局部场地地震动高频衰减系数估计模型

稂子平, 俞瑞芳, 肖亮, 傅磊, 周健

稂子平,俞瑞芳,肖亮,傅磊,周健. 2023. 局部场地地震动高频衰减系数估计模型. 地震学报,45(5):919−928. DOI: 10.11939/jass.20220053
引用本文: 稂子平,俞瑞芳,肖亮,傅磊,周健. 2023. 局部场地地震动高频衰减系数估计模型. 地震学报,45(5):919−928. DOI: 10.11939/jass.20220053
Lang Z P,Yu R F,Xiao L,Fu L,Zhou J. 2023. An estimation model of high frequency attenuation coefficient of ground motion for local site. Acta Seismologica Sinica45(5):919−928. DOI: 10.11939/jass.20220053
Citation: Lang Z P,Yu R F,Xiao L,Fu L,Zhou J. 2023. An estimation model of high frequency attenuation coefficient of ground motion for local site. Acta Seismologica Sinica45(5):919−928. DOI: 10.11939/jass.20220053

局部场地地震动高频衰减系数估计模型

基金项目: 北京市自然科学基金(8212018)、中央级公益性科研院所基本科研业务费专项(DQJB21B36)和国家重点研发计划课题(2017YFC0404901)联合资助
详细信息
    作者简介:

    稂子平,在读硕士研究生,主要从事地震动模拟方面的研究,e-mail:williamlangzp@163.com

    通讯作者:

    俞瑞芳,博士,研究员,主要从事结构抗震理论、地震动特性分析及模拟等方面的研究,e-mail:yrfang126@126.com

  • 中图分类号: P315.9

An estimation model of high frequency attenuation coefficient of ground motion for local site

  • 摘要:

    采用随机有限断层法进行地震动模拟时,选用合理的参数描述特定局部场地近地表高频衰减特征,对评价地震动模拟结果的正确与否具有重要的实践意义。 在工程场址地震动参数预测中,如何快速确定参数的取值,是实际应用中亟需解决的问题。首先对场地高频衰减系数κ0与平均剪切波速vS30的相关性进行了分析;然后,基于国内外学者计算得到的546个κ0系数,采用一定时窗内的κ0均方根值,讨论其随平均剪切波速vS30增加的变化趋势。 结果表明,虽然κ0具有明显的区域差异性,但其均方根值随着vS30的增大呈现出逐渐减小的趋势。 为了得到合理的κ0估计模型,分别采用线性函数、多项式函数、对数线性函数和双对数线性函数对κ0均方根值与vS30的关系进行初步拟合,结果表明,对数线性函数能够较好地描述κ0vS30之间的关系。 最后,基于筛选得到的477个数据,采用最小二乘法对模型参数进行拟合,建立了适合工程应用的κ0-vS30模型。对模型适用性的分析表明,本研究所构建的κ0估计模型能够合理估计地震动的高频衰减影响。

    Abstract:

    When using the stochastic finite fault method for ground motion simulation, how to select reasonable parameters to describe the near-surface high-frequency attenuation characteristics of a specific local site has important practical significance for evaluating the correctness of ground motion simulation results. In the prediction of ground motion parameters of engineering sites, how to quickly determine the value of parameters is an urgent problem to be solved in practical applications. Firstly, we analyzed the correlation between the high-frequency attenuation coefficient κ0 of the site and the average shear wave velocity vS30. Then, based on the 546 κ0 coefficients calculated by domestic and foreign scholars, the root mean square value of κ0 in a certain time window was used to discuss its variation trend with the increase of the average shear wave velocity vS30.The results showed that although κ0 had obvious regional differences, its root mean square value showed a decreasing trend with the increase of vS30. In order to obtain a reasonable κ0 estimation model, the linear function, polynomial function, logarithmic linear function and log-log linear function were used to preliminarily fit the relationship between the root mean square value of κ0 and vS30. The results show that the logarithmic linear function can better describe the relationship between κ0 and vS30. Finally, based on the 477 data obtained from the screening, the model parameters were fitted by the least square method, and a practical model of κ0-vS30 suitable for engineering applications was obtained. The analysis of the applicability of the model shows that the κ0 estimation model constructed in this study can reasonably estimate the high-frequency attenuation of ground motion when predicting engineering site ground motion parameters.

  • 图  7   整体数据校验和MTN台站数据校验情况

    Figure  7.   Overall data check and MTN station data check

    图  1   本文研究采用的κ0值随平均剪切波速 vS30的分布

    Figure  1.   The distribution of κ0 value used in this study with mean shear wave velocity vS30

    图  2   κ0值统计数据箱型图

    Figure  2.   κ0 value statistics box plot

    图  3   四种函数对κrms的拟合情况

    Figure  3.   Fitting of four functions to κrms

    图  4   数据量分布情况图

    Figure  4.   Data distribution diagram

    图  5   对数线性函数拟合以及与其它模型对比

    Figure  5.   Log-linear function fitting and comparison with other models

    图  6   对数线性函数拟合残差图

    Figure  6.   Log-linear Function fit residual plot

    表  1   本文研究采用的κ0数目、来源及相应的vS分布范围

    Table  1   The number and source of κ0 used in this study and the corresponding distribution range of vS

    序号数据个数 vS30/(m·s−1地区数据来源
    1 60 106.8—904.2 日本 Cabas等(2017
    2 16 213.2—744.1 日本 Cabas等(2017
    3 50 507.7—1 433.4 日本 van Houtte等(2011
    4 27 1 106.8— 2 394.0 日本 van Houtte等(2011
    5 4 515.7—1 301.3 日本 Laurendeau等(2013
    6 14 170.6—1 428.1 法国 Drouet等(2010
    7 24 192.1—747.1 瑞士 Edwards等(2015
    8 8 1 174.0—1 810.5 瑞士 Edwards等(2011
    9 16 380.1—1 811.5 瑞士 Edwards等(2011
    10 54 160.1—942.8 中国台湾 Huang等(2017
    11 4 233.1—684.8 中国台湾 Lai等(2016
    12 10 167.5—496.4 中国台湾 Lai等(2016
    13 29 191.8—746.9 土耳其 Bora等(2017
    14 16 142.6—1 029.6 意大利 Bora等(2017
    15 5 1 054.7—1 392.5 克罗地亚 Stanko等(2017
    16 4 854.1—953.3 克罗地亚 Stanko等(2017
    17 11 516.6—715.5 中国台湾 van Houtte等(2011
    18 38 299.6—652.9 中国 傅磊和李小军(2017
    19 10 435.7—1 518.3 新西兰 van Houtte等(2018
    20 9 401.0—661.8 亚利桑那 Kishida等(2014
    21 6 550.9—1 000.3 加利福尼亚 van Houtte等(2011
    22 117 170.9—1 531.2 中国台湾 Chang等(2019
    23 7 263.3—660.3 中国 郑旭等(2019
    24 7 531.2—912.1 日本 朱百慧(2016
    下载: 导出CSV

    表  2   κ0值在不同 vS30范围的分组统计

    Table  2   Group statistics of κ0 values in different vS30 ranges

    vS30/(m·s−1κ0
    数量最小值最大值标准差均值
    100—200370.019 60.076 70.014 850.054 48
    200—300650.022 20.072 60.014 580.051 33
    300—400950.009 20.077 20.015 380.043 41
    400—500950.008 80.087 50.016 060.040 43
    500—600730.003 80.067 40.015 160.035 60
    600—700460.003 80.080 90.015 170.029 28
    700—800240.013 00.071 10.014 110.033 48
    800—900190.004 90.073 90.017 840.034 12
    900—1000160.014 30.052 80.010 990.027 61
    1 000—1 10070.015 30.027 00.003 930.022 73
    1 100—1 20070.006 00.025 80.007 520.015 47
    1 200—1 300100.013 60.026 00.004 610.019 67
    1 300—1 40060.010 10.031 50.009 060.020 13
    1 400—1 50090.009 60.026 30.006 150.015 72
    1 500—1 800160.006 90.027 10.006 750.016 06
    1 800—2 100110.002 90.029 30.009 360.013 71
    2 100—2 400100.002 90.025 00.009 300.011 93
    下载: 导出CSV

    表  3   κrms vS30的经验关系

    Table  3   The empirical relationship between кrms and vS30

    拟合函数模型参数
    abSSER2c
    线性函数:κrmsavS30b −1.557×10−5 4.478×10−2 3.61×10−3 7.734×10−1
    多项式函数:κrms=${av^2_{{\rm{S}}30}} $+bvS30c 1.284×10−8 −4.741×10−5 6.559×10−4 9.587×10−1 5.886×10−5
    对数线性函数:κrmsalgvS30b −3.439×10−2 1.286×10−1 1.466×10−3 9.07 8×10−1
    双对数线性函数:lgκrmsalgvS30b −4.488×10−1 −2.72×10−1 2.245×10−3 8.587×10−1
    注:表中abc为模型拟合参数,SSE 表示和方差,R2为拟合优度。
    下载: 导出CSV
  • 傅磊,李小军. 2017. 龙门山地区的kappa(κ0)模型及汶川MS8.0地震的强地震动模拟[J]. 地球物理学报,60(8):2935–2947. doi: 10.6038/cjg20170803

    Fu L,Li X J. 2017. The kappa (κ0) model of the Longmenshan region and its application to simulation of strong ground-motion by the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,60(8):2935–2947 (in Chinese).

    郑旭,胡进军,谢礼立,周少辉,鹿子林. 2019. 基于山东省场地的沂沭断裂带地震动高频消减作用[J]. 哈尔滨工业大学学报,51(12):55–62. doi: 10.11918/j.issn.0367-6234.201901170

    Zheng X,Hu J J,Xie L L,Zhou S H,Lu Z L. 2019. High frequency reduction effect of ground motion in Yi-Shu fault zone based on sites of Shandong[J]. Journal of Harbin Institute of Technology,51(12):55–62 (in Chinese).

    朱百慧. 2016. 强震数据Kappa值影响因素的讨论[D]. 哈尔滨: 中国地震局工程力学研究所: 39−41.

    Zhu B H. 2016. Discussion on Influencing Factors of Kappa Value of Strong Earthquake Data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 39−41 (in Chinese).

    Anderson J G,Hough S E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am,74(5):1969–1993.

    Anderson J G,Humphrey J R. 1991. A least squares method for objective determination of earthquake source parameters[J]. Seismolo Res Lett,62(3/4):201–209.

    Anderson J G,Lee Y,Zeng Y H,Day S. 1996. Control of strong motion by the upper 30 meters[J]. Bull Seismol Soc Am,86(6):1749–1759.

    Atkinson G M. 1984. Attenuation of strong ground motion in Canada from a random vibrations approach[J]. Bull Seismol Soc Am,74(6):2629–2653.

    Boore D M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am,73(6A):1865–1894.

    Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of vS30 and velocities averaged over depths less than and greater than 30 meters[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071

    Bora S S,Cotton F,Scherbaum F,Edwards B,Traversa P. 2017. Stochastic source,path and site attenuation parameters and associated variabilities for shallow crustal European earthquakes[J]. Bull Earthq Eng,15(11):4531–4561. doi: 10.1007/s10518-017-0167-x

    Cabas A,Rodriguez-Marek A,Bonilla L F. 2017. Estimation of site-specific kappa (κ0)-consistent damping values at KiK-net sites to assess the discrepancy between laboratory-based damping models and observed attenuation (of seismic waves) in the field[J]. Bull Seismol Soc Am,107(5):2258–2271. doi: 10.1785/0120160370

    Castellaro S,Mulargia F,Rossi P L. 2008. VS30:Proxy for seismic amplification?[J]. Seismol Res Lett,79(4):540–543. doi: 10.1785/gssrl.79.4.540

    Chandler A M,Lam N T K,Tsang H H. 2006. Near-surface attenuation modelling based on rock shear-wave velocity profile[J]. Soil Dyn Earthq Eng,26(11):1004–1014. doi: 10.1016/j.soildyn.2006.02.010

    Chang S C,Wen K L,Huang M W,Kuo C H,Lin C M,Chen C T,Huang J Y. 2019. The high-frequency decay parameter (Kappa) in Taiwan[J]. Pure Appl Geophys,176(11):4861–4879. doi: 10.1007/s00024-019-02219-y

    Drouet S,Cotton F,Guéguen P. 2010. VS30,κ,regional attenuation and MW from accelerograms:Application to magnitude 3-5 French earthquakes[J]. Geophys J Int,182(2):880–898. doi: 10.1111/j.1365-246X.2010.04626.x

    Edwards B,Fäh D,Giardini D. 2011. Attenuation of seismic shear wave energy in Switzerland[J]. Geophys J Int,185(2):967–984. doi: 10.1111/j.1365-246X.2011.04987.x

    Edwards B,Ktenidou O J,Cotton F,Abrahamson N,van Houtte C,Fäh D. 2015. Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock sites[J]. Geophys J Int,202(3):1627–1645. doi: 10.1093/gji/ggv222

    Hanks T C. 1982. fmax[J]. Bull Seismol Soc Am,72(6A):1867–1879. doi: 10.1785/BSSA07206A1867

    Huang M W,Wen K L,Chang S C,Chang C L,Liu S Y,Chen K P. 2017. The high-cut parameter (Kappa) for the near-surface geology in and around the Taipei basin,Taiwan[J]. Bull Seismol Soc Am,107(3):1254–1264. doi: 10.1785/0120160070

    Kilb D,Biasi G,Anderson J,Brune J,Peng Z,Vernon F L. 2012. A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data[J]. Bull Seismol Soc Am,102(1):284–300. doi: 10.1785/0120100309

    Kishida T,Darragh R,Ktenidou O J. 2014. Fourier spectra and kappa (κ0) estimates for rock stations in the NGA-west2 project[J]. Eng Geol,202(4):1–13.

    Lai T S,Mittal H,Chao W A,Wu Y M. 2016. A study on kappa value in Taiwan using borehole and surface seismic array[J]. Bull Seismol Soc Am,106(4):1509–1517. doi: 10.1785/0120160004

    Laurendeau A,Cotton F,Ktenidou O J,Bonilla L F,Hollender F. 2013. Rock and stiff-soil site amplification:Dependency on vS30 and kappa (κ0)[J]. Bull Seismol Soc Am,103(6):3131–3148. doi: 10.1785/0120130020

    Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification?[J]. Soil Dyn Earthq Eng,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007

    Silva W J, Wong I G, Darragh R B. 1998. Engineering characterization of earthquake strong ground motions in the Pacific Northwest[G]//Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest. Reston: U. S. Geological Survey: 313−324.

    Stanko D,Markušić S,Ivančić I,Mario G,Gülerce Z. 2017. Preliminary estimation of kappa parameter in Croatia[J]. IOP Conf Ser:Earth Environ Sci,95(3):032014.

    van Houtte C,Drouet S,Cotton F. 2011. Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs[J]. Bull Seismol Soc Am,101(6):2926–2941. doi: 10.1785/0120100345

    van Houtte C,Ktenidou O J,Larkin T,Holden C. 2018. A continuous map of near-surface S-wave attenuation in New Zealand[J]. Geophys J Int,213(1):408–425. doi: 10.1093/gji/ggx559

图(7)  /  表(3)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  199
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-05-21
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回