Analysis on local site characteristics of Longtoushan Townbased on microtremor spectral ratio
-
摘要: 地脉动法已被广泛应用于场地特征分析,本文依据鲁甸龙头山集镇老行政机关办公区、老街区及骡马口村区三个震害严重区域的场地特征地脉动,并结合各区内建筑结构特点和局部场地效应分析了龙头山集镇场地特征对震害的影响,结果表明:各测试区具有显著的场地放大效应,且存在方向性差异;参考点谱比法与H/V谱比法虽有一定差异,但两方法的优势频带基本吻合;老行政机关办公区和老街区的建筑多为砖混结构,其震害较重是由其场地显著的放大效应及共振效应共同作用引起的;老街区与骡马口村区的土木与土石结构震害较重主要是由场地放大效应引起的。Abstract: The ground pulse method has been widely used in site characteristic analysis. Based on the site characteristic ground pulse of the old administrative-office zone, the old blocks and Luomakou Village of Longtoushan Town in Ludian County, and combined with the building structure features, local site effect and earthquake damage in each area, the results show that each test area has significant site amplification effect and directional differences; there are certain differences between the reference point spectral ratio method and the H/V spectral ratio method, but the dominant frequency bands of the two methods are basically consistent; the serious earthquake damage of brick concrete structure in old administrative-office zone and old blocks is caused by the coaction of significant amplification effect and resonance effect of the site; the earthquake damage of civil and earth rock structures in the old blocks and Luomakou Village is also serious, which is mainly caused by the site amplification effect.
-
Keywords:
- microtremor /
- site characteristics /
- site effect /
- resonance effect /
- earthquake damage
-
-
图 3 老行政机关办公区(a)、老街区(b)和骡马口村区(c)测点布设示意图
括号中数据为依据参考点谱比层得到的EW向和NS向场地放大系数
Figure 3. Schematic layout of measuring points in the old administrative-office zone (a), old blocks (b) and Luomakou village (c)
The data in parentheses are the amplification coefficients of the EW and NS directions obtained based on the spectral ratio of the reference point
图 5 老行政机关办公区 (a)、老街区 (b) 和骡马口村区 (c) 测点及参考点谱比曲线
图a,b参考点为基岩测点1,图c参考点为基岩测点2
Figure 5. Spectral ratio curves of measuring points reference points in old administrative-office zone (a),old blocks (b) and Luomakou village (c)
Reference points in Fig.(a) and Fig.(b) are base bedrock measuring point 1,while is 2 for Fig.(c)
表 1 老行政机关办公区、老街区和骡马口村区各测点谱比计算结果
Table 1 Statistics of the spectral ratio of the measured points in old administrative-office zone, old blocks and Luomakou village
测点号 参考点谱比法卓越频率/Hz 参考点谱比法场地放大系数 H/V谱比法卓越频率/Hz EW NS EW NS EW NS X1 8.08 7.86 2.79 2.93 4.01 3.88 X2 4.15 4.35 2.09 2.67 4.00 3.91 X3 4.01 3.10 2.01 1.80 3.98 3.12 X4 4.12 4.66 2.53 2.43 3.91 4.57 X5 3.96 5.98 1.96 1.69 3.76 3.64 X6 4.64 4.66 1.39 1.47 4.76 3.96 X7 3.91 4.10 4.63 3.63 3.86 3.32 X8 3.71 3.81 2.82 3.08 3.47 3.50 X9 5.70 6.75 4.42 3.33 5.69 6.64 X10 5.64 6.23 4.20 4.00 3.96 4.48 X11 3.49 6.75 5.96 4.92 3.34 5.64 表 2 老街区各测点谱比计算结果
Table 2 statistics of the spectral ratio of measured points in old blocks
测点号 参考点谱比法卓越频率/Hz 参考点谱比法场地放大系数 H/V谱比法卓越频率/Hz EW NS EW NS EW NS S1 3.62 3.76 3.51 3.33 3.59 3.42 S2 5.35 4.35 4.22 4.31 4.08 3.88 S3 4.74 4.66 1.27 1.07 4.81 4.57 S4 4.66 7.64 1.65 1.66 2.34 4.93 S5 5.30 3.93 1.88 1.85 5.35 5.05 S6 4.27 3.98 3.18 3.95 4.74 3.47 S7 4.30 4.03 3.22 3.81 4.66 3.86 S8 8.55 3.39 2.71 3.64 5.18 3.86 S9 6.62 4.47 1.29 1.27 3.17 4.57 S10 6.98 5.54 1.68 1.28 4.03 3.08 表 3 骡马口村区各测点谱比计算结果
Table 3 Luomakou village measured spectral ratio statistics
测点号 参考点谱比法卓越频率/Hz 参考点谱比法场地放大系数 H/V谱比法卓越频率/Hz EW NS EW NS EW NS L1 5.47 7.50 5.19 3.53 5.57 7.49 L2 5.53 5.36 5.81 6.25 5.44 5.04 L3 5.24 5.01 7.79 9.19 5.13 4.80 L4 5.47 5.30 5.95 6.25 5.45 5.04 -
高振寰,胡碧茹. 1987. 局部场地条件对震害的影响:唐山地震时丰润县震害剖析[J]. 华北地震科学,5(增刊):208–213. Gao Z H,Hu B R. 1987. Effects of local site conditions on earthquake damage:Analysis of earthquake damage in Fengrun County during the Tangshan earthquake[J]. North China Earthquake Sciences,5(S1):208–213 (in Chinese).
胡聿贤,孙平善,章在墉,田启文. 1980. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动,(试刊1):34–41. Hu Y X,Sun P S,Zhang Z Y,Tian Q W. 1980. Effects of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Dynamics,(S1):34–41 (in Chinese).
通海地震影响场调查组. 1977. 通海地震的烈度分布与场地影响[M]//地震工程研究报告集. 北京: 科学出版社: 1–14. Investigation Group on the Impact Field of the Tonghai Earthquake. 1977. The intensity distribution and site impact of the Tonghai earthquake[M]//Collection of Seismic Engineering Research Reports. Beijing: Science Press: 1–14 (in Chinese).
单振东,温瑞智,齐文浩,卢滔,任叶飞,汪云龙. 2014. 芦山地震烈度异常区的场地特征与震害相关性[J]. 地震工程与工程振动,34(增刊):232–237. Shan Z D,Wen R Z,Qi W H,Lu T,Ren Y F,Wang Y L. 2014. Implication of abnormal intensity area in Lushan MS7.0 earthquake[J]. Earthquake Engineering and Engineering Dynamics,34(S1):232–237 (in Chinese).
王广军,樊水荣. 1989. 抗震设计规范中自振周期的规定及其进展[J]. 建筑结构,(2):2–8. Wang G J,Fan S R. 1989. The stipulation and development of natural vibration period in seismic design code[J]. Building Structure,(2):2–8 (in Chinese).
魏来. 2018. 宁南丘陵区非饱和黄土场地的地震动效应研究[D]. 兰州: 中国地震局兰州地震研究所: 31–32. Wei L. 2018. Study on Seismic Ground Motion Effect of Unsaturated Loess Site in Ningnan Hilly Area[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 31–32 (in Chinese).
温瑞智,任叶飞,齐文浩,卢滔,杨振宇,单振东,汪云龙. 2013. 2013年4月20日芦山地震最大加速度记录分析[J]. 西南交通大学学报,48(5):783–791. Wen R Z,Ren Y F,Qi W H,Lu T,Yang Z Y,Shan Z D,Wang Y L. 2013. Maximum acceleration recording from Lushan earthquake on April 20,2013[J]. Journal of Southwest Jiaotong University,48(5):783–791 (in Chinese).
中国科学院工程力学研究所. 1979. 海城地震震害[M]. 北京: 地震出版社: 1–10. Institute of Mechanics, Chinese Academy of Sciences. 1979. Damaged by the Haicheng Earthquake[M]. Beijing: Seismological Press: 1–10 (in Chinese).
中华人民共和国建设部. 1990. GBJ 11−89 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 98–102. Ministry of Construction of China. 1990. GBJ 11−89 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 98–102 (in Chinese).
Benkaci N,Oubaiche E H,Chatelain J L,Bensalem R,Benouar D,Abbes K. 2021. Non-stability and non-reproducibility of ambient vibration HVSR peaks in Algiers (Algeria)[J]. J Earthq Eng,25(5):853–871. doi: 10.1080/13632469.2018.1537903
Chávez-García F J,Bard P Y. 1994. Site effects in Mexico City eight years after the September 1985 Michoacan earthquakes[J]. Soil Dyn Earthq Eng,13(4):229–247. doi: 10.1016/0267-7261(94)90028-0
Doyel W W,Moraga B A,Falcon M E. 1963. Relation between the geology of Valdivia,Chile,and the damage produced by the earthquake of 22 May 1960[J]. Bull Seismol Soc Am,53(6):1331–1345. doi: 10.1785/BSSA0530061331
Ishihara K,Haeri S M,Moinfar A A,Towhata I,Tsujino S. 1992. Geotechnical aspects of the June 20,1990 Manjil earthquake in Iran[J]. Soils Found,32(3):61–78. doi: 10.3208/sandf1972.32.3_61
Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quart Rep Railw Tech Res,30(1):25–33.
Poovarodom N,Chamlagain D,Jirasakjamroonsri A,Warnitchai P. 2017. Site characteristics of Kathmandu valley from array microtremor observations[J]. Earthq Spectra,33(S1):85–93.
Ramadan F,Smerzini C,Lanzano G,Pacor F. 2021. An empirical model for the vertical-to-horizontal spectral ratios for Italy[J]. Earthq Eng Struct Dyn,50(15):4121–4141. doi: 10.1002/eqe.3548
Seed H B,Romo M P,Sun J I,Jaime A,Lysmer J. 1988. The Mexico earthquake of September 19,1985:Relationships between soil conditions and earthquake ground motions[J]. Earthq Spectra,4(4):687–729. doi: 10.1193/1.1585498
Thornley J D,Dutta U,Douglas J,Yang Z H. 2021. Evaluation of horizontal to vertical spectral ratio and standard spectral ratio methods for mapping shear wave velocity across anchorage,Alaska[J]. Soil Dyn Earthq Eng,150:106918. doi: 10.1016/j.soildyn.2021.106918
Trifunac M D. 2016. Site conditions and earthquake ground motion:A review[J]. Soil Dyn Earthq Eng,90:88–100. doi: 10.1016/j.soildyn.2016.08.003
Verdugo R. 2019. Seismic site classification[J]. Soil Dyn Earthq Eng,124:317–329. doi: 10.1016/j.soildyn.2018.04.045
Wang G Q,Zhou X Y,Zhang P Z,Igel H. 2002. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi,Taiwan earthquake[J]. Soil Dyn Earthq Eng,22(1):73–96. doi: 10.1016/S0267-7261(01)00047-1
Wood H. 1908. Distribution of Apparent Intensity in San Francisco in the California Earthquake of April 18, 1906[R]. Washington: Carnegie Institute of Washington: 220–245.
Yamanaka H, Yamada N. 2003. Effects of Differences in Subsurface Structural Models on Synthetic Ground Motion During the 1923 Kanto Earthquake[C]. San Francisco: AGU: 7–13.
Yamazaki F,Ansary M A. 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization[J]. Earthq Eng Struct Dyn,26(7):671–689. doi: 10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO;2-S