Seismic dislocation theory of spherical Earth model and its application
-
摘要: 地震位错理论是研究地震断层滑动与地球物理场变化之间关系的理论,是震源机制、地球内部构造、地震预测等基本地球物理问题与大地测量、地球物理观测数据之间的联系纽带。被广泛使用的半无限空间介质模型的位错理论,由于其几何模型的限制,在地震变形和地球动力学等应用研究中会导致一定程度的误差。此外,现代大地测量技术可以在全球和区域尺度上精确地观测地震变形,亟需一个适用于全球地震变形研究的地震位错理论。为此,本团队基于球形地球模型,经过多年系统性研究,建立了地震位错理论新体系。所构建的球形地球模型的地震位错理论,促进了全球地震变形和地球动力学变化的研究,是近年来地球物理学领域取得的重要理论进展之一。本文简要地介绍了国内球形地球模型地震位错理论的发展及其应用研究。首先,介绍了弹性球形地球模型、三维不均匀地球模型和黏弹地球模型的位错理论;其次,介绍球形地球模型的位错理论在地球动力学变化研究、断层与地下介质结构反演和地震大地测量学研究方面的相关应用;最后,对球形地球模型的位错理论的发展方向作出展望。Abstract: Seismic dislocation theory is the theory of studying the relationship between seismic fault slip and geophysical field change, and also it is the link between the source mechanism, the internal structure of the Earth, earthquake forecasting and other basic geophysical problems and geodetic-geophysical observation. The widely used dislocation theory of the semi-infinite medium model, due to the limitation of its geometric attribute, will riskily result in a certain degree of oversight and even fault in the application of seismic deformation and geodynamics analysis. In addition, modern geodesy technology can accurately observe seismic deformation on global and regional scales, and a suitable seismic dislocation theory born for global seismic deformation study is urgently required. For this purpose, our team has developed a new system of seismic dislocation theory based on the spherical Earth model through many years of systematic research. The establishment of such theory has promoted the study of global seismic deformation and geodynamic process, and expanded the study of earthquake-induced global geodynamic changes. This informative article briefly introduces the domestic development and application of seismic dislocation theory of spherical Earth model. The first section introduces the dislocation theory of elastic spherical Earth model, three-dimensional inhomogeneous Earth model and viscoelastic Earth model. The second section introduces the relevant applications of the dislocation theory of spherical Earth model in geodynamic change, fault and underground structure inversion and others in seismological geodesy. The seismic dislocation theory of the spherical Earth model has promoted the study of global seismic deformation and geodynamic changes. It is one of the important theoretical advances in the field of geophysics in recent years.
-
2021年5月21日21时48分(北京时间)云南省大理白族自治州漾濞县(99.87°E,25.67°N)发生MS6.4地震。该地震发生后,我们对震中附近的地下流体观测资料进行了系统的总结,结果显示云南省地震台在2021年2月24日提出洱源井水温异常,该井水温在漾濞MS6.4地震前呈现明显的异常现象。
洱源水温观测井位于云南省大理白族自治州洱源县玉湖镇,地理坐标为(99.95°E,26.11°N),地处洱源盆地,位于红河断裂带与维西—巍山断裂之间(图1)。该井建成于1984年,井深266.56 m,套管下至165.56 m,其中80.22—144.02 m为滤水管,165.56—266.56 m为裸孔。0—73.16 m的岩性为冲积湖积层,其中上部为黏土及砂土层、下部为石英质、石英颗粒砂土及碎石砾石层;73.16—170.3 m为千枚岩及粉砂质千枚岩,中间夹有变质砾岩、片岩;170.3—175.1 m为千枚岩破碎带;175.1—202.4 m为砂质千枚岩及少量变粒片岩;202.4—266.56 m以变质泥岩为主,中间为片岩及角砾(云南省地震局,2005)。
图 1 洱源井的构造位置及附近的地震分布断层数据据中国活动构造图(邓起东等,2007)修改补充;地震目录引自中国地震台网中心;震源机制解源于哈佛大学(Dziewonski,Ekström,2021);地质单元和河流数据源于MapSIS软件(蒋骏等,2000)Figure 1. Tectonic position of the Eryuan well and the distribution of nearby earthquakesThe fault data are revised from China ative tectonic map (Deng et al,2007),earthquake catalogue are from China Earthquake Networks Center,focal mechanisms are from Harvard University (Dziewonski,Ekström,2021),and geological units and rivers refer to MapSIS (Jiang et al,2000)洱源井从1991年开始观测水温,观测仪器为中国地震局地壳应力研究所(现应急管理部国家自然灾害防治研究院)研制的SZW-1A水温仪,温度探头放置在井下190 m。2015年10月SZW-1A水温仪器发生故障,10月13日更换为中科光大公司研制的ZKGD3000-NT水温仪,温度探头置于90 m处,该水温仪的观测精度优于0.05 ℃,1分钟采样1次。
洱源井距离漾濞MS6.4地震仅50 km,洱源井水温在漾濞地震前的变化如图2所示,可见:2020年10月3日水温开始下降,2021年4月中旬下降速率减缓,至2021年5月21日下降幅值约0.15 ℃,下降持续230天;漾濞地震发生时,洱源井水温出现显著的同震上升,上升幅值为0.018 ℃,之后持续上升。
针对洱源井水温的下降异常,云南省地震台于2021年3月1日开展了异常核实。通过观测系统检查、环境因素调查及气象因素分析,认为洱源井水温的下降异常不存在人为、仪器和环境等干扰因素(高文斐,胡小静,2021)。
为分析洱源井水温下降异常与漾濞MS6.4地震的关系,将洱源井水温历史观测资料与周围地震的对应情况进行对比。图3a为洱源观测井自采用中科光大水温仪以来的观测曲线,可见洱源井水温共出现过两次与漾濞MS6.4地震前类似的下降异常。一次为2015年10月至2016年4月出现的持续下降,2016年4月底下降转缓,下降幅值约0.19 ℃,转缓1个月后发生2016年5月18日云龙MS5.0地震,该地震与洱源井相距42 km,地震发生时记录到显著的水温同震响应,响应幅值为0.013 ℃,地震后水温回升。另一次为2016年12月初至2017年3月中旬出现的水温持续下降,降幅为0.11 ℃,下降有所转缓后发生2017年3月27日漾濞MS5.1地震,该地震与洱源井相距29 km,地震发生时同样记录到显著的水温同震响应,响应幅值为0.024 ℃,地震后水温回升。图4为三次MS≥5.0地震前洱源井水温下降变化的对比曲线,可见,2015年观测以来,洱源井水温共出现三次显著下降异常现象,之后周边均发生了MS5.0以上地震,地震发生时均记录到显著的同震响应,震后转折回升,因此三次地震前水温下降异常具有一定的重复性。
将洱源井水温异常与地震的对应情况进行统计检验,图3b为洱源井100 km范围内2015年10月13日至2021年8月21日期间MS5.0以上地震的M-t图,可见该时段内共发生6次MS5.0以上地震,因为2021年5月21日发生在漾濞县的四次地震为前震-主震-余震型地震事件(龙锋等,2021),本文将其视为一个地震序列,即洱源井水温自2015年观测以来在三次地震事件前均出现重复性下降异常。洱源井水温异常与地震一一对应,通过统计检验。
综合洱源井水温历史资料对比分析和统计检验的结果,本文认为洱源井水温2020年10月至2021年5月的异常变化与2021年5月21日漾濞MS6.4地震有关,为水温地震前兆观测积累了一次震例。洱源井水温异常的机理可能与震源断层及外围区域的应力演化有关,尚待进一步研究。
-
陈飞,刘泰,付广裕,佘雅文. 2020. 震后GPS观测数据揭示的日本MW9.0地震周边地区地幔黏滞性结构垂向变化[J]. 地球物理学报,63(6):2210–2220. doi: 10.6038/cjg2020N0170 Chen F,Liu T,Fu G Y,She Y W. 2020. Variation of the mantle viscosity around the Tohoku-Oki MW9.0 earthquake revealed by post-seismic GPS data[J]. Chinese Journal of Geophysics,63(6):2210–2220 (in Chinese).
陈俊勇. 2003. 现代大地测量学的进展[J]. 测绘科学,28(2):1–5. doi: 10.3771/j.issn.1009-2307.2003.02.001 Chen J Y. 2003. On the development of modern geodesy[J]. Science of Surveying and Mapping,28(2):1–5 (in Chinese).
陈运泰,林邦慧,林中洋,李志勇. 1975. 根据地面形变的观测研究1966年邢台地震的震源过程[J]. 地球物理学报,18(3):164–182. Chen Y T,Lin B H,Lin Z Y,Li Z Y. 1975. The focal mechanism of the 1966 Hsingtai ( 邢台) earthquake as inferred from the ground deformation observations[J]. Acta Geophysica Sinica,18(3):164–182 (in Chinese). Chen Y T, Lin B H, Lin Z Y, Li Z Y. 1975. The focal mechanism of the 1966 Hsingtai (邢台) earthquake as inferred from the ground deformation observations[J]. Acta Geophysica Sinica, 18(3): 164-182 (in Chinese).
陈运泰,林邦慧,王新华,黄立人,刘妙龙. 1979. 用大地测量资料反演的1976年唐山地震的位错模式[J]. 地球物理学报,22(3):201–217. doi: 10.3321/j.issn:0001-5733.1979.03.001 Chen Y T,Lin B H,Wang X H,Huang L R,Liu M L. 1979. A dislocation model of the Tangshan (唐山) earthquake of 1976 from the inversion of geodetic data[J]. Acta Geophysica Sinica,22(3):201–217 (in Chinese). Chen Y T, Lin B H, Wang X H, Huang L R, Liu M L. 1979. A dislocation model of the Tangshan (唐山) earthquake of 1976 from the inversion of geodetic data [J]. Acta Geophysica Sinica, 22(3): 201-217 (in Chinese).
付广裕,孙文科. 2012a. 地球横向不均匀结构对地表以及空间固定点同震重力变化的影响[J]. 地球物理学报,55(8):2728–2746. Fu G Y,Sun W K. 2012a. Effects of earth’s lateral heterogeneity on co-seismic gravity changes at deformed earth surface and space-fixed point[J]. Chinese Journal of Geophysics,55(8):2728–2746 (in Chinese).
付广裕,孙文科. 2012b. 球体位错理论计算程序的总体设计与具体实现[J]. 地震,32(2):73–87. Fu G Y,Sun W K. 2012b. Overall design and specific structures of the computing codes for coseismic deformations on a layered spherical earth[J]. Earthquake,32(2):73–87 (in Chinese).
胡明城. 2000. 现代大地测量学[J]. 测绘通报,(5):3. doi: 10.3969/j.issn.0494-0911.2000.05.021 Hu M C. 2000. Modern geodesy[J]. Bulletin of Surveying and Mapping,(5):3 (in Chinese).
李建成,宁津生,晁定波,姜卫平. 2006. 卫星测高在大地测量学中的应用及进展[J]. 测绘科学,31(6):19–23. doi: 10.3771/j.issn.1009-2307.2006.06.003 Li J C,Ning J S,Chao D B,Jiang W P. 2006. The applications and progress of satellite altimetry in geodesy[J]. Science of Surveying and Mapping,31(6):19–23 (in Chinese).
梁明,王武星,张晶. 2018. 联合GPS和GRACE观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报,61(7):2691–2704. doi: 10.6038/cjg2018L0356 Liang M,Wang W X,Zhang J. 2018. Post-seismic deformation mechanism of the MW9.0 Tohoku-Oki earthquake detected by GPS and GRACE observations[J]. Chinese Journal of Geophysics,61(7):2691–2704 (in Chinese).
林晓光,孙文科. 2014. 地形效应和局部地质构造对计算同震形变的影响:以2011年日本东北大地震(MW9.0)为例[J]. 地球物理学报,57(8):2530–2540. doi: 10.6038/cjg20140814 Lin X G,Sun W K. 2014. Effects of topography and local geological structure on computing co-seismic deformation:A case study of the 2011 Japan Tohoku earthquake (MW9.0)[J]. Chinese Journal of Geophysics,57(8):2530–2540 (in Chinese).
刘泰,付广裕,周新,苏小宁. 2017. 2011年日本MW9.0地震震后形变机制与震源区总体构造特征[J]. 地球物理学报,60(9):3406–3417. doi: 10.6038/cjg20170911 Liu T,Fu G Y,Zhou X,Su X N. 2017. Mechanism of post-seismic deformations following the 2011 Tohoku-Oki MW9.0 earthquake and general structure of lithosphere around the source[J]. Chinese Journal of Geophysics,60(9):3406–3417 (in Chinese).
刘泰,付广裕,邹镇宇. 2019. 2004年苏门答腊地震粘滞性松弛效应对华南地区地壳水平活动的影响[J]. 地震,39(2):37–45. doi: 10.3969/j.issn.1000-3274.2019.02.005 Liu T,Fu G Y,Zou Z Y. 2019. Effect of viscoelastic relaxation following the 2004 Sumatra earthquake on horizontal crustal movement in South China[J]. Earthquake,39(2):37–45 (in Chinese).
孙文科. 1989. 空间大地测量技术在板块构造及地壳形变中的应用[J]. 地球物理学报,32(3):339–346. doi: 10.3321/j.issn:0001-5733.1989.03.010 Sun W K. 1989. Applications of spatial geodetic in plate structure and crust deformation[J]. Acta Geophysica Sinica,32(3):339–346 (in Chinese).
孙文科. 2002. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场:卫星重力大地测量的最新发展及其对地球科学的重大影响[J]. 大地测量与地球动力学,22(1):92–100. Sun W K. 2002. Satellite in low orbit (CHAMP,GRACE,GOCE) and high precision earth gravity field:The latest progress of satellite gravity geodesy and its great influence on geoscience[J]. Journal of Geodesy and Geodynamics,22(1):92–100 (in Chinese).
孙文科. 2012a. 地震位错理论[M]. 北京: 科学出版社: 14–56. Sun W K. 2012a. Seismic Dislocation Theory[M]. Beijing: Science Press: 14–56 (in Chinese).
孙文科. 2012b. 地震位错理论在地震学研究中的作用与存在的问题[J]. 国际地震动态,(6):17. Sun W K. 2012b. Application of dislocation theories in seismological study and existing problems[J]. Recent Developments in World Seismology,(6):17 (in Chinese).
唐河,孙文科. 2021. 黏弹地球地震变形理论研究进展和展望[J]. 地球与行星物理论评,52(1):11–26. Tang H,Sun W K. 2021. Progress and prospect of deformation theory in the viscoelastic earth[J]. Reviews of Geophysics and Planetary Physics,52(1):11–26 (in Chinese).
汪汉胜,李国营,许厚泽. 1997. SNRVEI地球模型连续分布的简正模及其意义[J]. 地球物理学报,40(1):78–84. doi: 10.3321/j.issn:0001-5733.1997.01.009 Wang H S,Li G Y,Xu H Z. 1997. Continuously distributed modes of SNRVEI earth model and their effects[J]. Acta Geophysica Sinica,40(1):78–84 (in Chinese).
许厚泽,王广运. 1989. 动力大地测量学:研究地球动态变化的新学科[J]. 地球科学进展,4(4):9–15. Xu H Z,Wang G Y. 1989. Dynamic geodesy:A new discipline for studying the dynamic changes of the earth[J]. Advances in Earth Science,4(4):9–15 (in Chinese).
杨君妍,孙文科. 2020. 利用大地测量数据反演地震位错Love数和格林函数的理论与方法[J]. 地球物理学报,63(8):2912–2923. doi: 10.6038/cjg2020N0356 Yang J Y,Sun W K. 2020. The theory and method of determining dislocation Love number and Green’s function using geodetic data[J]. Chinese Journal of Geophysics,63(8):2912–2923 (in Chinese).
姚宜斌,杨元喜,孙和平,李建成. 2020. 大地测量学科发展现状与趋势[J]. 测绘学报,49(10):1243–1251. doi: 10.11947/j.AGCS.2020.20200358 Yao Y B,Yang Y X,Sun H P,Li J C. 2020. Geodesy discipline:Progress and perspective[J]. Acta Geodaetica et Cartographica Sinica,49(10):1243–1251 (in Chinese).
张国庆,付广裕,周新,徐长仪. 2015. 利用震后黏弹性位错理论研究苏门答腊地震(MW9.3)的震后重力变化[J]. 地球物理学报,58(5):1654–1665. doi: 10.6038/cjg20150517 Zhang G Q,Fu G Y,Zhou X,Xu C Y. 2015. Retrieve post-seismic gravity changes induced by Sumatra earthquake (MW9.3) based on the viscoelastic dislocation theory[J]. Chinese Journal of Geophysics,58(5):1654–1665 (in Chinese).
张岚,孙文科. 2022. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评,53(1):35–52. Zhang L,Sun W K. 2022. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics,53(1):35–52 (in Chinese).
周江存,孙和平,徐建桥,崔小明,陈晓东. 2017. 重力位能同震变化及其构造意义:以青藏高原地区为例[J]. 地球物理学报,60(6):2493–2499. doi: 10.6038/cjg20170636 Zhou J C,Sun H P,Xu J Q,Cui X M,Chen X D. 2017. Co-seismic change of gravitational potential energy and its tectonic implications:A case study of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2493–2499 (in Chinese).
周硕愚,吴云,姚运生,杜瑞林. 2008. 地震大地测量学研究[J]. 大地测量与地球动力学,28(6):77–82. Zhou S Y,Wu Y,Yao Y S,Du R L. 2008. Research of earthquake geodesy[J]. Journal of Geodesy and Geodynamics,28(6):77–82 (in Chinese).
周硕愚,吴云,江在森. 2017. 地震大地测量学及其对地震预测的促进:50年进展、问题与创新驱动[J]. 大地测量与地球动力学,37(6):551–562. Zhou S Y,Wu Y,Jiang Z S. 2017. Earthquake geodesy and earthquake prediction:Progress,innovations and problems over fifty years[J]. Journal of Geodesy and Geodynamics,37(6):551–562 (in Chinese).
周新. 2017. 利用大地测量数据反演断层滑移分布的MCMC方法[J]. 大地测量与地球动力学,37(10):996–1002. Zhou X. 2017. Markov Chain Monte Carlo method used to invert for fault slip from geodetic data[J]. Journal of Geodesy and Geodynamics,37(10):996–1002 (in Chinese).
周新,万晓云,申旭辉. 2018. 主喜马拉雅逆冲带的震间与同震重力场变化[J]. 遥感学报,22(增刊1):100–113. Zhou X,Wang X Y,Shen X H. 2018. Coseismic and interseismic gravity field change along the Main Himalaya Thrust[J]. Journal of Remote Sensing,22(S1):100–113 (in Chinese).
Abidin H Z,Andreas H,Kato T,Ito T,Meilano I,Kimata F,Natawidjaya D H,Harjono H. 2009. Crustal deformation studies in Java (Indonesia) using GPS[J]. J Earthq Tsunami,3(2):77–88. doi: 10.1142/S1793431109000445
Adam D. 2002. Amazing GRACE[J]. Nature,416(6876):10–11. doi: 10.1038/416010a
Aki K. 1964. Study of Love and Rayleigh waves from earthquakes with fault plane solutions or with known faulting. Part 1. A phase difference method based on a new model of earthquake source[J]. Bull Seismol Soc Am,54(2):511–527. doi: 10.1785/BSSA0540020511
Allen R M,Ziv A. 2011. Application of real-time GPS to earthquake early warning[J]. Geophys Res Lett,38(16):L16310.
Alterman Z,Jarosch H,Pekeris C L. 1959. Oscillations of the earth[J]. Proc R Soc Lond A:Math Phys Sci,252(1268):80–95.
Amoruso A,Crescentini L. 2009. Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake,Italy[J]. Geophys Res Lett,36(24):L24306. doi: 10.1029/2009GL041503
Anderson D L. 1974. Earthquakes and the rotation of the Earth[J]. Science,186(4158):49–50. doi: 10.1126/science.186.4158.49
Anderson D L,O’Connell R. 1967. Viscosity of the Earth[J]. Geophys J Int,14(1/2/3/4):287–295.
Argus D F,Peltier W R,Blewitt G,Kreemer C. 2021. The viscosity of the top third of the lower mantle estimated using GPS,GRACE,and relative sea level measurements of glacial isostatic adjustment[J]. J Geophys Res:Solid Earth,126(5):e2020JB021537.
Ben-Menahem A,Toksöz M N. 1962. Source-mechanism from spectra of long-period seismic surface-waves:1. The Mongolian earthquake of December 4,1957[J]. J Geophys Res,67(5):1943–1955. doi: 10.1029/JZ067i005p01943
Ben-Menahem A,Singh S J. 1968. Multipolar elastic fields in a layered half space[J]. Bull Seismol Soc Am,58(5):1519–1572. doi: 10.1785/BSSA0580051519
Beresnev I A. 2003. Uncertainties in finite-fault slip inversions:To what extent to believe?(a critical review)[J]. Bull Seismol Soc Am,93(6):2445–2458. doi: 10.1785/0120020225
Biggs J,Wright T J. 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nat Commun,11(1):3863. doi: 10.1038/s41467-020-17587-6
Bock Y,Melgar D. 2016. Physical applications of GPS geodesy:A review[J]. Rep Prog Phys,79(10):106801. doi: 10.1088/0034-4885/79/10/106801
Braitenberg C. 2018. The deforming and rotating Earth:A review of the 18th International Symposium on Geodynamics and Earth Tide,Trieste 2016[J]. Geod Geodyn,9(3):187–196. doi: 10.1016/j.geog.2018.03.003
Cambiotti G,Barletta V R,Bordoni A,Sabadini R. 2009. A comparative analysis of the solutions for a Maxwell Earth:The role of the advection and buoyancy force[J]. Geophys J Int,176(3):995–1006. doi: 10.1111/j.1365-246X.2008.04034.x
Cambiotti G. 2020. Joint estimate of the coseismic 2011 Tohoku earthquake fault slip and post-seismic viscoelastic relaxation by GRACE data inversion[J]. Geophys J Int,220(2):1012–1022.
Cathles L M. 1975. Viscosity of the Earth’s Mantle[M]. Princeton: Princeton University Press: 267.
Chao B F. 2003. Geodesy is not just for static measurements any more[J]. Eos,Trans AGU,84(16):145–150.
Chao B F,Gross R S. 1987. Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes[J]. Geophys J Int,91(3):569–596. doi: 10.1111/j.1365-246X.1987.tb01659.x
Chen C H,Yeh T K,Liu J Y,Wang C H,Wen S,Yen H Y,Chang S H. 2011. Surface deformation and seismic rebound:Implications and applications[J]. Surv Geophys,32(3):291–313. doi: 10.1007/s10712-011-9117-3
Cheng H H,Zhang B,Huang L Y,Zhang H,Shi Y L. 2019. Calculating coseismic deformation and stress changes in a heterogeneous ellipsoid earth model[J]. Geophys J Int,216(2):851–858. doi: 10.1093/gji/ggy444
Chinnery M A. 1961. The deformation of the ground around surface faults[J]. Bull Seismol Soc Am,51(3):355–372. doi: 10.1785/BSSA0510030355
Cornelio C,Violay M. 2020. Effect of fluid viscosity on earthquake nucleation[J]. Geophys Res Lett,47(12):e2020GL087854.
Dahlen F A. 1968. The normal modes of a rotating,elliptical Earth[J]. Geophys J Int,16(4):329–367. doi: 10.1111/j.1365-246X.1968.tb00229.x
Dahlen F A. 1974. On the static deformation of an Earth model with a fluid core[J]. Geophys J Int,36(2):461–485. doi: 10.1111/j.1365-246X.1974.tb03649.x
Dahlen F A. 1977. The balance of energy in earthquake faulting[J]. Geophys J Int,48(2):239–261. doi: 10.1111/j.1365-246X.1977.tb01298.x
Dai C L,Shum C K,Wang R J,Wang L,Guo J Y,Shang K,Tapley B. 2014. Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes[J]. Geophys Res Lett,41(6):1929–1936. doi: 10.1002/2013GL059178
Diao F Q,Wang R J,Wang Y B,Xiong X,Walter T R. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth Planet Sci Lett,495:202–212. doi: 10.1016/j.jpgl.2018.05.020
Diao F Q,Xiong X,Wang R J,Walter T R,Wang Y B,Wang K. 2019. Slip rate variation along the Kunlun fault (Tibet):Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophys Res Lett,46(5):2524–2533. doi: 10.1029/2019GL081940
Dong J,Sun W K,Zhou X,Wang R J. 2014. Effects of Earth’s layered structure,gravity and curvature on coseismic deformation[J]. Geophys J Int,199(3):1442–1451. doi: 10.1093/gji/ggu342
Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Inter,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7
Fang M,Hager B H. 1996. The sensitivity of post-glacial sea level to viscosity structure and ice-load history for realistically parameterized viscosity profiles[J]. Geophys Res Lett,23(25):3787–3790. doi: 10.1029/96GL03622
Fernández J,Pepe A,Poland M P,Sigmundsson F. 2017. Volcano geodesy:Recent developments and future challenges[J]. J Volcanol Geoth Res,344:1–12. doi: 10.1016/j.jvolgeores.2017.08.006
Forte A M,Peltier W R,Dziewonski A M. 1991. Inferences of mantle viscosity from tectonic plate velocities[J]. Geophys Res Lett,18(9):1747–1750. doi: 10.1029/91GL01726
Freed A M,Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature,430(6999):548–551. doi: 10.1038/nature02784
Freed A M,Hashima A,Becker T W,Okaya D A,Sato H,Hatanaka Y. 2017. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-Oki,Japan earthquake[J]. Earth Planet Sci Lett,459:279–290. doi: 10.1016/j.jpgl.2016.11.040
Freymueller J T. 2021. GPS, tectonic geodesy[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 558–578.
Fu G Y,Sun W K. 2006. Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (MW9.1)[J]. Earth Planets Space,58(2):149–152. doi: 10.1186/BF03353371
Fu G Y,Sun W K. 2007. Effects of lateral inhomogeneity in a spherical Earth on gravity Earth tides[J]. J Geophys Res:Solid Earth,112(B6):B06409.
Fu G Y,Sun W K. 2008. Surface coseismic gravity changes caused by dislocations in a 3-D heterogeneous earth[J]. Geophys J Int,172(2):479–503. doi: 10.1111/j.1365-246X.2007.03684.x
Fu G Y,Sun W K. 2009. Effects of Earth’s lateral inhomogeneous structures on coseismic gravity changes[J]. Pure Appl Geophys,166(8):1343–1368.
Fu G Y,Sun W K,Fukuda Y,Gao S H. 2010. Coseismic displacements caused by point dislocations in a three-dimensional heterogeneous,spherical earth model[J]. Geophys J Int,183(2):706–726. doi: 10.1111/j.1365-246X.2010.04757.x
Gautam P K,Rajesh S,Kumar N,Dabral C P. 2020. GPS measurements on pre-,co- and post-seismic surface deformation at first multi-parametric geophysical observatory,Ghuttu in Garhwal Himalaya,India[J]. J Geod Sci,10(1):136–144. doi: 10.1515/jogs-2020-0114
Gilbert F,MacDonald G J F. 1960. Free oscillations of the Earth:1. Toroidal oscillations[J]. J Geophys Res,65(2):675–693. doi: 10.1029/JZ065i002p00675
Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
Gilbert F, Backus G E. 1968. Elastic-gravitational vibrations of a radially stratified sphere[G]//Dynamics of Stratified Solids. New York: American Society of Mechanical Engineers: 82–95.
Gilbert F,Dziewonski A M. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,278(1280):187–269.
Giorgi G,Schmidt T D,Trainotti C,Mata-Calvo R,Fuchs C,Hoque M M,Berdermann J,Furthner J,Günther C,Schuldt T,Sanjuan J,Gohlke M,Oswald M,Braxmaier C,Balidakis K,Dick G,Flechtner F,Ge M,Glaser S,König R,Michalak G,Murböck M,Semmling M,Schuh H. 2019. Advanced technologies for satellite navigation and geodesy[J]. Adv Space Res,64(6):1256–1273. doi: 10.1016/j.asr.2019.06.010
Glennie C L,Carter W E,Shrestha R L,Dietrich W E. 2013. Geodetic imaging with airborne LiDAR:The Earth’s surface revealed[J]. Rep Prog Phys,76(8):086801. doi: 10.1088/0034-4885/76/8/086801
Gómez D D,Bevis M,Pan E N,Smalley R. 2017. The influence of gravity on the displacement field produced by fault slip[J]. Geophys Res Lett,44(18):9321–9329. doi: 10.1002/2017GL074113
Han S C,Shum C K,Bevis M,Ji C,Kuo C Y. 2006. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake[J]. Science,313(5787):658–662. doi: 10.1126/science.1128661
Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
Herring T A,Melbourne T I,Murray M H,Floyd M A,Szeliga W M,King R W,Phillips D A,Puskas C M,Santillan M,Wang L. 2016. Plate boundary observatory and related networks:GPS data analysis methods and geodetic products[J]. Rev Geophys,54(4):759–808. doi: 10.1002/2016RG000529
Hu Y,Wang K L,He J H,Klotz J,Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res:Solid Earth,109:B12403. doi: 10.1029/2004JB003163
Ide S. 2007. Slip inversion[G]//Earthquake Seismology: Treatise on Geophysics Volume 4. Amsterdam: Elsevier: 193–223.
Imanishi Y,Sato T,Higashi T,Sun W K,Okubo S. 2004. A network of superconducting gravimeters detects submicrogal coseismic gravity changes[J]. Science,306(5695):476–478. doi: 10.1126/science.1101875
Israel M,Ben-Menahem A. 1974. Residual displacements and strains due to faulting in real Earth models[J]. Phys Earth Planet Inter,8(1):23–45. doi: 10.1016/0031-9201(74)90107-1
Ito T,Simons M. 2011. Probing asthenospheric density,temperature,and elastic moduli below the western United States[J]. Science,332(6032):947–951. doi: 10.1126/science.1202584
Jiang Z S,Wang M,Wang Y Z,Wu Y Q,Che S,Shen Z K,Bürgmann R,Sun J B,Yang Y L,Liao H,Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 MW6.6 Lushan,China,earthquake and its tectonic implications[J]. Geophys Res Lett,41(2):407–413. doi: 10.1002/2013GL058812
Jovanovich D B,Husseini M I,Chinnery M A. 1974a. Elastic dislocations in a layered half-space: Ⅰ . Basic theory and numerical methods[J]. Geophys J Int,39(2):205–217. doi: 10.1111/j.1365-246X.1974.tb05451.x
Jovanovich D B,Husseini M I,Chinnery M A. 1974b. Elastic dislocations in a layered half-space: Ⅱ . The point source[J]. Geophys J Int,39(2):219–239. doi: 10.1111/j.1365-246X.1974.tb05452.x
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
Krynski J. 2012. Gravimetry for geodesy and geodynamics-brief historical review[J]. Rep Geod,92(1):69–86.
Larson K M. 2019. Unanticipated uses of the global positioning system[J]. Annu Rev Earth Planet Sci,47(1):19–40. doi: 10.1146/annurev-earth-053018-060203
Li X X,Ge M R,Dai X L,Ren X D,Fritsche M,Wickert J,Schuh H. 2015. Accuracy and reliability of multi-GNSS real-time precise positioning:GPS,GLONASS,BeiDou,and Galileo[J]. J Geod,89(6):607–635. doi: 10.1007/s00190-015-0802-8
Love A E H. 1911. Some Problems of Geodynamics[M]. Cambridge: Cambridge University Press: 102–118.
Ma X Q,Kusznir N J. 1992. 3-D subsurface displacement and strain fields for faults and fault arrays in a layered elastic half-space[J]. Geophys J Int,111(3):542–558. doi: 10.1111/j.1365-246X.1992.tb02111.x
Marchandon M,Hollingsworth J,Radiguet M. 2021. Origin of the shallow slip deficit on a strike slip fault:Influence of elastic structure,topography,data coverage,and noise[J]. Earth Planet Sci Lett,554:116696. doi: 10.1016/j.jpgl.2020.116696
Marotta A M. 2003. Benefits from GOCE within solid Earth geophysics[J]. Space Sci Rev,108:95–104. doi: 10.1023/A:1026273832697
Maruyama T. 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bull Earthq Res Inst Univ Tokyo,42:289–368.
Masterlark T. 2003. Finite element model predictions of static deformation from dislocation sources in a subduction zone:Sensitivities to homogeneous,isotropic,Poisson-solid,and half-space assumptions[J]. J Geophys Res:Solid Earth,108(B11):2540. doi: 10.1029/2002JB002296
Matsuo K,Heki K. 2011. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry[J]. Geophys Res Lett,38(7):L00G12.
Meigs A. 2013. Active tectonics and the LiDAR revolution[J]. Lithosphere,5(2):226–229. doi: 10.1130/RF.L004.1
Melini D,Cannelli V,Piersanti A,Spada G. 2008. Post-seismic rebound of a spherical Earth:New insights from the application of the Post-Widder inversion formula[J]. Geophys J Int,174(2):672–695. doi: 10.1111/j.1365-246X.2008.03847.x
Mindlin R D,Cheng D H. 1950. Nuclei of strain in the semi-infinite solid[J]. J Appl Phys,21(9):926–930. doi: 10.1063/1.1699785
Molodenskiy S M. 1980. The effect of lateral heterogeneities upon the tides[J]. BIM Fevrier,80:4833–4850.
Ni S D,Kanamori H,Helmberger D. 2005. Energy radiation from the Sumatra earthquake[J]. Nature,434(7033):582. doi: 10.1038/434582a
Nur A,Mavko G. 1974. Postseismic viscoelastic rebound[J]. Science,183(4121):204–206. doi: 10.1126/science.183.4121.204
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
Okubo S. 1991. Potential and gravity changes raised by point dislocations[J]. Geophys J Int,105(3):573–586. doi: 10.1111/j.1365-246X.1991.tb00797.x
Okubo S. 1992. Gravity and potential changes due to shear and tensile faults in a half-space[J]. J Geophys Res:Solid Earth,97(B5):7137–7144. doi: 10.1029/92JB00178
Okubo S. 1993. Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric Earth[J]. Geophys J Int,115(3):921–928. doi: 10.1111/j.1365-246X.1993.tb01501.x
Okubo S. 2020. Advances in gravity analyses for studying volcanoes and earthquakes[J]. Proc Jpn Acad Ser B:Phys Biol Sci,96(2):50–69. doi: 10.2183/pjab.96.005
Pan E N. 2019. Green’s functions for geophysics:A review[J]. Rep Prog Phys,82(10):106801. doi: 10.1088/1361-6633/ab1877
Panet I,Mikhailov V,Diament M,Pollitz F,King G,De Viron O,Holschneider M,Biancale R,Lemoine J M. 2007. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity[J]. Geophys J Int,171(1):177–190. doi: 10.1111/j.1365-246X.2007.03525.x
Peltier W R. 2021. Mantle viscosity[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1107–1115.
Pepe A,Calò F. 2017. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements[J]. Appl Sci,7(12):1264. doi: 10.3390/app7121264
Piersanti A,Spada G,Sabadini R,Bonafede M. 1995. Global post-seismic deformation[J]. Geophys J Int,120(3):544–566. doi: 10.1111/j.1365-246X.1995.tb01838.x
Pollitz F F. 1992. Postseismic relaxation theory on the spherical earth[J]. Bull Seismol Soc Am,82(1):422–453.
Pollitz F F. 1996. Coseismic deformation from earthquake faulting on a layered spherical Earth[J]. Geophys J Int,125(1):1–14. doi: 10.1111/j.1365-246X.1996.tb06530.x
Pollitz F F. 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth[J]. J Geophys Res:Solid Earth,102(B8):17921–17941. doi: 10.1029/97JB01277
Press F. 1965. Displacements,strains,and tilts at teleseismic distances[J]. J Geophys Res,70(10):2395–2412. doi: 10.1029/JZ070i010p02395
Reid H F. 1910. Mechanics of the Earthquake, the California Earthquake of April 18, 1906[R]. Washington D C: The State Investigation Commission, Carnegie Institution of Washington: 29–31.
Reilinger R E,Ergintav S,Bürgmann R,McClusky S,Lenk O,Barka A,Gurkan O,Hearn L,Feigl K L,Cakmak R,Aktug B,Ozener H,Töksoz M N. 2000. Coseismic and postseismic fault slip for the 17 August 1999,M=7.5,Izmit,Turkey earthquake[J]. Science,289(5484):1519–1524. doi: 10.1126/science.289.5484.1519
Rolandone F,Dreger D,Murray M,Bürgmann R. 2006. Coseismic slip distribution of the 2003 MW6.6 San Simeon earthquake,California,determined from GPS measurements and seismic waveform data[J]. Geophys Res Lett,33(16):L16315. doi: 10.1029/2006GL027079
Roth F. 1990. Subsurface deformations in a layered elastic half-space[J]. Geophys J Int,103(1):147–155. doi: 10.1111/j.1365-246X.1990.tb01759.x
Rundle J B. 1980. Static elastic-gravitational deformation of a layered half space by point couple sources[J]. J Geophys Res: Solid Earth,85(B10):5355–5363. doi: 10.1029/JB085iB10p05355
Ryder I,Parsons B,Wright T J,Funning G J. 2007. Post-seismic motion following the 1997 Manyi (Tibet) earthquake:InSAR observations and modelling[J]. Geophys J Int,169(3):1009–1027. doi: 10.1111/j.1365-246X.2006.03312.x
Sabadini R,Yuen D A,Boschi E. 1984. The effects of post-seismic motions on the moment of inertia of a stratified viscoelastic earth with an asthenosphere[J]. Geophys J Int,79(3):727–745. doi: 10.1111/j.1365-246X.1984.tb02865.x
Salvi S,Stramondo S,Funning G J,Ferretti A,Sarti F,Mouratidis A. 2012. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sens Environ,120:164–174. doi: 10.1016/j.rse.2011.09.029
Savage J C,Hastie L M. 1969. A dislocation model for the Fairview Peak,Nevada,earthquake[J]. Bull Seismol Soc Am,59(5):1937–1948. doi: 10.1785/BSSA0590051937
Savage J C,Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res,78(5):832–845. doi: 10.1029/JB078i005p00832
Savage J C,Prescott W H. 1978. Asthenosphere readjustment and the earthquake cycle[J]. J Geophys Res:Solid Earth,83(B7):3369–3376. doi: 10.1029/JB083iB07p03369
Savage J C. 1983. A dislocation model of strain accumulation and release at a subduction zone[J]. J Geophys Res:Solid Earth,88(B6):4984–4996. doi: 10.1029/JB088iB06p04984
Scholz C H. 1998. Earthquakes and friction laws[J]. Nature,391(6662):37–42. doi: 10.1038/34097
Segall P,Davis J L. 1997. GPS applications for geodynamics and earthquake studies[J]. Annu Rev Earth Planet Sci,25(1):301–336. doi: 10.1146/annurev.earth.25.1.301
Soldati G,Spada G. 1999. Large earthquakes and Earth rotation:The role of mantle relaxation[J]. Geophys Res Lett,26(7):911–914. doi: 10.1029/1999GL900144
Spaans K,Hooper A. 2016. InSAR processing for volcano monitoring and other near-real time applications[J]. J Geophys Res:Solid Earth,121(4):2947–2960. doi: 10.1002/2015JB012752
Spada G,Sabadini R,Yuen D A,Ricard Y. 1992. Effects on post-glacial rebound from the hard rheology in the transition zone[J]. Geophys J Int,109(3):683–700. doi: 10.1111/j.1365-246X.1992.tb00125.x
Steketee J A. 1958. On Volterra’s dislocations in a semi-infinite elastic medium[J]. Can J Phys,36(2):192–205. doi: 10.1139/p58-024
Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res:Solid Earth,114:B11404.
Sun W K. 1992. Potential and gravity changes caused by dislocations in spherically symmetric Earth models[J]. Bull Earthq Res Inst Univ Tokyo,67(2):89–238.
Sun W K. 2003. Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth:Geoid change[J]. J Geod,77(7/8):381–387.
Sun W K. 2004a. Asymptotic solution of static displacements caused by dislocations in a spherically symmetric Earth[J]. J Geophys Res:Solid Earth,109(B5):B05402.
Sun W K. 2004b. Short note:Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth-gravity change[J]. J Geod,78(1/2):76–81.
Sun W K,Okubo S. 1993. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅰ . Theory for a point dislocation[J]. Geophys J Int,114(3):569–592. doi: 10.1111/j.1365-246X.1993.tb06988.x
Sun W K,Okubo S. 1998. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅱ . Application to a finite fault[J]. Geophys J Int,132(1):79–88.
Sun W K,Okubo S. 2002. Effects of earth’s spherical curvature and radial heterogeneity in dislocation studies:For a point dislocation[J]. Geophys Res Lett,29(12):46-1–46-4.
Sun W K,Okubo S. 2004. Coseismic deformations detectable by satellite gravity missions:A case study of Alaska (1964,2002) and Hokkaido (2003) earthquakes in the spectral domain[J]. J Geophys Res:Solid Earth,109(B4):B04405.
Sun W K,Zhou X. 2012. Coseismic deflection change of the vertical caused by the 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,189(2):937–955. doi: 10.1111/j.1365-246X.2012.05434.x
Sun W K,Dong J. 2013. Relation of dislocation Love numbers and conventional Love numbers and corresponding Green’s functions for a surface rupture in a spherical earth model[J]. Geophys J Int,193(2):717–733. doi: 10.1093/gji/ggt030
Sun W K,Dong J. 2014. Geo-center movement caused by huge earthquakes[J]. J Geodyn,76:1–7. doi: 10.1016/j.jog.2014.02.008
Sun W K,Okubo S,Fu G Y. 2006a. Green’s functions of coseismic strain changes and investigation of effects of Earth’s spherical curvature and radial heterogeneity[J]. Geophys J Int,167(3):1273–1291. doi: 10.1111/j.1365-246X.2006.03089.x
Sun W K,Okubo S,Sugano T. 2006b. Determining dislocation Love numbers using satellite gravity mission observations[J]. Earth Planets Space,58(5):497–503. doi: 10.1186/BF03351946
Sun W K,Okubo S,Fu G Y,Araya A. 2009. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model:Applicable to deformed earth surface and space-fixed point[J]. Geophys J Int,177(3):817–833. doi: 10.1111/j.1365-246X.2009.04113.x
Sun X D,Hartzell S. 2014. Finite-fault slip model of the 2011 MW5.6 Prague,Oklahoma earthquake from regional waveforms[J]. Geophys Res Lett,41(12):4207–4213. doi: 10.1002/2014GL060410
Takeuchi H,Hasegawa Y. 1965. Viscosity distribution within the Earth[J]. Geophys J Int,9(5):503–508. doi: 10.1111/j.1365-246X.1965.tb06321.x
Tanaka Y,Okuno J,Okubo S. 2006. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅰ ):Vertical displacement and gravity variation[J]. Geophys J Int,164(2):273–289. doi: 10.1111/j.1365-246X.2005.02821.x
Tanaka Y,Okuno J,Okubo S. 2007. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅱ ):Horizontal displacement[J]. Geophys J Int,170(3):1031–1052. doi: 10.1111/j.1365-246X.2007.03486.x
Tanaka Y,Klemann V,Fleming K,Martinec Z. 2009. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth[J]. Geophys J Int,176(3):715–739. doi: 10.1111/j.1365-246X.2008.04015.x
Tang H,Sun W K. 2018a. Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere[J]. Geophys J Int,214(1):731–750. doi: 10.1093/gji/ggy174
Tang H,Sun W K. 2018b. Closed-form expressions of seismic deformation in a homogeneous Maxwell earth model[J]. J Geophys Res:Solid Earth,123(7):6033–6051. doi: 10.1029/2018JB015594
Tang H,Sun W K. 2019. New method for computing postseismic deformations in a realistic gravitational viscoelastic earth model[J]. J Geophys Res:Solid Earth,124(5):5060–5080. doi: 10.1029/2019JB017368
Tang H, Dong J, Sun W K. 2020a. An approximate method to simulate post-seismic deformations in a realistic earth model[C]//International Association of Geodesy Symposia. Berlin, Heidelberg: Springer: 1−7.
Tang H,Zhang L,Chang L,Sun W K. 2020b. Optimized approximate inverse Laplace transform for geo-deformation computation in viscoelastic Earth model[J]. Geophys J Int,223(1):444–453. doi: 10.1093/gji/ggaa322
Tapley B D,Watkins M M,Flechtner F,Reigber C,Bettadpur S,Rodell M,Sasgen I,Famiglietti J S,Landerer F W,Chambers D P,Reager J T,Gardner A S,Save H,Ivins E R,Swenson S C,Boening C,Dahle C,Wiese D N,Dobslaw H,Tamisiea M E,Velicogna I. 2019. Contributions of GRACE to understanding climate change[J]. Nat Climate Change,9(5):358–369. doi: 10.1038/s41558-019-0456-2
Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. J Appl Phys,21(2):89–93. doi: 10.1063/1.1699629
Tian Z,Freymueller J T,Yang Z Q. 2021. Postseismic deformation due to the 2012 MW7.8 Haida Gwaii and 2013 MW7.5 Craig earthquakes and its implications for regional rheological structure[J]. J Geophys Res:Solid Earth,126:e2020JB020197.
Valsa J,Brančik L. 1998. Approximate formulae for numerical inversion of Laplace transforms[J]. Int J Numer Model:Electron Netw Dev Fields,11(3):153–166. doi: 10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C
Van Camp M,de Viron O,Watlet A,Meurers B,Francis O,Caudron C. 2017. Geophysics from terrestrial time-variable gravity measurements[J]. Rev Geophys,55(4):938–992. doi: 10.1002/2017RG000566
Vermeersen L L A,Sabadini R,Spada G. 1996. Analytical visco-elastic relaxation models[J]. Geophys Res Lett,23(7):697–700. doi: 10.1029/96GL00620
Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults?[J]. Tectonophysics,644/645:22–39. doi: 10.1016/j.tecto.2015.01.013
Wang H S. 1999. Surface vertical displacements,potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations[J]. Geophys J Int,137(2):429–440.
Wang K L. 2007. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles[G]//The Seismogenic Zone of Subduction Thrust Faults. New York: Columbia University Press: 540−577.
Wang K L,Hu Y,He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature,484(7394):327–332. doi: 10.1038/nature11032
Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.
Wang R J,Martín F L,Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust:Fortran programs EDGRN/EDCMP[J]. Comput Geosci,29(2):195–207. doi: 10.1016/S0098-3004(02)00111-5
Wang R J,Martín F L,Roth F. 2006. PSGRN/PSCMP:A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci,32(4):527–541. doi: 10.1016/j.cageo.2005.08.006
Wang W X,Shi Y L,Sun W K,Zhang J. 2011. Viscous lithospheric structure beneath Sumatra inferred from post-seismic gravity changes detected by GRACE[J]. Science China Earth Science,54(8):1257–1267. doi: 10.1007/s11430-011-4217-y
Wang W X,Sun W K,Wu Y Q,Gu G H. 2014. Modification of fault slip models of the MW9.0 Tohoku earthquake by far field GPS observations[J]. J Geodyn,75:22–33. doi: 10.1016/j.jog.2014.01.005
Wason H R,Singh S J. 1972. Static deformation of a multilayered sphere by internal sources[J]. Geophys J Int,27(1):1–14. doi: 10.1111/j.1365-246X.1972.tb02342.x
Wdowinski S, Eriksson S. 2009. Geodesy in the 21st century[J]. EOS Trans AGU, 90(18): 153-155.
Weertman J, Weertman J R. 1964. Elementary Dislocation Theory[M]. New York: Macmillan: 1–15.
Weertman J,Weertman J R. 1975. High temperature creep of rock and mantle viscosity[J]. Annu Rev Earth Planet Sci,3(1):293–315. doi: 10.1146/annurev.ea.03.050175.001453
Wiesemeyer H, Nothnagel A. 2021. Very long baseline interferometry[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1902–1907.
Williams C A,Wallace L M. 2015. Effects of material property variations on slip estimates for subduction interface slow-slip events[J]. Geophys Res Lett,42(4):1113–1121. doi: 10.1002/2014GL062505
Xu C Y. 2021. Coseismic changes in the kinetic rotational energy of the Earth from 1976 to 2019[J]. Geophys J Int,224(2):1127–1132.
Xu C Y,Sun W K. 2014. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory[J]. Geophys J Int,199(3):1655–1661. doi: 10.1093/gji/ggu364
Xu C Y,Chao B F. 2015. Seismological versus geodetic reference frames for seismic dislocation:Consistency under momentum conservations[J]. Geophys J Int,200(2):1000–1004. doi: 10.1093/gji/ggu439
Xu C Y,Chao B F. 2017. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory[J]. J Geophys Res:Solid Earth,122(5):4053–4063. doi: 10.1002/2017JB014204
Xu C Y,Chao B F. 2019. Seismic effects on the secular drift of the Earth’s rotational pole[J]. J Geophys Res:Solid Earth,124(6):6092–6100. doi: 10.1029/2018JB017164
Xu C Y,Sun W K,Chao B F. 2014. Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory[J]. J Geophys Res:Solid Earth,119(12):9031–9041. doi: 10.1002/2014JB011328
Xu C Y,Wei D P,Sun W K. 2016. Contribution of coseismic deformations on the current expansion of the Earth[J]. J Geodyn,99:10–15. doi: 10.1016/j.jog.2016.05.001
Xu C Y,Su X N,Liu T,Sun W K. 2017. Geodetic observations of the co- and post-seismic deformation of the 2013 Okhotsk Sea deep-focus earthquake[J]. Geophys J Int,209(3):1924–1933. doi: 10.1093/gji/ggx123
Yabuki T,Matsu’ura M. 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip[J]. Geophys J Int,109(2):363–375. doi: 10.1111/j.1365-246X.1992.tb00102.x
Yamasaki T,Houseman G A. 2012. The crustal viscosity gradient measured from post-seismic deformation:A case study of the 1997 Manyi (Tibet) earthquake[J]. Earth Planet Sci Lett,351/352:105–114. doi: 10.1016/j.jpgl.2012.07.030
Yang J Y,Sun W K. 2020. Determining dislocation Love number of vertical displacement using GPS observations:Case study of 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,222(2):965–977. doi: 10.1093/gji/ggaa163
Yang J Y,Zhou X,Yi S,Sun W K. 2015. Determining dislocation Love numbers using GRACE satellite mission gravity data[J]. Geophys J Int,203(1):257–269. doi: 10.1093/gji/ggv265
Zhou J C,Sun W K,Sun H P,Xu J Q. 2013. Reformulation of co-seismic polar motion excitation and low degree gravity changes:Applied to the 2011 Tohoku-Oki earthquake (MW9.0)[J]. J Geodyn,63:20–26. doi: 10.1016/j.jog.2012.09.004
Zhou J C,Sun W K,Sun H P,Xu J Q,Cui X M. 2014a. Co-seismic change of length of day based on the point dislocation theory for a SNREI Earth[J]. J Geodyn,79:18–22.
Zhou J C,Sun W K,Dong J. 2015. A correction to the article “Geo-center movement caused by huge earthquakes” by Wenke Sun and Jie Dong[J]. J Geodyn,87:67–73. doi: 10.1016/j.jog.2015.02.003
Zhou J C,Sun W K,Jin S G,Sun H P,Xu J Q. 2016. Rotation change in the orientation of the centre-of-figure frame caused by large earthquakes[J]. Geophys J Int,206(2):999–1008. doi: 10.1093/gji/ggw182
Zhou J C,Pan E N,Bevis M. 2019a. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅰ :Analytical dislocation Love numbers[J]. Geophys J Int,217(3):1681–1705. doi: 10.1093/gji/ggz110
Zhou J C,Pan E N,Bevis M. 2019b. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅱ :Accurate Green’s functions[J]. Geophys J Int,219(3):1717–1728. doi: 10.1093/gji/ggz392
Zhou J C,Pan E N,Bevis M. 2020. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅲ :Internal deformation[J]. Geophys J Int,223(1):420–443. doi: 10.1093/gji/ggaa319
Zhou X,Cambiotti G,Sun W,Sabadini R. 2014b. The coseismic slip distribution of a shallow subduction fault constrained by prior information:The example of 2011 Tohoku (MW9.0) megathrust earthquake[J]. Geophys J Int,199(2):981–995. doi: 10.1093/gji/ggu310
Zhou X,Cambiotti G,Sun W K,Sabadini R. 2018. Co-seismic slip distribution of the 2011 Tohoku (MW9.0) earthquake inverted from GPS and space-borne gravimetric data[J]. Earth Planet Phys,2(2):120–138. doi: 10.26464/epp2018013
Zhu X X,Montazeri S,Gisinger C,Hanssen R F,Bamler R. 2016. Geodetic SAR tomography[J]. IEEE Trans Geosci Remote Sens,54(1):18–35. doi: 10.1109/TGRS.2015.2448686
-
期刊类型引用(6)
1. 鲁明贵,谷洪彪,巩浩波,张文旭,迟宝明. 基于Molchan图表法的流体监测井水位地震预测效能检验. 地震研究. 2024(02): 200-211 . 百度学术
2. 周卫东,道伟,王娟,姜佳佳,田野,牛延平,苏小芸. 积石山M6.2地震前通渭东川地震台流体观测数据异常分析. 高原地震. 2024(02): 1-6 . 百度学术
3. 郭宇鑫,张骞,高熹微,李玉. 淮扬地区水位、水温观测质量影响因素分析. 地震地磁观测与研究. 2024(06): 142-148 . 百度学术
4. 王艳,马利军,张娜,吕文青,王会芳. 永清井水温多次畸变的跟踪研究. 华北地震科学. 2023(04): 102-106 . 百度学术
5. 芮雪莲,杨耀,官致君,杜方,薛乔文,龙锋,杨星,杨鹏. 四川理塘毛垭51泉水温在青藏高原东南缘中强地震前的异常特征及机理分析. 地震研究. 2022(02): 318-328 . 百度学术
6. 黎明晓,邓世广,马玉川,解孟雨,王月,郭菲. 2021年11月17日江苏大丰海域M_S 5.0地震总结. 地震地磁观测与研究. 2022(04): 148-159 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 626
- HTML全文浏览量: 451
- PDF下载量: 223
- 被引次数: 6