2022年青海门源MS6.9地震地表破裂特征分类及震害分析

苏瑞欢, 袁道阳, 谢虹, 文亚猛, 司国军, 薛善余

苏瑞欢,袁道阳,谢虹,文亚猛,司国军,薛善余. 2023. 2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报,45(5):797−813. DOI: 10.11939/jass.20220075
引用本文: 苏瑞欢,袁道阳,谢虹,文亚猛,司国军,薛善余. 2023. 2022年青海门源MS6.9地震地表破裂特征分类及震害分析. 地震学报,45(5):797−813. DOI: 10.11939/jass.20220075
Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075
Citation: Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075

2022年青海门源MS6.9地震地表破裂特征分类及震害分析

基金项目: 第二次青藏高原综合科学考察研究(2019QZKK0901)、国家自然科学基金(42172227)和中国电建集团西北勘测设计研究院有限公司平台支撑项目(XBY-PTKJ-2022-5)共同资助
详细信息
    作者简介:

    苏瑞欢,在读博士研究生,主要从事活动构造方面的研究,e-mail:surh21@lzu.edu.cn

    通讯作者:

    袁道阳,博士,教授,主要从事新构造与活动构造方面的研究,e-mail:yuandy@lzu.edu.cn

  • 中图分类号: P315.2

Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai

  • 摘要:

    为了深入分析2022年1月8日青海门源MS6.9地震引发的不同类型地表破裂特征及震害现象,本文依据沿此次地震地表破裂带进行的野外实地考察和无人机航拍解译,将破裂带沿线的典型同震地表破裂特征归纳为:① 多种典型几何细结构,包括雁列状次级破裂、左旋左阶拉张区、左旋右阶挤压区以及树枝状、网状破裂等;② 多种地貌标志物水平位错,包括牧区围栏、车辙印、动物脚印和冲沟冰面的左旋断错等;③ 多种类型垂直破裂,如逆冲型地震陡坎和正断型地震陡坎;④ 多种类型挤压破裂,如挤压脊和挤压鼓包;⑤ 不同类型张性裂缝带,如纯张性裂缝带和张剪性裂缝带。将地震引发的地质及工程震害现象归纳为:① 跨地震断裂带的边坡垮塌失稳;② 跨地震断裂带的公路、桥梁和隧道损坏;③ 地震断裂带附近区域的冰面鼓包、公路裂隙等形变现象。此外,对上述现象的展布特征和成因机制进行了分析讨论,并强调了加强跨活动断裂带时工程抗断及近断层强地面运动的抗震设防的重要性。

    Abstract:

    At 01:45 on January 8, 2022, a MS6.9 earthquake occurred in Menyuan County, Haibei Tibetan Autonomous Prefecture, Qinghai Province. The epicenter was located at (37.77°N, 101.26°E) in Lenglongling area of the central Qilian mountains, with a focal depth of 10 km. According to the comprehensive results of field investigation and aerial image interpretation by unmanned aerial vehicle (UAV), the seismogenic fault of this earthquake undertakes a sinistral strike-slip motion, with a slight thrust component. The surface rupture zone of this earthquake is composed of the north main rupture zone located at the west end of Lenglongling fault and the southwest secondary traction rupture zone located at the east end of Tuolaishan fault. A series of extensional step-overs, sinistral displacements, tensional fractures, compressed bulges, and compressed ridges were formed along the surface rupture zone, resulting in damage to the Lanzhou-Ürümqi high-speed railway tunnels and bridges and the suspension of train services. In order to comprehensively analyze the different types of surface fracture features and seismic damage caused by this earthquake, field investigations and aerial interpretation using UAV were conducted along the rupture zone. As a result, typical coseismic surface fracture features along the rupture zone were categorized as follows: ① Various typical geometric structures, including echelon secondary rupture, sinistral extensional step-overs, sinistral compressed step-overs, dendritic and netlike forked rupture, etc; ② Horizontal displacement observed in various geomorphic markers, such as left-lateral dislocations in pastoral areas, truck trace, animal footprints, and gullies and gully ice; ③ Various types of vertical rupture, such as thrust seismic scarps and normal seismic scarps; ④ Various types of compressed rupture, such as compressed ridges and compressed bulges; ⑤ Different types of tensional crack zones, including pure tensional cracks and tensional-shear cracks. The geological and engineering seismic damage caused by the earthquake can be summarized as follows: ① Slope instability across the earthquake fault zone; ② Damage to highways, bridges, and tunnels across the earthquake fault zone; ③ Seismic deformation such as ice bulges and highway cracks in the areas near the earthquake fault zone. In addition, with the analysis and discussion on the distribution characteristics and formation mechanisms of the phenomena above mentioned, we should emphasize the importance of strengthening engineering anti-rupture fortification when engineering constructions cross active faults.

  • 图  1   祁连山中段活动构造分布及2022年门源MS6.9地震位置图

    断层数据修改自邓起东(2007)和徐锡伟等(2016),历史地震数据源自国家地震科学数据中心(2022),现代地震数据源自中国地震局震害防御司(1999)和中国地震台网中心(2022b),DEM数据源自美国地质调查局(USGS,2000

    Figure  1.   Active structures in central Qilian mountains and location of 2022 MS6.9 Menyuan earthquake

    Fault data are modified from Deng (2007) and Xu et al (2016),the historical earthquake data is from National Earthquake Data Center (2022),the modern earthquake data is from Earthquake Disaster Prevention Department of China Earthquake Administration (1999) and China Earthquake Networks Center (2022b). DEM data is from US Geological Survey (USGS,2000

    图  2   2022年门源MS6.9地震破裂带展布图

    绿点代表后文介绍的几种破裂带典型几何结构,黄点代表水平位错地貌,白点代表垂直位错地貌,橙点代表挤压脊、鼓包,蓝点代表张性裂缝,青点代表典型震害,黑点代表远端地表效应。F1-1:主破裂带硫磺沟段;F1-2:主破裂带硫磺沟—下大圈沟段;F1-3:硫磺沟次级破裂带;F2-1:南西侧次级破裂带大西沟段; F2-2:南西侧次级破裂带狮子口段,下同

    Figure  2.   Distribution characteristics of the 2022 MS6.9 Menyuan earthquake rupture zone

    The green dots represent several typical geometric structures described later,the yellow dots represent the horizontal dislocations,the white dots represent the vertical dislocations,the orange dots represent the compressed ridges and bulges,the blue dots represent the tensional cracks,the cyan dots represent the typical earthquake damage,the black dots represent the remote surface effect。F1-1:Liuhuanggou section of the main rupture zone;F1-2:Liuhuanggou-Xiadaquangou section of the main rupture zone;F1-3:Liuhuanggou secondary rupture zone;F2-1:Daxigou section of the southwest secondary rupture zone;F2-3:Shizikou section of the southwest secondary rupture zone,the same below

    图  3   破裂带典型区域无人机影像(左)与几何结构及成因机制素描图(右)

    R:里德尔剪切破裂;R′:共轭里德尔剪切破裂;T:张性破裂;Y:平行主位移方向的剪切破裂;P:次生压剪性破裂。(a) 雁列状破裂区;(b) 左旋左阶区,以左阶拉张为主,相邻左阶区间连接部位为挤压区;(c) 左旋右阶区,以右阶挤压为主;(d) 树枝状、网状分叉区,端部以分叉及网格状交错裂隙为主

    Figure  3.   UAV images (left panels),geometric structures and genetic mechanism sketches (right panels) of typical areas of the earthquake rupture zone

    R:Riedel shear fault;R′:Conjugate Riedel shear fault;T:Tensional fault;Y:Shear fault parallel to the principal displacement direction;P:Secondary compressed shear fault. (a) Echelon rupture;(b) Sinistral extensional step-overs dominated by stretching,where the connecting parts are compressed regions;(c) Sinistral compressed step-overs dominated by extruding;(d) The dendritic and netlike forked areas. The end member is dominated by bifurcation and meshed crisscrossed cracks

    图  4   沿2022年门源MS6.9地震地表破裂带的水平位错空间分布特征(据袁道阳等,2023修改)

    Figure  4.   Distribution characteristics of horizontal dislocations along the surface rupture zone of the 2022 MS6.9 Menyuan earthquake (modified from Yuan et al,2023

    图  5   多种类型地貌标志物的左旋位错

    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带宏观展布方向(a) 围栏;(b) 车辙印;(c) 狼脚印;(d) 冲沟冰面

    Figure  5.   Left-lateral offsets of various types of geomorphic markers

    The yellow arrows represent the horizontal relative motion direction of both sides,and the red arrows represent the macroscopic direction spreading of the rupture zone。 (a) Fences;(b) Truck trace;(c) Wolf footprints;(d) Gully ice

    图  6   2022年门源MS6.9地震破裂形成的各类垂直陡坎及其断错类型(左下角小图)

    (a) 近垂直逆冲陡坎;(b) 复合型逆冲陡坎;(c) 拉张型正断陡坎;(d) 近垂直正断陡坎

    Figure  6.   Various types of vertical scarps resulted from the 2022 MS6.9 Menyuan earthquake and their disloaction types (bottom-left insets)

    (a) Near-vertical thrust scarp;(b) Compound thrust scarp;(c) Tensional normal scarp;(d) Near-vertical normal scarp

    图  7   2022年门源MS6.9地震形成的挤压脊(a)和鼓包(b)

    黄色箭头为破裂带两盘水平相对运动方向,黑色箭头为受力方向

    Figure  7.   Compressed ridges (a) and bulges (b) caused by the 2022 MS6.9 Menyuan earthquake

    The yellow arrows represent the horizontal relative motion direction on both sides of the rupture zone,and the black arrows represent the directions of force

    图  8   2022年门源MS6.9地震破裂形成的各类裂缝和拉张阶区

    黄色箭头为破裂带两盘水平相对运动方向;红色箭头为破裂带的宏观展布方向。(a) 主破裂张裂缝;(b) 雁列状张剪裂缝及追踪式裂缝;(c) 拉分区张剪裂缝;(d) 南北两侧为挤压破裂,其间为左旋左阶阶区内束状拉张裂缝

    Figure  8.   Various types of cracks and extensional step-overs formed by the rupture of 2022 MS6.9 Menyuan earthquake

    The yellow arrows represent the horizontal relative motion direction of both sides of the rupture zone,and the red arrows mark the macroscopic distribution direction of the rupture zone。(a) Tensional cracks on the main rupture zone;(b) Echelon tensional shear cracks and tracing cracks;(c) Tensional shear cracks in the extensional step-overs;(d) Compressed ruptures on the north and south sides,between of which are bundles of tensional cracks in sinistral extensional step-overs

    图  9   2022年门源MS6.9地震造成的各类地质灾害及工程破坏现象

    红色箭头为破裂带展布,黑色箭头为桥面同震水平运动幅度

    Figure  9.   Various geological disasters and engineering damages caused by the 2022 MS6.9 Menyuan earthquake

    The red arrows represent the distribution of the rupture zone,and the black arrows represent the coseismic horizontal motion amplitude of the bridge deck

    图  10   2022年门源MS6.9地震破裂带远端的地表效应

    (a) 地表裂隙;(b) 桥梁裂隙;(c) 冰面鼓包

    Figure  10.   Remote surface effects of the rupture zone of the 2022 MS6.9 Menyuan earthquake (a) Surface cracks;(b) Bridge cracks;(c) Ice bulges

  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.

    邓起东. 2007. 中国活动构造图[CM]. 北京: 地震出版社: 2.

    Deng Q D. 2007. Map of Active Tectonics in China[CM]. Beijing: Seismological Press: 2 (in Chinese).

    徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉勇康. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社: 1.

    Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2016. Seismotectonic Map of China and Adjacent Areas[CM]. Beijing: Seismological Press: 1 (in Chinese).

    国家地震科学数据中心. 2022. 中国历史地震目录[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz.

    National Earthquake Data Center. 2022. Catalogue of historical earthquakes in China[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).

    郭敬信,侯珍清,侯康明. 1990. 昌马—祁连断裂带中段全新世活动特征与古地震[J]. 西北地震学报,12(3):38–43.

    Guo J X,Hou Z Q,Hou K M. 1990. Active character and paleoearthquake on median section of Changma-Qilian fault zone in Holocene[J]. Northwestern Seismological Journal,12(3):38–43 (in Chinese).

    郭鹏,韩竹军,安艳芬,姜文亮,毛泽斌,冯蔚. 2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学,47(5):617–630.

    Guo P,Han Z J,An Y F,Jiang W L,Mao Z B,Feng W. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences,60(5):929–942. doi: 10.1007/s11430-016-9007-2

    郭增建,谢原定,李孟銮,秦保燕,杨兴昌. 1976. 1920年12月16日的海原大地震[J]. 地球物理学报,19(1):42–49.

    Guo Z J,Xie Y D,Li M L,Qin B Y,Yang X C. 1976. Great Haiyuan earthquake on December 16,1920[J]. Acta Geophysica Sinica,19(1):42–49 (in Chinese).

    韩帅,吴中海,高扬,卢海峰. 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155–168.

    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake,Qinghai,China:Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).

    何文贵,袁道阳,葛伟鹏,罗浩. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震,30(1):131–137. doi: 10.3969/j.issn.1000-3274.2010.01.015

    He W G,Yuan D Y,Ge W P,Luo H. 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian Mountain active fault zone[J]. Earthquake,30(1):131–137 (in Chinese).

    侯康明. 1998. 1927年古浪8级大震地表破裂特征及形成机制[J]. 地震地质,20(1):20–27.

    Hou K M. 1998. Characteristics of ground ruptures caused by 1927 Gulang M8 earthquake and their causative mechanisms[J]. Seismology and Geology,20(1):20–27 (in Chinese).

    侯珍清,才树骅. 1990. 甘肃景泰—天祝6.2级地震[J]. 西北地震学报,12(4):48.

    Hou Z Q,Cai S H. 1990. The M6.2 Jingtai-Tianzhu earthquake of Gausu Province[J]. Northwestern Seismological Journal,12(4):48 (in Chinese).

    胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509

    Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).

    姜文亮,李永生,田云锋,韩竹军,张景发. 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质,39(3):536–549. doi: 10.3969/j.issn.0253-4967.2017.03.007

    Jiang W L,Li Y S,Tian Y F,Han Z J,Zhang J F. 2017. Research of seismogenic structure of the Menyuan MS6.4 earthquake on January 21,2016 in Lenglongling area of NE Tibetan Plateau[J]. Seismology and Geology,39(3):536–549 (in Chinese).

    兰州地震研究所、青海省地震局联合考察队. 1987. 1986年8月26日门源6.4级地震考察初步总结[J]. 西北地震学报,9(2):75–80.

    Joint Investigation Team of Seismological Institute of Lanzhou and Seismological Bureau of Qinghai Province. 1987. A preliminary summarization of Menyuan earthquake (M=6.4) on Aug. 26,1986[J]. Northwestern Seismological Journal,9(2):75–80 (in Chinese).

    李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22.

    Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).

    李智敏,盖海龙,李鑫,袁道阳,谢虹,姜文亮,李永生,苏琦. 2022. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报,96(1):330–335.

    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):330–335 (in Chinese).

    刘建生, 刘百篪, 袁道阳. 1994. 肃南断裂晚第四纪活动特征及古地震初步研究[G]//中国活动断层研究. 北京: 地震出版社: 36–41.

    Liu J S, Liu B C, Yuan D Y. 1994. Preliminary study on Late Quaternary movement and paleoseismicity along the Sunan fault[G]//Research on Active Faults in China. Beijing: Seismological Press: 36–41 (in Chinese).

    潘家伟,李海兵,Chevalier M L,刘栋梁,李超,刘富财,吴琼,卢海建,焦利青. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018

    Pan J W,Li H B,Chevalier M L,Liu D L,Li C,Liu F C,Wu Q,Lu H J,Jiao L Q. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).

    徐纪人,姚立珣,汪进. 1986. 1986年8月26日门源6.4级地震及其强余震的震源机制解[J]. 西北地震学报,8(4):82–84.

    Xu J R,Yao L X,Wang J. 1986. Earthquake source mechanisms of Menyuan earthquake (MS=6.4,on Aug. 26,1986) and its strong aftershocks[J]. Northwestern Seismological Journal,8(4):82–84 (in Chinese).

    薛善余,谢虹,袁道阳,李智敏,苏瑞欢,文亚猛. 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报,44(2):458–467.

    Xue S Y,Xie H,Yuan D Y,Li Z M,Su R H,Wen Y M. 2022. Seismic disaster characteristics of the surface rupture ofMenyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(2):458–467 (in Chinese).

    袁道阳,刘百篪,吕太乙,何文贵,刘小凤,甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报,20(4):27–34.

    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F,Gan W J. 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal,20(4):27–34 (in Chinese).

    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).

    袁道阳,谢虹,苏瑞欢,李智敏,文亚猛,司国军,薛善余,陈干,刘炳旭,梁淑敏,彭慧,段磊,魏拾其. 2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229–244. doi: 10.6038/cjg2022Q0093

    Yuan D Y,Xie H,Su R H,Li Z M,Wen Y M,Si G J,Xue S Y,Chen G,Liu B X,Liang S M,Peng H,Duan L,Wei S Q. 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8,2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics,66(1):229–244 (in Chinese).

    张培震. 1999. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究,(5):404–413. doi: 10.3321/j.issn:1001-7410.1999.05.003

    Zhang P Z. 1999. Late Quaternary tectonic deformation and earthquake hazard in continental China[J]. Quaternary Sciences,(5):404–413 (in Chinese).

    郑文俊,袁道阳,何文贵. 2004. 祁连山东段天桥沟—黄羊川断裂古地震活动习性研究[J]. 地震地质,26(4):645–657. doi: 10.3969/j.issn.0253-4967.2004.04.011

    Zheng W J,Yuan D Y,He W G. 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology,26(4):645–657 (in Chinese).

    郑文俊,张培震,袁道阳,郑德文. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报,52(10):2491–2508. doi: 10.3969/j.issn.0001-5733.2009.10.008

    Zheng W J,Zhang P Z,Yuan D Y,Zheng D W. 2009. Deformation on the northern of the Tibetan Plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics,52(10):2491–2508 (in Chinese).

    中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.

    China Earthquake Administration. 2022. China Earthquake Administration releases intensity map of MS6.9 earthquake in Menyuan, Qinghai Province[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).

    中国地震局震害防御司. 1999. 中国近代地震目录[M]. 北京: 中国科学技术出版社: 1–637.

    Department of Earthquake Disaster Prevention, China Seismological Bureau. 1999. The Catalogue of Modern Earthquakes in China[M]. Beijing: China Science and Technology Press: 1–637 (in Chinese).

    中国地震台网中心. 2022a. 1月8日1时45分青海海北州门源县发生6.9级地震[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html.

    China Earthquake Networks Center. 2022a. A MS6.9 earthquake hit Menyuan County, Haibei Prefecture, Qinghai Province at 1:45 am on January 8[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html (in Chinese).

    中国地震台网中心. 2022b. 历史地震查询[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history.

    China Earthquake Networks Center. 2022b. Historical earthquake search[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history (in Chinese).

    周春景,吴中海,尼玛次仁,李家存,蒋瑶,刘艳辉. 2014. 青海玉树MS7.1级地震同震地表破裂构造[J]. 地质通报,33(4):551–566. doi: 10.3969/j.issn.1671-2552.2014.04.011

    Zhou C J,Wu Z H,Nima C R,Li J C,Jiang Y,Liu Y H. 2014. Structural analysis of the co-seismic surface ruptures associated with the Yushu MS7.1 earthquake,Qinghai Province[J]. Geological Bulletin of China,33(4):551–566 (in Chinese).

    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Shunmin G,Zhitai C,Huagung D,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x

    Hu X F,Cao X L,Li T,Mao J W,Zhang J,He X,Zhang Y N,Pan B T. 2021. Late Quaternary fault slip rate within the Qilian orogen,insight into the deformation kinematics for the NE Tibetan Plateau[J]. Tectonics,40(5):e2020TC006586.

    Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276. doi: 10.1029/2000JB000060

    Li H B,Pan J W,Lin A M,Sun Z M,Liu D L,Zhang J J,Li C L,Liu K,Chevalier M L,Yun K,Gong Z. 2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh fault,Tibetan Plateau[J]. Bull Seismol Soc Am,106(2):595–608. doi: 10.1785/0120150136

    Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2022. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone[J]. Tectonics,41(2):e2021TC006992.

    Ren J J,Zhang Z W,Gai H L,Kang W J. 2021. Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 MW7.3 Maduo earthquake,Qinghai,China,and the implications for seismic hazards in the block interior[J]. Natural Hazards Research,1(4):145–152. doi: 10.1016/j.nhres.2021.10.001

    Shao Y X,Liu-Zeng J,van der Woerd J,Klinger Y,Oskin M E,Zhang J Y,Wang P,Wang P T,Wang W,Yao W Q. 2021. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence,14C,and cosmogenic isotope dating and high-resolution topography[J]. GSA Bull,133(7/8):1347–1369.

    USGS. 2000. SRTMGL1 v003[DB/OL]. [2022-03-05]. https://lpdaac.usgs.gov/products/srtmgl1v003.

    USGS. 2022. M6.6: Northern Qinghai, China[EB/OL]. [2022-01-12]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/technical.

    Yuan D Y, Zhang P Z, Ge W P, Liu X, Zhang H, Liang M. 2008. Late Quaternary strike-slip features along the western segment of Haiyuan-Qilianshan fault, NE Tibetan Plateau[C]//American Geophysical Union Fall Meeting. San Francisco: AGU: T33B-2057.

    Zhang Y P,Zheng W J,Zhang D L,Zhang P Z,Yuan D Y,Tian Q Y,Zhang B X,Liang S M. 2019. Late Pleistocene left-lateralslip rates of the Gulang fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau),China[J]. Tectonophysics,756:97–111. doi: 10.1016/j.tecto.2019.02.013

    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W,Ge W P,Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006

图(10)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  54
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-12-05
  • 网络出版日期:  2023-08-23
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回