Lithospheric velocity structure of central Turkey based on ambient noise surface tomography
-
摘要: 土耳其东部是由碰撞引起的挤压变形区域,而西部为俯冲引起的爱琴海伸展变形区域,土耳其中部作为两者之间的过渡拥有很复杂的地质情况,尤其是具有火山活动和长远的俯冲、大陆碰撞等构造历史,因此获得此区域岩石圈可靠的速度结构对认识俯冲末期的板块状态、岩浆活动等现象意义重大。为了更好地了解此区域的岩石圈速度结构,本研究使用了(31°E—38.8°E,34.5°N—42.0°N)范围内172个台站的背景噪声数据,通过互相关方法获得经验格林函数;之后利用频率-贝塞尔变换法得到了5—80 s周期范围内的基阶瑞雷波频散曲线,并在个别区域获得了高阶模式频散曲线;最后利用基于Broyden-Fletcher-Goldfarb-Shanno算法校正的拟牛顿迭代反演方法得到地表至124 km深的三维剪切波速度结构。结果表明:土耳其中部的速度横向变化剧烈(最大变化可达400 m/s),且与地质边界和缝合带区域密切相关,中安纳托利亚火山区及部分金牛座山脉东部的速度在0—100 km深度均小于4.3 km/s,因此推测此区域不存在岩石圈地幔;从塞浦路斯海沟开始俯冲的非洲大洋岩石圈,以近垂直俯冲在金牛座山脉中部下方,表现为明显的高速特征;土耳其中部在70—100 km深度广泛存在与上升软流圈物质相关的低速带,因此大部分研究区域的岩石圈波速小于全球平均剪切波速度,并且此区域岩石圈整体较薄、厚度多变。此外,本研究还发现在金牛座山脉中部和东部约13—23 km深度存在一个明显的低速带,推测可能与地块破裂导致的地层部分熔融有关。Abstract: The eastern part of Turkey is the compression deformation area caused by collision, while the western part is the extension deformation area of the Aegean Sea caused by subduction. As the transition between the two, the central part of Turkey has a very complex geological situation, volcanism, long-term subduction, continental collision and other tectonic history. Therefore, obtaining the reliable velocity structure of the lithosphere in this region is very important for understanding the plate state at the end of subduction, magmatism and other phenomena. In order to better understand the lithospheric velocity structure of this area, we study this region using ambient noise tomography based on the continuous noise data of 172 stations in the area (31°E−38.8°E, 34.5°N−42.0°N). After obtaining the empirical Green’s function through the cross-correlation, the fundamental Rayleigh wave dispersion curves in the period range of 5−80 s is obtained by using the frequency-Bessel transform method, and the dispersion curve of overtones is obtained in some subarray. Subsequently, 3-D shear velocity structure from surface to 124 km is obtained by quasi-Newton iterative version based on Broyden-Fletcher-Goldfarb-Shanno correction. These results show that the lateral velocity in central Turkey changes sharply (the maximum variation can reach 400 m/s), which is closely related to the geological boundary and suture. The velocity in the Central Anatolian volcanic province (CAVP) and some Eastern Taurus mountains (ETM) is less than 4.3 km/s at 0−110 km, so we speculate that there are no lithospheric mantle in this area. The African oceanic lithosphere, which began to subduct from the Cyprus trench, subducted beneath the Central Taurus mountains (CTM) at a near vertical angle, showing obvious high-velocity characteristics. For low velocity zones related to upwelling asthenosphere materials widely exist in this area from 70 km to 100 km, the lithospheric wave velocity in most of the study areas is less than the global average shear wave velocity, and the lithosphere is thin and variable in thickness. In particular, we also find that there is an obvious low velocity zone at a depth of 13−23 km in the CTM and ETM, which may be related to the partial melting of strata caused by block fracture.
-
-
图 3 是(左)否(右)进行时间域归一化的结果对比图
(a) 台阵示意图;(b) 时间域互相关结果;(c) 频率域互相关结果;(d) 频散能量图
Figure 3. Comparison of the results with (left panels) and without (right panel) time-domain normalization (one bit)
(a) Position of subarray;(b) Time-domain cross-correlation results;(c) Frequency-domain cross-correlation results;(d) Dispersion energy diagram
图 1 土耳其中部构造背景图
IPS:内庞蒂德缝合带;IAESZ:伊兹密尔—安卡拉—埃尔津詹缝合带;ITS:内陶里德缝合带;BZS:比特里斯—札格罗斯缝合带;F1:北安纳托利亚断裂带;F2:中安纳托利亚断裂带;F3:东安纳托利亚断裂带;F4:图兹湖断裂;F5:死海断裂
Figure 1. Map of tectonic settings in Central Turkey
IPS:Intra-Pontide suture;IAESZ:Izmir-Ankara-Erzincan suture zone;ITS:Inner Tauride suture;BZS:Bitlis-Zagros suture;F1:North Anatolian fault zone;F2:Central Anatolian fault zone;F3:East Anatolian fault zone;F4:Tuz Gölü fault;F5:Dead Sea fault
图 4 北安纳托利亚断裂带子台阵
(a) 台阵位置示意图;(b) 频散能量图,黑点为选取的频散点;(c) 频散能量图,白点为利用图(d)中估算模型合成的理论频散点;(d) 反演结果图,灰色虚线为79个初始模型在每层可取的速度范围;(e) 最终估算模型的基阶敏感核函数
Figure 4. Subarray of North Anatolian fault zone
(a) Position of subarray;(b) Dispersion energy diagram,dark dots are the selected dispersion points;(c) Dispersion energy diagram,white dots are the theoretical dispersion points based on the estimation model in Fig. d;(d) Inversion result diagram,gray dased line represents the desirable velocity range of 79 initial models,gray solid line represents the result range of 79 inversion models,and red solid line represents the final estimation model;(e) Sensitivity kernel of fundamental mode of estimated model
图 7 各测线位置(a)及其剪切波深度剖面图(b−h)
CTM:中金牛座山脉;ETM:东金牛座山脉;AB:阿达纳盆地;TGB:图兹湖盆地;CAVP:中安纳托利亚火山区;AP:阿拉伯板块;KB:克尔谢希尔地块;SZ:萨卡里亚区域;ITS:内陶里德缝合带;IPS:内庞蒂德缝合带;IAESZ:伊兹密尔—安卡拉—埃尔津詹缝合带;F1:北安纳托利亚断裂带;F2:中安纳托利亚断裂带;F3:东安纳托利亚断裂带;F4:图兹湖断裂;F5:死海断裂
Figure 7. Location of survey lines (a) and their shear wave depth profiles (b−h)
CTM:Central Taurus mountains;ETM:Eastern Taurus mountains;AB:Adana basin;TGB:Tuz Gölü basin;CAVP:Central Anatolian volcanic province;AP:Arabian Plate;KB:Kirşehir block;SZ:Sakarya zone;ITS:Inner Tauride suture;IPS:Intra-Pontide suture;IAESZ:Izmir-Ankara-Erzincan suture zone;F1:North Anatolian fault zone;F2:Central Anatolian fault zone;F3:East Anatolian fault zone;F4:Tuz Gölü fault;F5:Dead Sea fault
-
李雪燕,陈晓非,杨振涛,王冰,杨博. 2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,63(1):247–255. Li X Y,Chen X F,Yang Z T,Wang B,Yang B. 2020. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics,63(1):247–255 (in Chinese).
孙楠,潘磊,王伟涛,叶泵,王彬,陈晓非. 2021. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构[J]. 地球物理学报,64(11):4012–4021. Sun N,Pan L,Wang W T,Ye B,Wang B,Chen X F. 2021. Inversion of shear wave velocity structure beneath the Binchuan airgun source area using a nested combination of multi-scale arrays[J]. Chinese Journal of Geophysics,64(11):4012–4021 (in Chinese).
吴华礼,陈晓非,潘磊. 2019. 基于频率-贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报,62(9):3400–3407. Wu H L,Chen X F,Pan L. 2019. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation method[J]. Chinese Journal of Geophysics,62(9):3400–3407 (in Chinese).
Abgarmi B,Delph J R,Ozacar A A,Beck S L,Zandt G,Sandvol E,Turkelli N,Biryol C B. 2017. Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions:New insights on isostatic compensation and slab dynamics[J]. Geosphere,13(6):1774–1787. doi: 10.1130/GES01509.1
Adiyaman Ö,Chorowicz J,Arnaud O N,Gündogdu M N,Gourgaud A. 2001. Late Cenozoic tectonics and volcanism along the North Anatolian fault:New structural and geochemical data[J]. Tectonophysics,338(2):135–165. doi: 10.1016/S0040-1951(01)00131-7
Al-Lazki A I,Seber D,Sandvol E,Turkelli N,Mohamad R,Barazangi M. 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian Plateau (eastern Turkey) and the surrounding regions[J]. Geophys Res Lett,30(24):8043.
Al-Lazki A I,Sandvol E,Seber D,Barazangi M,Turkelli N,Mohamad R. 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian,Eurasian and African plates[J]. Geophys J Int,158(3):1024–1040. doi: 10.1111/j.1365-246X.2004.02355.x
Ates A,Kearey P,Tufan S. 1999. New gravity and magnetic anomaly maps of Turkey[J]. Geophys J Int,136(2):499–502. doi: 10.1046/j.1365-246X.1999.00732.x
Bakırcı T,Yoshizawa K,Özer M F. 2012. Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography[J]. Geophys J Int,190(2):1058–1076. doi: 10.1111/j.1365-246X.2012.05526.x
Bartol J,Govers R. 2014. A single cause for uplift of the Central and Eastern Anatolian plateau?[J]. Tectonophysics,637:116–136. doi: 10.1016/j.tecto.2014.10.002
Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
Biryol C B, Beck S L, Zandt G, Özacar A A. 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography[J]. Geophys J Int,184(3):1037–1057. doi: 10.1111/j.1365-246X.2010.04910.x
Bozkurt E. 2001. Neotectonics of Turkey:A synthesis[J]. Geodinam Acta,14(1/2/3):3–30. doi: 10.1080/09853111.2001.11432432
Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
Cosentino D,Schildgen T F,Cipollari P,Faranda C,Gliozzi E,Hudáčková N,Lucifora S,Strecker M R. 2012. Late Miocene surface uplift of the southern margin of the central Anatolian Plateau,central Taurides,Turkey[J]. Geolog Soc Am Bull,124(1/2):133–145. doi: 10.1130/B30466.1
Delph J R,Biryol C B,Beck S L,Zandt G,Ward K M. 2015. Shear wave velocity structure of the Anatolian Plate:Anomalously slow crust in southwestern Turkey[J]. Geophys J Int,202(1):261–276. doi: 10.1093/gji/ggv141
Delph J R,Abgarmi B,Ward K M,Beck S L,Özacar A A,Zandt G,Sandvol E,Türkelli N,Kalafat D. 2017. The effects of subduction termination on the continental lithosphere:Linking volcanism,deformation,surface uplift and slab tearing in central Anatolia[J]. Geosphere,13(6):1788–1805. doi: 10.1130/GES01478.1
Fichtner A,Saygin E,Taymaz T,Cupillard P,Capdeville Y,Trampert J. 2013. The deep structure of the North Anatolian fault zone[J]. Earth Planet Sci Lett,373:109–117. doi: 10.1016/j.jpgl.2013.04.027
Fichtner A, Rickers F, Cubuk-Sabuncu Y, Blom N, Gokhberg A. 2019. European part of the Collaborative seismic Earth model (version 2019.12. 01)[EB/OL]. [2021-12-08]. https://ds.iris.edu/spud/earthmodel/180227090.
Gans C R,Beck S L,Zandt G,Biryol C B,Ozacar A A. 2009. Detecting the limit of slab break-off in central Turkey:New high-resolution Pn tomography results[J]. Geophys J Int,179(3):1566–1572. doi: 10.1111/j.1365-246X.2009.04389.x
Govers R,Fichtner A. 2016. Signature of slab fragmentation beneath Anatolia from full-waveform tomography[J]. Earth Planet Sci Lett,450:10–19. doi: 10.1016/j.jpgl.2016.06.014
Kaviani A,Paul A,Moradi A,Mai P M,Pilia S,Boschi L,Rümpker G,Lu Y,Tang Z,Sandvol E. 2020. Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography[J]. Geophys J Int,221(2):1349–1365. doi: 10.1093/gji/ggaa075
Kounoudis R,Bastow I D,Ogden C S,Goes S,Jenkins J,Grant B,Braham C. 2020. Seismic tomographic imaging of the Eastern Mediterranean mantle:Implications for terminal‐stage subduction,the uplift of Anatolia and the development of the North Anatolian fault[J]. Geochem Geophys Geosyst,21(7):e2020GC009009.
Legendre C P,Zhao L,Tseng T L. 2021. Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia,Turkey[J]. Commun Earth Environ,2:73. doi: 10.1038/s43247-021-00142-6
Li Z B,Zhou J,Wu G X,Wang J N,Zhang G H,Dong S,Pan L,Yang Z T,Gao L N,Ma Q B,Ren H X,Chen X F. 2021. CC‐FJpy:A python package for extracting overtone surface‐wave dispersion from seismic ambient‐noise cross correlation[J]. Seismol Res Lett,92(5):3179–3186. doi: 10.1785/0220210042
Medved I,Polat G,Koulakov I. 2021. Crustal structure of the eastern Anatolia region (Turkey) based on seismic tomography[J]. Geosciences,11(2):91. doi: 10.3390/geosciences11020091
Pan L,Chen X F,Wang J N,Yang Z T,Zhang D Z. 2019. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophys J Int,216(2):1276–1303. doi: 10.1093/gji/ggy479
Portner D E,Delph J R,Biryol C B,Beck S L,Zandt G,Özacar A A,Sandvol E,Türkelli N. 2018. Subduction termination through progressive slab deformation across eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia[J]. Geosphere,14(3):907–925. doi: 10.1130/GES01617.1
Rojay B,Heimann A,Toprak V. 2001. Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia,Turkey):The transition zone between the Dead Sea transform and the East Anatolian fault zone[J]. Geodinam Acta,14(1/2/3):197–212.
Sánchez-Sesma F J,Campillo M. 2006. Retrieval of the Green’s function from cross correlation:The canonical elastic problem[J]. Bull Seismol Soc Am,96(3):1182–1191. doi: 10.1785/0120050181
Schleiffarth W K,Darin M H,Reid M R,Umhoefer P J. 2018. Dynamics of episodic Late Cretaceous-Cenozoic magmatism across Central to Eastern Anatolia:New insights from an extensive geochronology compilation[J]. Geosphere,14(5):1990–2008. doi: 10.1130/GES01647.1
Schultz C A,Myers S C,Hipp J,Young C J. 1998. Nonstationary Bayesian Kriging:A predictive technique to generate spatial corrections for seismic detection location and identification[J]. Bull Seismol SocAm,88(5):1275–1288. doi: 10.1785/BSSA0880051275
Şengör A M C,Yilmaz Y. 1981. Tethyan evolution of Turkey:A plate tectonic approach[J]. Tectonophysics,75(3/4):181–190.
Şengör A M C,Tüysüz O,Imren C,İmren C,Sakınç M,Eyidoğan H,Görür N,Le Pichon X,Rangin C. 2005. The North Anatolian fault:A new look[J]. Annu Rev Earth Planet Sci,33(1):37–112. doi: 10.1146/annurev.earth.32.101802.120415
Shen W S,Ritzwoller M H,Schulte-Pelkum V,Lin F C. 2013. Joint inversion of surface wave dispersion and receiver functions:A Bayesian Monte-Carlo approach[J]. Geophys J Int,192(2):807–836. doi: 10.1093/gji/ggs050
Uslular G,Corvec N L,Mazzarini F,Legrand D,Gençalioğlu-Kuşcua G. 2021. Morphological and multivariate statistical analysis of Quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey):Implications for the volcano-tectonic evolution[J]. J Volcan Geotherm Res,416:107280. doi: 10.1016/j.jvolgeores.2021.107280
van Hunen J,Allen M B. 2011. Continental collision and slab break-off:A comparison of 3-D numerical models with observations[J]. Earth Planet Sci Lett,302(1/2):27–37. doi: 10.1016/j.jpgl.2010.11.035
Wang J N,Wu G X,Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. J Geophys Res:Solid Earth,124(4):3708–3723. doi: 10.1029/2018JB016595
Warren L M,Beck S L,Biryol C B,Zandt G,Özacar A A,Yang Y J. 2013. Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography[J]. Geophys J Int,194(3):1941–1954.
Wu G X,Pan L,Wang J N,Chen X F. 2020. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. J Geophys Res:Solid Earth,125:e2019JB018213.
Xi C Q,Xia J H,Mi B B,Dai T Y,Liu Y,Ning L. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophys J Int,225(2):1271–1280. doi: 10.1093/gji/ggab008
Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578
Xia J H,Miller R D,Park C B,Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,52(1):45–57. doi: 10.1016/S0926-9851(02)00239-2
Zhan W,Pan L,Chen X F. 2020. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. J Asian Earth Sci,196:104372. doi: 10.1016/j.jseaes.2020.104372
Zhou J,Chen X F. 2022. Removal of crossed artifacts from multimodal dispersion curves with modified frequency-Bessel method[J]. Bull Seismol Soc Am,112(1):143–152. doi: 10.1785/0120210012
-
期刊类型引用(2)
1. 卢显,刘杰,薛艳,晏锐,姜祥华,李祖宁,邓世广,苑争一. 台湾地区强震活动特征分析. 地震学报. 2023(06): 996-1010 . 本站查看
2. 刘超,许力生,陈运泰. 2009年11月至2010年11月27次中强地震的快速矩张量解. 地震学报. 2011(04): 550-552 . 本站查看
其他类型引用(0)