 (in Chinese).
王同军,蒋璀,贺曼秋,王洪超,陈凯. 2015. 2013年7月18日重庆石柱M4.5地震震源深度探讨[J]. 地震地磁观测与研究,36(3):27–31. doi: 10.3969/j.issn.1003-3246.2015.03.005 Wang T J,Jiang C,He M Q,Wang H C,Chen K. 2015. About focal depth of Shizhu M4.5 earthquake on 18 July,2013[J]. Seismological and Geomagnetic Observation and Research,36(3):27–31 (in Chinese).
王旭,陈凌,凌媛,高一帆,张建勇,姚华建. 2019. 基于接收函数直达P波振幅研究地壳浅层S波速度结构新方法及在青藏高原东北缘的应用[J]. 中国科学:地球科学,49(11):1788–1800. Wang X,Chen L,Ling Y,Gao Y F,Zhang J Y,Yao H J. 2019. A new method to constrain shallow crustal S-wave velocities based on direct P-wave amplitudes in receiver functions and its application in northeastern Tibet[J]. Science China Earth Sciences,62(11):1819–1831. doi: 10.1007/s11430-018-9443-6
王小龙,马胜利,雷兴林,郭欣,王强,余国政,勾宪斌,桑原保人,今西和俊,蒋霞东. 2012. 重庆荣昌诱发地震区精细速度结构及2010年ML5.1地震序列精确定位[J]. 地震地质,34(2):348–358. doi: 10.3969/j.issn.0253-4967.2012.02.013 Wang X L,Ma S L,Lei X L,Guo X,Wang Q,Yu G Z,Gou X B,Kuwahara Y,Imanishi K,Jiang X D. 2012. Fine velocity structure and relocation of the 2010 ML5.1 earthquake sequence in Rongchang gas field[J]. Seismology and Geology,34(2):348–358 (in Chinese).
王小龙,马胜利,郭志,雷兴林,夏英杰,郭欣,余国政,勾宪斌,蒋霞东. 2013. 利用地震背景噪声成像技术反演三峡库区及邻近地区地壳剪切波速度结构[J]. 地球物理学报,56(12):4113–4124. doi: 10.6038/cjg20131216 Wang X L,Ma S L,Guo Z,Lei X L,Xia Y J,Guo X,Yu G Z,Gou X B,Jiang X D. 2013. S-wave velocity of the crust in Three Gorges Reservoir and the adjacent region inverted from seismic ambient noise tomography[J]. Chinese Journal of Geophysics,56(12):4113–4124 (in Chinese).
王小龙. 2017. 利用地震波研究三峡重庆地区及邻区地壳速度结构[M]. 北京: 地震出版社: 53–54. Wang X L. 2017. Study on Crustal Velocity Structure in Chongqing Area of the Three Gorges and its Adjacent Areas by Using Seismic Waves[M]. Beijing: Seismological Press: 53–54 (in Chinese).
王志伟,王小龙,马胜利,雷兴林,刘培洵. 2018. 重庆荣昌地区注水诱发地震的时空分布特征[J]. 地震地质,40(3):523–538. doi: 10.3969/j.issn.0253-4967.2018.03.002 Wang Z W,Wang X L,Ma S L,Lei X L,Liu P X. 2018. Detailed temporal-spatial distribution of induced earthquakes by water injection in Rongchang,Chongqing[J]. Seismology and Geology,40(3):523–538 (in Chinese).
王志勇,康南昌,李明杰,臧殿光,张怡,杨昕. 2018. 四川盆地川东地区滑脱构造特征[J]. 石油地球物理勘探,53(增刊):276–286. doi: 10.13810/j.cnki.issn.1000-7210.2018.S1.044 Wang Z Y,Kang N C,Li M J,Zang D G,Zhang Y,Yang X. 2018. Detached structure features in East Sichuan basin[J]. Oil Geophysical Prospecting,53(S1):276–286 (in Chinese).
张宝龙,李志伟,包丰,邓阳,游庆瑜,张森琦. 2016. 基于微动方法研究五大连池火山区尾山火山锥浅层剪切波速度结构[J]. 地球物理学报,59(10):3662–3673. doi: 10.6038/cjg20161013 Zhang B L,Li Z W,Bao F,Deng Y,You Q Y,Zhang S Q. 2016. Shallow shear-wave velocity structures under the Weishan volcanic cone in Wudalianchi volcano field by microtremor survey[J]. Chinese Journal of Geophysics,59(10):3662–3673 (in Chinese).
Aki K, Richards P G. 2002. Quantitative Seismology[M]. 2nd ed. Sausalito CA, USA: University Science Books: 146-202.
Ammon C J,Randall G E,Zandt G. 1990. On the nonuniqueness of receiver function inversions[J]. J Geophys Res:Solid Earth,95(B10):15303–15318. doi: 10.1029/JB095iB10p15303
Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms[J]. Bull Seismol Soc Am,81(6):2504–2510. doi: 10.1785/BSSA0810062504
Julià J. 2007. Constraining velocity and density contrasts across the crust-mantle boundary with receiver function amplitudes[J]. Geophys J Int,171(1):286–301. doi: 10.1111/j.1365-2966.2007.03502.x