断层边坡地震动载效应的数值模拟

惠红军, 杨家英, 赵永红, 李小凡

惠红军,杨家英,赵永红,李小凡. 2023. 断层边坡地震动载效应的数值模拟. 地震学报,45(4):695−705. DOI: 10.11939/jass.20220009
引用本文: 惠红军,杨家英,赵永红,李小凡. 2023. 断层边坡地震动载效应的数值模拟. 地震学报,45(4):695−705. DOI: 10.11939/jass.20220009
Hui H J,Yang J Y,Zhao Y H,Li X F. 2023. Numerical simulation of seismic dynamic load effect of fault slope. Acta Seismologica Sinica45(4):695−705. DOI: 10.11939/jass.20220009
Citation: Hui H J,Yang J Y,Zhao Y H,Li X F. 2023. Numerical simulation of seismic dynamic load effect of fault slope. Acta Seismologica Sinica45(4):695−705. DOI: 10.11939/jass.20220009

断层边坡地震动载效应的数值模拟

基金项目: 国家自然科学基金项目(40821062,41274094和40872133)资助
详细信息
    作者简介:

    惠红军,博士,高级工程师,主要从事地球内部物理方面研究,e-mail:baike186@163.com

    通讯作者:

    赵永红,博士,教授,主要从事岩石力学和地球物理方面研究,e-mail:zhaoyh@pku.edu.cn

  • 中图分类号: P315.1

Numerical simulation of seismic dynamic load effect of fault slope

  • 摘要: 地震荷载作用下,断层两侧边坡稳定性一直是研究重点,本文主要探讨动态加载对不同位置坡体产生的地震动效应。首先,建立一个截面大小为500 km×100 km的有限元二维动态铲形断层模型,在地表断层两侧构建对称边坡来模拟滑坡地形。然后加载脉冲震源,通过对震源(深度为14 km)处节点指定加速度的方法,模拟计算地震发生后100 s内地震波传播对距断层分别为1 km,30 km及100 km的不同边坡震动产生的影响。结果显示:边坡震动强度随着震源距的增加而快速衰减,下盘的衰减比上盘更为强烈;距断层相同位置处,上盘比下盘振动幅度大;相同山体的不同位置上,水平方向振幅随断层距增大而衰减;垂直方向振幅,相同高程处的振幅相近,高程越高振幅相对减小;随着断层距的增加,山体的水平和垂直方向振幅都逐渐变小;震源距较远位置处的振幅比近震源位置小很多,说明近震位置处振动强度大,即在同等地质条件下,近断层的上盘区域更易发生滑坡。
    Abstract: Slope stability on both sides of seismogenic fault under seismic loading has been the focus of academic study. We mainly discuss the seismic effect of dynamic loading on slopes at different positions in this paper. First, we conduct a two-dimensional dynamic finite-element model of spade shaped fault with the size of 500 km×100 km. The symmetrical slopes on both sides of the fault are considered as the landslide terrain. Then, to simulate the earthquake effect, we set a pulse source at the depth of 14 km. The impact of seismic wave propagation on slopes with distance 1 km, 30 km, and 100 km from the fault is analyzed in the first 100 s after earthquake happens. The results demonstrated that the vibration intensity decays rapidly with distance from the source, and that the decay rate at hanging side is more moderate than that of the footwall. With the same distance from the fault, the vibration amplitude of hanging side is larger than the footwall. In different locations of the same surface bulge, vibration amplitude decays with distance from the fault in horizontally. The vibration amplitude in vertical direction is similar to that of the same elevation position. The location with higher elevation has a relatively smaller amplitude. As the distance from the fault increases, amplitudes of surface bulge in horizontal and vertical direction become smaller gradually. The results show that in a place far away from the source, the amplitude of the point is much smaller than the near one which means at where the vibration intensity is larger. With the same geological setting, the near fault hanging side is easier to have landslide.
  • 本目录中的地震参数来自“中国地震台站观测报告”(简称“月报”). 其中, 国内及邻区给出M≥4.7的事件, 全球给出M≥6.0的事件. “月报”由中国地震台网中心按月做出.

    本目录中的发震时刻采用协调世界时(UTC); 为了方便中国读者, 也给出北京时(BTC). 震中位置除给出经纬度外, 还给出参考地区名, 它仅用作查阅参考, 不包含任何政治意义; 还给出测定震源位置的台数(n)和标准偏差(SD).

    面波震级MS是用中周期宽频带SK地震仪记录, 采用北京台1965年面波震级公式MS=lg(AH/T)+1.66 lg(Δ)+3.5 (1°<Δ<130°)求得, AH是两水平分向最大面波位移的矢量合成位移. MS7是对763长周期地震仪记录, 采用国际上推荐的面波震级公式MS7=lg(AV/T)+1.66 lg(Δ)+3.3 (20°<Δ<160°)求得, AV是垂直向面波最大地动位移. mb是短周期体波震级, ML是近震震级. 为避免混乱, 震级之间一律不换算.

    中国及邻区地震目录(2016年5—6月, M≥4.7)
    Catalog of earthquakes within and near China (May--June, 2016, M≥4.7)
    编号发震时刻地理坐标深度/km震级标准偏差(SD)使用台数(n)地区
    UTCBTC日-时纬度/°N经度/°EMSMS7MLmb
    月-日时:分:秒
    1 05-0409:24:0.304-17 23.27103.22104.84.44.54.32.3 67 云南省
    21101:15:48.111-09 32.01 95.08105.75.65.25.02.7101 西藏自治区
    31203:17:13.012-11 24.68122.00156.36.36.35.22.1103 台湾岛
    41204:29:56.312-12 24.83122.02156.16.16.15.11.7102 台湾岛
    51308:24:12.513-16 24.86121.90 65.25.05.14.62.0101 台湾岛
    61403:32:48.914-11 24.20121.81 64.94.84.54.32.3 68 台湾岛
    71517:02:29.516-01 39.76 75.46104.34.14.74.33.1 29 新疆自治区南部
    81716:48:51.218-00 26.13 99.56205.04.64.94.72.6 76 云南省
    91717:05:11.818-01 26.08 99.58104.64.24.74.62.5 77 云南省
    101911:50:08.619-19 27.00127.00 110 4.71.9 74 琉球群岛
    112120:51:40.122-04 22.95120.58 64.54.44.74.42.0 86 台湾岛
    122201:48:45.622-09 28.27 87.62105.45.2 4.91.9 75 尼泊尔
    132202:05:53.122-10 28.42 87.59105.14.8 4.81.6 69 尼泊尔
    142209:08:04.022-17 41.62120.09 64.54.24.84.32.3 65 中国东北部
    153105:23:46.531-13 25.45122.48 245 5.71.8 91 台湾岛
    16 06-0502:47:49.405-10 28.88128.38 201 4.91.6 89 中国东海
    171903:05:10.419-11 42.10 81.46 54.23.84.94.53.0 39 新疆自治区南部
    181918:20:54.420-02 20.61120.72105.35.34.85.02.3 93 菲律宾群岛地区
    192321:05:26.324-05 23.52123.53106.05.8 5.41.5 96 琉球群岛西南部
    202611:17:09.626-19 39.43 73.40106.96.86.85.71.5100 塔吉克斯坦
    212706:25:37.127-14 39.45 73.31194.64.34.54.71.3 69 塔吉克斯坦
    222710:13:06.027-18 31.89104.41104.54.34.84.62.4 77 四川省
    232719:28:48.128-03 39.52 73.44134.84.64.84.81.4 80 吉尔吉斯斯坦
    242821:38:01.329-05 39.51 73.32 75.55.45.55.21.4 98 吉尔吉斯斯坦
    252908:08:10.529-16 39.46 73.18 74.54.34.74.81.5 69 塔吉克斯坦
    262915:23:10.029-23 27.40126.50 190 4.71.5 61 琉球群岛
    下载: 导出CSV 
    | 显示表格
    全球地震目录(2016年5—6月, M≥6.0)
    Catalog of earthquakes all over the world (May--June, 2016, M≥6.0)
    编号发震时刻地理坐标深度/km震级标准偏差(SD)使用台数(n)地区
    UTCBTC日-时纬度/°N经度/°EMSMS7mb
    月-日时:分:秒
    1 05-0807:34:02.008-15 16.50N 97.70W306.05.71.4 59 墨西哥格雷罗海岸近海
    21203:17:13.012-11 24.68N122.00E156.36.35.22.1103 台湾岛
    31204:29:56.312-12 24.83N122.02E156.16.15.11.7102 台湾岛
    41807:57:02.518-150.49N 79.79W326.86.82.1 88 厄瓜多尔海岸近海
    51816:46:41.319-000.49N 79.68W306.96.92.4 89 厄瓜多尔海岸近海
    62805:38:47.328-13 22.01S178.15W4006.21.3 99 斐济以南地区
    72809:46:58.328-17 56.15S 27.15W707.17.02.4 74 南桑德韦奇群岛地区
    8 06-0122:55:58.602-06 2.10S100.65E506.66.36.21.4100 苏门答腊南部
    9 0710:51:37.707-18 18.40N105.15W106.56.25.42.5 57 墨西哥哈利斯科海岸 近海
    10 0710:58:01.007-18 18.50N105.10W106.76.32.7 13 墨西哥哈利斯科海岸 近海
    11 0719:15:16.008-03 1.34N126.34E506.16.06.01.4100 马鲁古海峡
    121003:25:22.510-11 13.00N 86.95W106.56.32.7 66 尼加拉瓜海岸近海
    131004:17:42.010-12 8.66S160.58E306.05.85.6 0.8102 所罗门群岛
    141909:47:20.019-17 20.45S169.50E106.26.05.11.9 86 瓦努阿图(新赫布里底)
    152116:26:33.922-00 22.61N 44.97W106.46.25.62.1 66 北大西洋海岭
    162321:05:26.324-05 23.52N123.53E106.05.85.41.5 96 琉球群岛西南部
    172611:17:09.626-19 39.43N 73.40E106.96.85.71.5100 塔吉克斯坦
    下载: 导出CSV 
    | 显示表格
  • 图  1   二维计算模型

    Figure  1.   2-D computational model

    图  2   边坡点位分布示意图

    R与L分别代表点在断层的右侧与左侧;a为边坡编号;1号和3号点等高

    Figure  2.   Sketch map of the results analysis

    R and L represent points on the right and left sides of the fault,respectively;a is the slope numbers of the fault;points 1 and 3 at the same height

    图  3   水平方向断层左(a)右(b)两侧不同边坡相同位置位移变化比较

    L和R表示断层的左右两侧,abc代表边坡,1,2,3为边坡的不同位置,La1即代表断层左侧第一个边坡1号点位振动图,下同

    Figure  3.   Displacement variation comparison of different slopes in the same location on both sides of the fault in horizontal direction

    Different color represent the vibration figure of different location;L,R represent the left and right sides of the fault;abc represent the side slope from the near to the distant;the number represents different location on the side slope;La1 represents the vibration figure of the No.1 point of first side slope on the left of the fault,the same below

    图  5   水平方向断层左(a)右(b)两侧相同边坡不同位置位移变化比较

    Figure  5.   Displacement variation comparison of the same side slope in different location on left side (a) and right side (b) of the fault in horizontal direction

    图  4   水平方向距断层两侧边坡ab在1号 (a)和3号 (b)点位移变化比较

    Figure  4.   Displacement variation comparison of point 1 (a),3 (b) of slope a and b from both sides of the fault in horizontal direction

    图  6   垂直方向断层左(a)右(b)两侧不同边坡相同位置位移变化比较

    Figure  6.   Displacement variation comparison of different side slope in the same location on left side (a) and right side (b) of the fault in vertical direction

    图  8   垂直方向断层左(a)右(b)两侧相同边坡不同位置位移变化比较

    Figure  8.   Displacement variation comparison of the same side slope in different location on left side (a) and right side (b) of the fault in vertical direction

    图  7   断层两侧边坡ab垂直方向上1号(a)和3号(b)点位移变化比较

    Figure  7.   Displacement variation comparison of point 1 (a),3 (b) of side slopes ab from both sides of the fault in vertical direction

    表  1   模型材料参数(修改自陶玮等,2011

    Table  1   Material parameters of the model (modified from Tao et al2011

    介质密度/(kg·m−3泊松比弹性模量/1010 Pa介质密度/(kg·m−3泊松比弹性模量/1010 Pa
    地壳 2.7 0.25 8.37 断层 2.7 0.25 5.45
    低速层 2.7 0.31 3.35 边坡 2.7 0.25 8.37
    地幔 3.3 0.30 12.10
    下载: 导出CSV

    表  2   x方向不同位置最大振幅及时刻

    Table  2   Maximum amplitude and its time in different places of along x direction

    边坡位置边坡a振动方向边坡b振动方向边坡c振动方向
    正方向 负方向正方向 负方向正方向 负方向
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    上盘1号点 6.25 1.50 4.40 −0.35 5.60 0.50 - - 22.1 0.024 0 - -
    上盘2号点 6.70 1.50 5.60 −0.60 6.00 0.60 - - 27.90 0.029 0 - -
    上盘3号点 5.60 0.82 3.75 −0.30 6.25 0.65 - - 31.80 0.025 0 - -
    下盘1号点 10.00 1.00 10.06 −0.35 13.75 0.22 - - 45.0 0.012 5 - -
    下盘2号点 8.00 1.20 6.90 −0.30 13.00 0.20 - - 45.0 0.012 5 - -
    下盘3号点 7.50 1.06 9.40 −0.24 10.06 0.18 - - 45.0 0.012 5 - -
    下载: 导出CSV

    表  3   z方向不同位置最大振幅及时刻

    Table  3   Maximum amplitude and its time in different place of z direction

    边坡位置边坡a振动方向边坡b振动方向边坡c振动方向
    正方向负方向正方向负方向正方向负方向
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    时刻
    /s
    最大振幅
    /m
    上盘1号点 3.50 0.93 7.35 −0.74 8.8 0.14 5.59 −0.36 21.11 0.007 4 17.22 −0.014
    上盘2号点 7.78 0.57 6.67 −0.82 9.44 0.29 6.11 −0.46 40.55 0.006 1 17.78 −0.013
    上盘3号点 7.77 0.91 5.55 −1.04 14.11 0.14 6.11 −0.29 21.11 0.007 8 21.94 −0.013
    下盘1号点 4.70 0.81 6.47 −0.59 9.41 0.15 12.78 −0.09 32.22 0.002 3 - -
    下盘2号点 5.55 0.71 10.55 −0.64 17.78 0.14 16.67 0.11 33.33 0.003 4 - -
    下盘3号点 6.11 0.59 8.89 −0.38 19.41 0.13 20.00 −0.11 31.67 0.002 1 - -
    下载: 导出CSV
  • 陈晓利,邓俭良,冉洪流. 2011a. 汶川地震滑坡崩塌的空间分布特征[J]. 地震地质,33(1):191–202.

    Chen X L,Deng J L,Ran H L. 2011a. Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology,33(1):191–202 (in Chinese).

    陈晓利,李传友,王明明,李正芳. 2011b. 断裂带两侧地震诱发滑坡空间分布差异性的主要影响因素研究:以北川地区的地震滑坡分布为例[J]. 地球物理学报,54(3):737–746.

    Chen X L,Li C Y,Wang M M,Li Z F. 2011b. The main factors causing the seismic landslide distribution difference on two sides of the faults:A case study of landslide distribution in Beichuan area[J]. Chinese Journal of Geophysics,54(3):737–746 (in Chinese).

    邓琴,郭明伟,李春光,葛修润. 2010. 基于边界元法的边坡矢量和稳定分析[J]. 岩土力学,31(6):1971–1976.

    Deng Q,Guo M W,Li C G,Ge X R. 2010. Vector sum method for slope stability analysis based on boundary element method[J]. Rock and Soil Mechanics,31(6):1971–1976.

    黄润秋,李为乐. 2008. “5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报,27(12):2585–2592.

    Huang R Q,Li W L. 2008. Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May,2008[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2585–2592 (in Chinese).

    焦玉勇,葛修润,刘泉声,冯树仁. 2000. 三维离散单元法及其在滑坡分析中的应用[J]. 岩土工程学报,22(1):101–104.

    Jiao Y Y,Ge X R,Liu Q S,Feng S R. 2000. Three-dimensional discrete element method and its application in landslide analysis[J]. Chinese Journal of Geotechnical Engineering,22(1):101–104.

    兰恒星,王苓涓,周成虎. 2002. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报,10(4):421–427.

    Lan H X,Wang L J,Zhou C H. 2002. Study on GIS-AIDED model for analysis of landslide hazard[J]. Journal of Engineering Geology,10(4):421–427 (in Chinese).

    刘礼领,殷坤龙. 2003. 离散单元法在水库库岸滑坡稳定性分析中的应用[J]. 水文地质工程地质,50(4):63–66.

    Liu L L,Yin K L. 2003. Discrete element method applied to stability analysis of landslides along reservoir shoreline[J]. Hydrogeology & Engineering Geology,50(4):63–66 (in Chinese).

    刘启元,李昱,陈九辉,郭飙,李顺成,王峻,张绪奇,齐少华. 2009. 汶川MS8.0地震:地壳上地幔S波速度结构的初步研究[J]. 地球物理学报,52(2):309–319.

    Liu Q Y,Li Y,Chen J H,Guo B,Li S C,Wang J,Zhang X Q,Qi S H. 2009. Wenchuan MS8.0 earthquake:Preliminary study of the S-wave velocity structure of the crust and upper mantle[J]. Chinese journal of geophysics,52(2):309–319 (in Chinese).

    陶玮,胡才博,万永革,沈正康,王康. 2011. 铲形逆冲断层地震破裂动力学模型及其在汶川地震研究中的启示[J]. 地球物理学报,54(5):1260–1269.

    Tao W,Hu C B,Wan Y G,Shen Z K,Wang K. 2011. Dynamic modeling of thrust earthquake on listric fault and its inference to study of Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(5):1260–1269 (in Chinese).

    谭儒蛟,胡瑞林,刘衡秋,曾如意. 2004. 滑坡稳定性评价和监测预报常用方法综述[J]. 工程地质学报,12:463–467.

    Tan R J,Hu R L,Liu H Q,Zeng R Y. 2004. Summarization of landslide stability evaluation,monitoring and forecast methods[J]. Journal of Engineering Geology,12:463–467 (in Chinese).

    徐锡伟,闻学泽,叶建青,马保起,陈杰,周荣军,何宏林,田勤俭,何玉林,王志才,孙昭民,冯希杰,于贵华,陈立春,陈桂华,于慎鄂,冉勇康,李细光,李陈侠,安艳芬. 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质,30(3):597–629. doi: 10.3969/j.issn.0253-4967.2008.03.003

    Xu X W,Wen X Z,Ye J Q,Ma B Q,Chen J,Zhou R J,He H L,Tian Q J,He Y L,Wang Z C,Sun Z M,Feng X J,Yu G H,Chen L C,Chen G H,Yu S E,Ran Y K,Li X G,Li C X,An Y F. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology,30(3):597–629 (in Chinese).

    徐锡伟,陈桂华,于贵华,孙鑫喆,谭锡斌,陈立春,孙建宝,陈于高,陈文山,张淑萍,李康. 2010. 5·12汶川地震地表破裂基本参数的再论证及其构造内涵分析[J]. 地球物理学报,53(10):2321–2336.

    Xu X W,Chen G H,Yu G H,Sun X Z,Tan X B,Chen L C,Sun J B,Chen Y G,Chen W S,Zhang S P,Li K. 2010. Reevaluation of surface rupture parameters of the 5·12 Wenchuan earthquake and its tectonic implication for Tibetan uplift[J]. Chinese Journal of Geophysics,53(10):2321–2336 (in Chinese).

    詹军,于清杨. 2002. 有限元法在滑坡稳定性分析中的应用[J]. 煤田地质与勘探,30(1):45–47.

    Zhan J,Yu Q Y. 2002. Finite element method applying to stability analysis of landslide[J]. Coal Geology & Exploration,30(1):45–47 (in Chinese).

    张伯艳,陈厚群. 2001. 用有限元和刚体极限平衡方法分析坝肩抗震稳定[J]. 岩石力学与工程学报,20(5):665–670.

    Zhang B Y,Chen H Q. 2001. Analysis on abutment aseismatic stability by using finite element and rigid body limit equilibrium method[J]. Chinese Journal of Rock Mechanics and Engineering,20(5):665–670 (in Chinese).

    张冬丽,周正华,陶夏新. 2009. 震源破裂方式和断层性质对近场强地震动特征的影响[J]. 西北地震学报,31(4):311–318.

    Zhang D L,Zhou Z H,Tao X X. 2009. Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal,31(4):311–318 (in Chinese).

    张培震,徐锡伟,闻学泽,冉勇康. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报,51(4):1066–1073.

    Zhang P Z,Xu X W,Wen X Z,Ran Y K. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone and tectonic implications for the mechanism of the May 12 Wenchuan earthquake,2008,Sichuan,China[J]. Chinese Journal of Geophysics,51(4):1066–1073 (in Chinese).

    Abrahamson N A,Somerville P G. 1996. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bull Seimol Soc Am,86(1B):S93–S99. doi: 10.1785/BSSA08601B0S93

    Lam L,Fredlund D G. 1993. A general limit equilibrium model for three-dimensional slope analysis[J]. Canadian Geotechnical Journal,(30):905–919.

    Oglesby,D D,Archuleta R J,Nielsen S B. 2000a. Dynamics of dip-slip faulting:Explorations in two dimensions[J]. J Geophys Res,105(B6):13643–13653. doi: 10.1029/2000JB900055

    Oglesby,D D,Archuleta R J,Nielsen S B. 2000b. The three-dimensional dynamics of dipping faults[J]. Bull Seimol Soc Am,90(3):616–628. doi: 10.1785/0119990113

    Oglesby,D D,Mai P M. 2012. Fault geometry,rupture dynamics and ground motion from potential earthquakes on the North Anatolian fault under the sea of Marmara[J]. Geophys J Int,188(3):1071–1087. doi: 10.1111/j.1365-246X.2011.05289.x

    Shen Z K,Sun J B,Zhang P Z,Wan Y G,Wang M,Bürgmann R,Zeng Y H,Gan W J,Liao H,Wang Q L. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nat Geosci,2(10):718–724. doi: 10.1038/ngeo636

图(8)  /  表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  46
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-05-05
  • 网络出版日期:  2023-08-23
  • 发布日期:  2023-07-14

目录

    /

    返回文章
    返回