2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究

许英才, 郭祥云, 冯丽丽

许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究. 地震学报,44(2):195−210. DOI: 10.11939/jass.20220008
引用本文: 许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究. 地震学报,44(2):195−210. DOI: 10.11939/jass.20220008
Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province . Acta Seismologica Sinica44(2):195−210. DOI: 10.11939/jass.20220008
Citation: Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province . Acta Seismologica Sinica44(2):195−210. DOI: 10.11939/jass.20220008

2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究

基金项目: 国家重点研发计划项目(2017YFC1500501)、中国地震局地球所基本科研业务费专项(DQJB19A0115)、中国地震局震情跟踪定向工作任务(2021010118,2022010104)、青海省科技厅基础研究计划(2021-ZJ-969Q)和宁夏自然科学基金项目(2022AAC03687)联合资助
详细信息
    作者简介:

    许英才,硕士,高级工程师,主要从事地震活动性及数字地震学研究,e-mail:xuyingcai007@163.com

    通讯作者:

    郭祥云,硕士,高级工程师,主要从事震源机制及应力场反演研究,e-mail:guoxiangyun@cea-igp.ac.cn

  • 中图分类号: P315.2

Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province

  • 摘要: 2022年1月8日青海省海北州门源县发生MS6.9地震,震后产生了长约22 km的地表破裂带,青海、甘肃和宁夏等多地震感强烈。本文基于区域地震台网资料,通过多阶段定位方法对门源MS6.9地震早期序列(2022年1月8日至12日)进行了重定位,并利用gCAP方法反演了主震和MS≥3.4余震的震源机制和震源矩心深度,计算了现今应力场体系在门源MS6.9地震震源机制两个节面产生的相对剪应力和正应力。结果表明:门源MS6.9地震的初始破裂深度为7.8 km,震源矩心深度为4 km,地震序列的优势初始破裂深度主要介于7—8 km之间,而MS≥3.4余震的震源矩心深度为3—7 km;该地震序列的震源深度剖面显示震后24个小时内的地震序列长度约为25 km,与地表破裂带的长度大体一致,整体地震序列长度约为30 km,其中1月8日MS6.9主震和MS5.1余震位于余震区西段,1月12日MS5.2余震位于余震区东段。2022年1月8日门源MS6.9主震的震源机制解节面Ⅰ为走向290°、倾角81°、滑动角16°,节面Ⅱ为走向197°、倾角74°、滑动角171°,根据余震展布的总体趋势估计断层面走向为290°,表明此次地震为近乎直立断层面上的一次左旋走滑型事件;MS≥3.4余震的震源机制解显示这些地震主要为走滑型地震,P轴走向从余震区西段到东段之间大体呈现NE向到EW向的变化。现今应力场体系在门源MS6.9主震震源机制解节面Ⅰ上产生的相对剪应力为0.638,而在节面Ⅱ上的相对剪应力为0.522,表明这两个节面均非构造应力场的最大释放节面,这与2016年门源MS6.4地震逆冲型震源机制为构造应力场的最优释放节面有着明显差异。结合地质构造、震源机制和余震展布,2022年1月8日门源MS6.9主震的发震构造可能为冷龙岭断裂西段,其地震断层错动方式为左旋走滑。根据重定位结果、震级-破裂关系以及剪应力结果,本文认为门源地区存在一定的应力积累且应力未得到充分释放,该地区仍存在发生强震的危险。
    Abstract: On January 8, 2022, an earthquake with MS6.9 occurred in Menyuan County, Haibei Prefecture of Qinghai Province. The earthquake ruptured a nearly 22 km long surface fracture zone and strong tremors were felt through the regions of Qinghai, Gansu and Ningxia regions. In this paper, the early events of the MS6.9 Menyuan earthquake sequence from January 8 to 12, 2022 were relocated by multi-step locating method. Meanwhile, the focal mechanisms and focal depths of the main shock and MS≥3.4 aftershocks were calculated by gCAP method. Based on focal mechanism result of the main shock, the relative shear stress and normal stress on the two nodal planes of the focal mechanism solutions were also calculated under the existing stress field system. The result indicates that the initial rupture depth of MS6.9 Menyuan main shock was 7.8 km, and the centroid depth was 4 km. The dominant initial rupture depths of early earthquake sequence were mainly between 7 km and 8 km, while the centroid depths of MS≥3.4 aftershocks varied between 3 km and 7 km. The focal depth profile shows that the sequence length within 24 hours after the main shock was about 25 km, which was roughly consistent with the length of the surface rupture zone, and the overall sequence length was about 30 km. The MS6.9 main shock and MS5.1 aftershocks on January 8 were located in the western part of the aftershock region, and the MS5.2 earthquake on January 12 was located in the eastern part of the aftershock region. The focal mechanism solution of the MS6.9 main shock was strike 290°, dip 81°, rake 16° for the nodal plane Ⅰ , and strike 197°, dip 74°, rake 171° for the nodal plane Ⅱ . Based on the spatial distribution of aftershocks, it is estimated that the strike of the fault plane is 290º, indicating that the earthquake is a left-lateral strike slip event on a nearly vertical fault plane. The results of focal mechanism solutions of MS≥3.4 aftershocks show that these earthquakes were mainly strike-slip, and from the west to the east of the aftershock region the P-axis azimuths varied from NE to EW. Under the current stress field system, the relative shear stress generated on the nodal plane Ⅰ of focal mechanism of the MS6.9 Menyuan earthquake is 0.638, while on the nodal plane Ⅱ is 0.522. The two nodal planes of focal mechanism are not the maximum released nodal plane of the tectonic stress field, which is obviously different from the thrust focal mechanism of the MS6.4 Menyuan earthquake in 2016, which is the optimal released nodal plane of tectonic stress field. Combined with the geological structure, focal mechanisms and aftershock distribution, the seismogenic structure of MS6.9 Menyuan earthquake on January 8, 2022 may be the western segment of Lenglongling fault, and its seismic dislocation mode is left-lateral strike-slip. According to the results of relocation, the magnitude-rupture relationship and the shear stress, it is concluded that there is a certain stress accumulation and stress has not been fully released in Menyuan area, and the risk of strong earthquakes still exists in this area.
  • 北京八宝山断裂因在八宝山一带出露而得名,与作为北京凹陷西边界的黄庄—高丽营断裂走向大致平行,该断裂呈NE向展布,总体走向为NE40°—50°;南起河北涞水,向北经牛口峪、房山、磁家务、北车营、晓幼营、大灰厂、八宝山、清河到东三旗,全长约为100 km (北京市地质矿产局,1991车兆宏,范燕,2003)。该断裂在平原区除了少数地段有地表出露外,大部分均被第四系覆盖,在八宝山处表现为蓟县系雾迷山组逆掩于寒武系—下侏罗统之上,上盘的老地层逆掩至下盘之上。该断裂的糜棱岩带在有些地段宽20—30 m,显示为压扭性断裂,断层面倾向SE,倾角较缓,断层产状随地段不同有所差异。

    八宝山断裂是一条活动断裂,长期受到地震研究人员的关注(杨景春等,1981张保民等,1981孙叶等,1983金凤英,严润娥,1985赵刚,李军雄,1986徐杰等,1992焦青等,2005),关于该断裂的研究主要集中在地震活动性方面。杨景春等(1981)根据断层位移观测、地下水及小震活动等资料,认为该断裂有一定的活动性;王宋贤(1988)根据观测台站及测点的观测数据分析,认为该断裂近期仍在活动,且对地震活动具有一定的响应;车兆宏和范燕(2003)根据对形变、重力及地磁资料的分析,认为该断裂的活动与强震的发生密切相关,断裂所在地段是地震活动引起应力场变化的敏感地区;焦青等(2005)根据跨断层位移观测资料的分析,认为该断裂近期表现为北强南弱的继承性活动特点。但也有观点认为该断裂当前活动很弱甚至不再活动,例如徐杰等(1992)通过对断层线之上第四纪沉积物有无明显错断加以分析,认为八宝山断裂自早更新世后活动甚弱;赵刚和李军雄(1986)利用平面光弹性测试技术对八宝山断裂的活动量进行监测的结果显示,第四纪以来该断裂趋于稳定。上述关于断层基本产状特征方面的研究相对较少,另外,当前对隐伏断层产状基本性质的研究主要是通过地质地貌、钻探、重力、物探、人工地震等间接手段进行探测(徐杰等,1992向宏发等,1996赵希俊等,2000马文涛等,2004常旭等,2008胡平等,2010)。

    由于八宝山断裂大部分均被第四系覆盖,研究难度较大,所以对其认识尚不够充分,例如对于断层基本产状中的断层面倾角,北京市地质矿产勘查开发局和北京市地质调查研究院(2008a)认为一般处于20°—30°之间,徐杰等(1992)描述为25°—35°,尚未形成一致观点。因地表出露不多,对其研究主要是根据相关的物探资料及部分钻孔所揭示的地层情况进行一定的了解。由于各种物探方式均属于间接手段,解译结果一般具有多解性,且均存在相应的分辨率问题,因而依据物探所得结果的可信度一般;而钻孔岩芯是对深部地层及构造进行研究的最直接、最为可靠的手段,能够较好地揭示深部地层构造。以往钻孔的深度较小,这使得对于八宝山断层性质的了解较为有限。近年来,随着本地区对地热资源的开发,施工了一些较深的地热钻孔,积累了一定的深部地层资料,为我们对该断层的进一步了解提供了有利的条件,因此有必要根据这些深孔资料对该断层的性质进行更深入的研究总结,这对于基础地质、区域构造、地震监测、地下水及地热开发、工程建设等均具有重要的理论和现实意义。

    八宝山断裂南北向延伸约100 km,大致以永定河断裂为界分为南北两段。由于该断裂长度较长,断层产状可能会存在较大的变化,尤其是南段,因受侵入岩体的影响,产状受后期干扰较大,变化相对复杂;北段受后期干扰相对较少,产状较为稳定,比较具有代表性,而且北段区域内的地热钻孔较多,资料相对丰富,便于研究。因此本文拟选取八宝山断裂北段部分(鲁谷—东三旗段)对其地层结构重点研究,以期能较好地揭示该断层的产状等基本特征。

    八宝山断裂北段所在区域在构造单元上属于华北板块(Ⅰ级)冀辽断陷盆地(Ⅱ级)北京断陷(Ⅲ级)。北京断陷是多期构造作用形成的巨型断陷,该断陷内沉积厚约1 500 m的古近系和新近系。北京断陷为一地堑式凹陷,凹陷内有5条较大的平行断裂,分别为车公庄断裂、莲花池断裂、前门断裂、崇文门断裂和西红门断裂,其西北、东南边界分别为黄庄—高丽营断裂、南苑—通县断裂。根据白垩纪以来的沉积差异,北京断陷又可细分为琉璃河、丰台和东坝—天竺等3个小断陷盆地(北京市地质矿产勘查开发局,北京市地质调查研究院,2008a)。本文重点研究的八宝山断裂中段即位于丰台断陷西部边界的外侧。

    八宝山断裂大致与黄庄—高丽营断裂平行展布,两者相距仅1—5 km,其间地带受多期构造挤压,较为破碎,称之为八宝山断裂带。本区域的地质构造如图1所示。

    图  1  研究区基底地质构造示意图(修改自北京市地质矿产勘查开发局和北京市地质调查研究院,2008b
    Figure  1.  Schematic diagram of regional basement geological structure (revised from Beijing Geological and Mineral Exploration and Development Bureau and Beijing Institute of Geological Investigation and Research,2008b

    近年来,随着地热资源的开发,一些深井的施工为我们了解八宝山断裂北段区域的地层接触关系及地质构造提供了较多的地层资料。图2图3分别给出了根据北京大学地热井(JR-119,深3 200 m)、中国农业大学地热井(JR-141,深3 671 m)、中国农业机械化科学研究院奥运公园地热井(奥热-1,深3 326 m)以及其它钻孔所绘制的横穿八宝山断裂与黄庄—高丽营断裂之间地带的地质剖面图。

    图  3  AA′地质剖面示意图及钻孔柱状图
    Figure  3.  Schematic daigram for the geological section AA′ and borehole histograms

    从地层剖面图(图3)中可以看出,JR-141和奥热-1两井虽然相距仅750 m,但地层存在较大的差异,主要特点如下:

    1) 两井的地层很不连续,同组岩层的厚度相差较大。例如:蓟县系雾迷山组(Jxw)西侧比东侧厚度大,在西侧JR-141地热井中的厚度为1 559 m,在东侧的奥热-1地热井中的厚度为1 215 m;但侏罗统九龙山组(J2j)和南大岭组(J1n)在东侧的厚度较西侧大,九龙山组(J2j)在JR-141钻孔厚527 m,在奥热-1钻孔厚755 m,南大岭组(J1n)在JR-141钻孔厚253 m,在奥热-1钻孔厚282 m;

    2) 西侧JR-141钻孔中的地层与东侧的奥热-1钻孔相比,缺失了石炭系(C)和三叠系(T),存在地层缺失现象;

    3) 两井的地层厚度均不是正常的沉积厚度,各组的厚度普遍小于本区该层正常的沉积厚度,即层厚不完整,仅为其中一部分。例如:南大岭组(J1n)在JR-141钻孔中厚253 m,在奥热-1钻孔中厚282 m,区域正常层厚一般为300—500 m;九龙山组(J2j)在JR-141钻孔中厚527 m,在奥热-1钻孔中厚755 m,而正常层厚一般为1 000—1 540 m (北京市地质矿产局,1991)。这说明剖面中存在很多个不整合面,很不正常;

    4) 西侧的76-3孔(清华大学)存在侏罗统髫髻山组(J3t)与蓟县系雾迷山组(Jxw)交互穿插出现的现象,也呈现出非正常的地层层序。

    这样看来,两地热井的地层层序非常错乱,难以对比,因此只能用断层不连续加以拟合对比,其地层对比关系如图4所示。可以看出,在不同层位上存在着多条角度不一的逆断层,断层往往又同时受到后期断层的再切割。图中所绘出的断层是根据地层组间的厚度差异大致推断出的主要断层,尚不包括组内更小规模的断层。可以看出,本区地层中存在数量众多、规模不一的逆断层,且存在相互错动现象,这体现出八宝山断裂的逆冲作用非常强烈,同时活动具有多期性。

    图  4  北京凹陷田村-瀛海段的地质构造剖面示意图(修改自北京市地质矿产勘查开发局和北京市地质调查研究院,2008b
    Figure  4.  Sketch map of geological structure section of the Tiancun-Yinghai segment of Beijing depression (revised from the Beijing Geological and Mineral Exploration and Development Bureau and Beijing Institute of Geological Investigation and Research,2008b

    通过对剖面中的地层接触关系分析,可以发现剖面中存在以下主要构造特征:

    1) 逆冲作用强烈。从图4中可以看出,地层中存在多条规模不一、相互切割的逆断层,可见断层活动具有多期性。在逆冲推覆过程中会产生较强的挤压,且随着阻力的增大,断层会不断地调整倾角,减小阻力,继续前进,从而形成了倾角不一、规模不同的多条断层,后期断层会错断前期断层,从而对地层层序产生了较大的扰动。经多期倾角不一的逆断层的反复挤压、错断,最终形成了非常破碎的、巨厚层的断层破碎带,这反映出八宝山断裂逆冲作用非常强烈,从该断裂一直到黄庄—高丽营断裂之间的整个断块均属于断层破碎带。

    顺便提及的是,黄庄—高丽营断裂以东的北京凹陷内广泛发育角砾岩,也反映出该区域挤压强烈以及断层活动频繁这一特点。例如:髫髻山组下部的砾岩层在JR-94孔(北辰绿色家园)厚约300 m,JR-130孔(北辰绿色家园)厚约330 m,JR-53新孔(奥体中心)厚580 m,JR-117孔(索家坟)厚1 300 m (柯柏林,2005)。

    2) 存在两条主要断层。剖面中显示有两个较大的断层,一条是八宝山断裂带的主断层(F1),另一条是雾迷山组(Jxw)小断块被顶托至上部后与底部侏罗统所形成的不整合面(F2),其余断层相对规模较小。这两个不整合面两侧的地层差异较大,地层不连续较为明显,表现为内外两条断层线,本剖面处即是如此。但由于逆冲作用较为强烈,且两条断层线之间的距离较小,有时上部的雾迷山组岩块(图4中F2断层面之上部分)会逆冲至主断层F1之上,将前面的F1主断层线掩盖,从而地表仅有一条断层线出露,八宝山处即是如此。如图1所示,在八宝山处雾迷山组逆冲至下侏罗统之上,地表只有一条断层线,此处断层虽然是八宝山断层的命名地,但我们可以看出此断层并不是剖面中的主断层F1F1被掩盖在雾迷山组之下,断层线位置应当位于地表所显示的断层线以东;而地表出露的断层,即我们平常所指的八宝山断层,则相当于剖面图中的F2,是雾迷山组断块继续向前逆冲所形成的次断层。这在对八宝山断裂带进行研究及监测过程中需要特别注意。我们以往对八宝山处地表所出露断裂所进行的活动性监测,体现出的可能只是浅表处次断层的活动性,而对于地震监测意义更为重大的是主断层的监测,今后可通过钻探手段揭示到主断层的断层面后再对其加以监测。

    3) 关于F1F2的倾角和切割深度。剖面中钻孔所揭示的雾迷山组的最大深度为JR-141钻孔处的1 635 m,东侧受到后期断层的错动深度变小,由于目前钻孔资料较少,只能根据剖面大致估测次断层F2的最大深度约为1 800 m。结合地层剖面图(图4),根据76-3和JR-141两钻孔的雾迷山组的层厚及其间距计算出F2本段的断层面倾角大致为33°。

    JR-141钻孔在2 900 m深处可见深部下盘的雾迷山组(Jxw),奥热-1钻孔在3 326 m深度处尚未见,据此推断主断层F1的倾角大于37°。从剖面图中可以看出,奥热-1钻孔也已基本接近雾迷山组(Jxw),因此目前只能大致估测本段F1的倾角为40°左右。若倾角按40°估算,则F1的最大切割深度约为5 000 m,底部呈铲状与黄庄—高丽营断裂交会。

    北京凹陷是一地堑式凹陷(图4),在其形成过程中,首先是区域板块在拉张作用下产生断陷,形成八宝山、黄庄—高丽营等平行断层,初期为正断层,八宝山断裂与黄庄—高丽营断裂之间的断块下陷至左侧岩块雾迷山组以下深度;之后区域板块间又产生反向运动,挤压产生逆冲作用,八宝山主断层转变为逆断层,在其逆冲上升过程中,将一部分底部的雾迷山组岩块顶托至高处,从而出现了雾迷山组逆冲推覆至侏罗统之上的现象。

    北京凹陷最初大约形成于燕山运动早期,其后一直不断发展,最终形成于燕山运动末期(北京市地质矿产局,1991车兆宏,范燕,2003北京市地质矿产勘查开发局和北京市地质调查研究院,2008a)。考虑到髫髻山组(J3t)被切断并被叠压,因此北京凹陷最终的形成时代应该是在晚侏罗世(J3)之后;东侧的凹陷基本控制了下白垩统大灰厂组(K1dh)的沉积,因此该凹陷应当最终形成于大灰厂组(K1dh)沉积之前。基于此本文推断,八宝山断裂带的最终形成时代应该是介于晚侏罗世(J3)与早白垩世(K1)之间,即中生代晚期。

    以往对八宝山断裂的研究主要是根据相关的物探方法,多属于间接手段,解译结果也通常具有多解性,因而依据物探所得结论的可信度一般;而钻孔岩芯是对深部地层及构造加以研究分析的最直接证据,能够对深部地层构造加以较好地揭示,较为可靠。本文根据近些年来施工的地热井地层资料,对该断层性质进行了更加深入的研究。

    通过构造分析,剖面中显示有两条较大的断层,一是八宝山断裂带的主断层;另一条是雾迷山组小断块被顶托至上部后形成的次断层。在八宝山处,后者推覆至主断层之上将其掩盖,地表只出露一条断层,即平常所指的八宝山断层,但它并不是本断裂带的主断层,这在监测中需要重点加以区分。

    根据钻孔资料大致估算,本段上部的次断层断层面倾角约为33°,最大切割深度为1 800 m左右;下部的主断层倾角为40°左右,最大切割深度为5 000 m左右。

    本次研究主要是根据一条剖面的深孔资料对八宝山断层北段的基本性质进行了探讨,并不一定能完全代表其它各段断层的特点。今后随着新地热钻孔的施工,应进一步对其各段的性质进行研究,这对于基础地质、区域构造、地震监测、工程建设等方面均具有重要的理论意义和现实意义。

  • 图  3   2022年1月8日至12日门源MS6.9地震序列重定位震中分布

    (a) 重定位后地震随震源深度分布图;(b) 重定位后地震随距离主震的离逝时间t分布图

    Figure  3.   Relocated epicenters of the MS6.9 Menyuan earthquake sequence in the period of 8 to 12 January 2022

    (a) Epicenters distribution with focal depth after relocation;(b) Epicenters distribution of with elapsed time t from the origin time of the main shock

    图  1   门源MS6.9地震震中和MS≥6.0历史强震分布(a)、地震序列分布(b)及其M-t图和日频次图(c)

    F1:冷龙岭断裂;F2:托莱山断裂;F3:昌马—俄博断裂;F4:祁连山北缘断裂;F5:皇城—双塔断裂

    Figure  1.   Epicenter of MS6.9 Menyuan earthquake and distribution of historical MS≥6.0 strong earthquakes near the main shock epicenter (a),earthquake sequence (b) and their M-t plot and daily frequencies (c)

    F1:Lenlongling fault;F2:Tuolaishan fault;F3:Changma-Ebo fault;F4:Northern Qilianshan fault;F5:Huangcheng-Shuangta fault

    图  2   门源震源区的震相和达曲线(a)及最小一维速度模型(b)(红虚线代表拟合直线的2.5倍均方差)

    Figure  2.   Wadadi diagram (a) and minimum 1-D velocity model (b) of Menyuan source region (Red dashed lines represent the limits for 2.5 RMS of the fitting line)

    图  4   沿地震序列长轴走向的震源深度剖面AA′以及垂直余震区长轴走向的震源深度剖面BB′,CC′和DD′ (剖面宽度为剖面线两侧各10km)

    Figure  4.   Source depth profiles AA′ along the major axis of the earthquake sequence and BB′,CC′ and DD′ along the strike perpendicular to the major axis of aftershock region (Projection width for each side is 10 km for section)

    5   基于速度模型1 (a)和2 (b)的门源MS6.9地震震源机制-深度误差图(左)和最佳深度处波形拟合图(右)

    拟合波形下方的两行数字分别为理论波形(红色)相对实际波形(黑色)的移动时间(单位:s)以及二者的相关系数,波形左侧第一行给出了台站名和方位角(单位:度),第二行给出了震中距(单位:km)和相对偏移时间(单位:s),台站波形按震中距排列

    5.   Source mechanism-depth error diagram (left) and waveform fitting diagram at optimum depth (right) of the MS6.9 Menyuan earthquake with velocity models 1 (a) and 2 (b)

    The numbers of two rows beneath the traces are the time shifts (in second) of synthetics (red) relative to the observations (black) and the corresponding cross-correlation coefficients,respectively. The upper-left corner are stations and azimuths (in degree),respectively. The lower-left corner numbers represent the epicentral distance (in km) and the relative offset time (in second). The waveforms of stations are sorted in epicentral distance

    5   基于模型3 (c)的门源MS6.9地震震源机制-深度误差图(左)和最佳深度处波形拟合图(右)

    拟合波形下方的两行数字分别为理论波形(红色)相对实际波形(黑色)的移动时间(单位:s)以及二者的相关系数,波形左侧第一行给出了台站名和方位角(单位:度),第二行给出了震中距(单位:km)和相对偏移时间(单位:s),台站波形按震中距排列

    5.   Source mechanism-depth error diagram (left) and waveform fitting diagram at optimum depth (right) of the MS6.9 Menyuan earthquake with velocity model 3 (c)

    The numbers of two rows beneath the traces are the time shifts (in second) of synthetics (red) relative to the observations (black) and the corresponding cross-correlation coefficients,respectively. The upper-left corner are stations and azimuths (in degree),respectively. The lower-left corner numbers represent the epicentral distance (in km) and the relative offset time (in second). The waveforms of stations are sorted in epicentral distance

    图  6   本文门源MS6.9地震的震源机制结果与其他作者或机构结果的对比

    CENC、青海地震台、王卫民等、赵翠萍等、赵韬等的结果引自Seismology小组(2022),郭祥云等和韩立波等的结果引自中国地震局地球物理研究所(2022),其它结果引自European-Mediterranean Seismological Centre (2022)

    Figure  6.   Comparison of focal mechanism results of the MS6.9 Menyuan earthquake in this paper with those from other authors or institutions

    The results of CENC,Qinghai seismic network,Wang Weimin et al,Zhao Cuiping et al,Zhao Tao et al are from Seismology Group (2022),those of Guo Xiangyun et al and Han Libo et al are from Institute of Geophysics,China Earthquake Administration (2022),and others are from European-Mediterranean Seismological Centre (2022)

    图  7   2022年1月8—12日门源MS6.9主震和MS≥3.4余震的震中分布及其震源机制(震中位置据表3

    Figure  7.   Epicentral distribution and focal mechanisms of the MS6.9 main shock and MS≥3.4 aftershocks in Menyuan during 8−12 January 2022 (Epicenters according to Table 3

    图  8   门源地区应力体系下的震源机制模拟及相对剪应力(a)和相对正应力(b)

    Figure  8.   Simulated focal mechanisms and relative shear stress (a) and relative normal stress (b) under stress system in Menyuan region

    表  1   门源地区的P波初始速度模型

    Table  1   Initial P-wave velocity model in Menyuan area

    层号顶层深度/kmvP/(km·s−1
    104.50
    255.60
    3105.90
    4156.00
    5206.20
    6256.30
    7356.40
    8456.60
    9558.00
    下载: 导出CSV

    表  2   门源地区的P波最小一维速度模型

    Table  2   Minimum1-D P-wave velocity model in Menyuan area

    层号h/kmvP/(km·s−1层号h/kmvP/(km·s−1层号h/kmvP/(km·s−1
    1 0.00 4.59 10 4.50 5.29 19 20.00 5.96
    2 0.50 4.57 11 5.00 5.65 20 22.00 5.81
    3 1.00 4.57 12 6.00 5.21 21 25.00 6.14
    4 1.50 4.64 13 8.00 5.64 22 28.00 6.25
    5 2.00 4.78 14 10.00 5.86 23 31.00 6.25
    6 2.50 4.91 15 12.00 5.74 24 34.00 6.28
    7 3.00 5.03 16 14.00 5.71 25 43.00 6.42
    8 3.50 5.13 17 16.00 5.85 26 56.00 7.76
    9 4.00 5.22 18 18.00 5.85
    注:h为顶层深度
    下载: 导出CSV

    表  3   2022年1月8日至12日门源地震序列MS≥3.4地震的震源机制解

    Table  3   Focal mechanism solutions of the MS≥3.4 events in the Menyuan earthquake sequence from January 8 to January 12,2022

    序号发震
    日期
    发震
    时刻
    震中位置 深度/km 节面Ⅰ 节面ⅡMW
    东经/°北纬/° hPhW 走向/°倾角/°滑动角/° 走向/°倾角/°滑动角/°
    1 2022-01-08 01:45:28 101.258 37.770 7.8 4 290 81 16 197 74 171 6.6
    2 2022-01-08 01:55:19 101.253 37.762 7.6 主震面波里无解
    3 2022-01-08 02:09:05 101.217 37.773 9.0 7 0 73 −161 264 72 −18 5.1
    4 2022-01-08 02:33:53 101.261 37.769 8.4 7 21 53 −175 288 86 −37 4.0
    5 2022-01-08 04:45:23 101.208 37.761 8.5 7 0 64 176 92 86 26 3.9
    6 2022-01-08 10:06:21 101.460* 37.760* 7* 6 353 85 −170 262 80 −5 3.8
    7 2022-01-08 14:30:05 101.158 37.773 16.8 5 184 59 165 282 77 32 4.3
    8 2022-01-09 13:50:49 101.205 37.764 17.7 7 2 60 −178 271 88 −30 3.9
    9 2022-01-12 18:20:41 101.469 37.703 13.6 3 210 72 177 301 87 18 5.2
    10 2022-01-12 20:16:18 101.470* 37.780* 8* 7 219 72 161 315 72 19 4.8
    11 2022-01-12 21:01:53 101.475 37.697 14.2 4 218 81 152 313 62 10 4.7
    注:*为因精定位丢失的地震而采用的原始目录经纬度及深度;hP为初始破裂深度,hW为震源矩心深度。
    下载: 导出CSV
  • 郭鹏,韩竹军,安艳芬,姜文亮,毛泽斌,冯蔚. 2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学,47(5):617–630.

    Guo P,Han Z J,An Y F,Jiang W L,Mao Z B,Feng W. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences,60(5):929–942. doi: 10.1007/s11430-016-9007-2

    郭增建, 秦保燕. 1979. 震源物理[M]. 北京: 地震出版社: 102–160.

    Guo Z J, Qin B Y. 1979. Physics of Earthquake Foci[M]. Beijing: Seismological Press: 102–160 (in Chinese).

    李祥,万永革,崔华伟,高熹微,黄骥超,张珊珊. 2016. 2016年1月21日青海门源MS6.4地震构造应力场[J]. 华北地震科学,34(2):36–41.

    Li X,Wan Y G,Cui H W,Gao X W,Huang J C,Zhang S S. 2016. Tectonic stress field of 2016,MS6.4 Menyuan,Qinghai earthquake[J]. North China Earthquake Sciences,34(2):36–41 (in Chinese).

    龙锋,闻学泽,徐锡伟. 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系[J]. 地震地质,28(4):511–535. doi: 10.3969/j.issn.0253-4967.2006.04.001

    Long F,Wen X Z,Xu X W. 2006. Empirical relationships between magnitude and rupture length,and rupture area,for seismogenic active faults in North China[J]. Seismology and Geology,28(4):511–535 (in Chinese).

    龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646.

    Long F,Qi Y P,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).

    青海省地震局. 2022. 青海门源“1·8”6.9级地震发现22公里地表破裂[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx.

    Qinghai Earthquake Agency. 2022. A 22 km surface rupture zone was discovered after“1·8” Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-08]. https://www.qhdzj.gov.cn/Item/2/20969.aspx (in Chinese).

    Seismology小组. 2022. 2022年1月8日青海6.9级地震及5.1级余震的中心解及主震对周围的位移场和应变场及对余震的触发作用和对周围断层的库仑应力影响[EB/OL]. [2022-01-09]. https://mp.weixin.qq.com/s/gOR8-7kAErt-UP5dGzrUeA.

    Seismology Group. 2022. The central focal mechanism solution of the Qinghai M6.9 earthquake and the aftershock of M5.1 on January 8, 2022 and the influence of the main shock on the displacement and strain fields, the triggering effect on the aftershock and the Coulomb stress on the surrounding faults[EB/OL]. [2022-01-09]. https://mp.weixin.qq.com/s/gOR8-7kAErt-UP5dGzrUeA (in Chinese).

    石富强,邵志刚,占伟,丁晓光,朱琳,李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报,61(9):3651–3663. doi: 10.6038/cjg2018L0631

    Shi F Q,Shao Z G,Zhan W,Ding X G,Zhu L,Li Y J. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,61(9):3651–3663 (in Chinese).

    万永革. 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718–4728.

    Wang Y G. 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics,62(12):4718–4728 (in Chinese).

    万永革. 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281–2296.

    Wan Y G. 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics,63(6):2281–2296 (in Chinese).

    王椿镛,林中洋,陈学波. 1995. 青海门源—福建宁德地学断面综合地球物理研究[J]. 地球物理学报,38(5):590–598. doi: 10.3321/j.issn:0001-5733.1995.05.005

    Wang C Y,Lin Z Y,Chen X B. 1995. Comprehensive study of geophysics on geoscience transect from Menyuan,Qinghai Province,to Ningde,Fujian Province,China[J]. Acta Geophysica Sinica,38(5):590–598 (in Chinese).

    王月,胡少乾,何骁慧,郭凯,解孟雨,邓世广,马亚伟. 2021. 2021年5月21日云南漾濞6.4级地震序列重定位及震源机制研究[J]. 地球物理学报,64(12):4510–4525.

    Wang Y,Hu S Q,He X H,Guo K,Xie M Y,Deng S G,Ma Y W. 2021. Relocation and focal mechanism solutions of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics,64(12):4510–4525 (in Chinese).

    吴建平,黄媛,张天中,明跃红,房立华. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报,52(2):320–328.

    Wu J P,Huang Y,Zhang T Z,Ming Y H,Fang L H. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics,52(2):320–328 (in Chinese).

    徐锡伟,吴熙彦,于贵华,谭锡斌,李康. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质,39(2):219–275.

    Xu X W,Wu X Y,Yu G H,Tan X B,Li K. 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their preliminary application in mainland China[J]. Seismology and Geology,39(2):219–275 (in Chinese).

    杨志高,张雪梅. 2016. 2016年门源MS6.4地震震区地壳厚度及波速比研究[J]. 地震研究,39(4):566–573.

    Yang Z G,Zhang X M. 2016. Study on crustal thickness and velocity ratio near Menyuan MS6.4 earthquake zone[J]. Journal of Seismological Research,39(4):566–573 (in Chinese).

    尹欣欣,赵林林,杨立明,陈继锋,左可桢,蒲举. 2018. 青海门源MS 6.4地震震源机制解与震源深度研究[J]. 大地测量与地球动力学,38(6):624–628.

    Yin X X,Zhao L L,Yang L M,Chen J F,Zuo K Z,Pu J. 2018. Research on focal mechanism and south depth of Menyuan,Qinghai MS6.4 earthquake[J]. Journal of Geodesy and Geodynamics,38(6):624–628 (in Chinese).

    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278.

    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).

    中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.

    China Earthquake Administration. 2022. China Earthquake Administration issued the seismic intensity distribution of Qinghai Menyuan MS6.9 earthquake[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).

    中国地震局地球物理研究所. 2022. 2022年01月08日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html.

    Institute of Geophysics, China Earthquake Administration. 2022. Science and technology support for the M6.9 earthquake in Menyuan County, Haibei Prefecture, Qinghai Province on January 8, 2022[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html (in Chinese).

    中国新闻网. 2022. 青海门源地震初步排查4人轻伤, 发生强余震可能性较低[EB/OL]. [2022-01-08]. http://www.chinanews.com.cn/sh/2022/01-08/9647113.shtml.

    ChinaNews. 2022. Preliminary investigation of Qinghai Menyuan earthquake showed that four people were slightly injured and the possibility of strong aftershocks was low[EB/OL]. [2022-01-08]. http://www.chinanews.com.cn/sh/2022/01-08/9647113.shtml (in Chinese).

    左可桢,陈继锋. 2018. 门源地区地壳三维体波速度结构及地震重定位研究[J]. 地球物理学报,61(7):2788–2801. doi: 10.6038/cjg2018L0537

    Zuo K Z,Chen J F. 2018. 3D body-wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics,61(7):2788–2801 (in Chinese).

    周民都,张元生,石雅鏐,张树勋,范兵. 2006. 青藏高原东北缘地壳三维速度结构[J]. 地球物理学进展,21(1):127–134. doi: 10.3969/j.issn.1004-2903.2006.01.019

    Zhou M D,Zhang Y S,Shi Y L,Zhang S X,Fan B. 2006. Three-dimensional crustal velocity structure in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Progress in Geophysics,21(1):127–134 (in Chinese).

    European-Mediterranean Seismological Centre. 2022. Moment tensors[EB/OL]. [2022-01-11]. https://www.emsc-csem.org/Earthquake/tensors.php.

    Klein F W. 2002. User’s Guide to HYPOINVERSE-2000: A Fortran Program to Solve For Earthquake Locations and Magnitudes[R]. U.S. Geological Survey Open-File Report 02-171.

    Kissling E. 1988. Geotomography with local earthquake data[J]. Rev Geophys,26(4):659–698. doi: 10.1029/RG026i004p00659

    Kissling E,Ellsworth W L,Eberhart-Phillips D,Kradolfer U. 1994. Initial reference models in local earthquake tomography[J]. J Geophys Res:Solid Earth,99(B10):19635–19646. doi: 10.1029/93JB03138

    Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276.

    Long F,Wen X Z,Ruan X,Zhao M,Yi G X. 2015. A more accurate relocation of the 2013 MS7.0 Lushan,Sichuan,China,earthquake sequence,and the seismogenic structure analysis[J]. J Seismol,19(3):653–665. doi: 10.1007/s10950-015-9485-0

    Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw,8(1):43–71. doi: 10.1145/355984.355989

    Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Wan Y G. 2010. Contemporary tectonic stress field in China[J]. Earthquake Science,23(4):377–386. doi: 10.1007/s11589-010-0735-5

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

    Yang H F, Wang D, Guo R M, Xie M Y, Zang Y, Wang Y, Yao Q, Cheng C, An Y R, Zhang Y Y. 2022. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake, Qinghai, China[J/OL]. Earthquake Research Advances, https://doi.org/10.1016/j.eqrea.2022.100113.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.

    Zhu L P,Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophys J Int,194(2):839–843. doi: 10.1093/gji/ggt137

    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x

  • 期刊类型引用(0)

    其他类型引用(2)

图(9)  /  表(3)
计量
  • 文章访问数:  3692
  • HTML全文浏览量:  854
  • PDF下载量:  676
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-01-21
  • 发布日期:  2022-04-23

目录

/

返回文章
返回