龙门山和安宁河断裂带周边地区的地壳三维P波速度结构

肖雨辰, 吴建平

肖雨辰,吴建平. 2023. 龙门山和安宁河断裂带周边地区的地壳三维P波速度结构. 地震学报,45(6):943−958. DOI: 10.11939/jass.20220076
引用本文: 肖雨辰,吴建平. 2023. 龙门山和安宁河断裂带周边地区的地壳三维P波速度结构. 地震学报,45(6):943−958. DOI: 10.11939/jass.20220076
Xiao Y C,Wu J P. 2023. Three-dimensional crustal velocity structure around Longmenshan and Anninghe fault zones. Acta Seismologica Sinica45(6):943−958. DOI: 10.11939/jass.20220076
Citation: Xiao Y C,Wu J P. 2023. Three-dimensional crustal velocity structure around Longmenshan and Anninghe fault zones. Acta Seismologica Sinica45(6):943−958. DOI: 10.11939/jass.20220076

龙门山和安宁河断裂带周边地区的地壳三维P波速度结构

基金项目: 国家自然科学基金(U2039204)和中国地震局地球物理研究所基本科研业务专项(DQJB21Z03)联合资助
详细信息
    作者简介:

    肖雨辰,硕士,助理工程师,主要研究方向为地震层析成像,e-mail:xiaoyuchen_2018@163.com

    通讯作者:

    吴建平,博士,研究员,研究方向为地球深部介质结构、测震学和火山地震学,e-mail:wjpwu@cea-igp.ac.cn

  • 中图分类号: P315.2

Three-dimensional crustal velocity structure around Longmenshan and Anninghe fault zones

  • 摘要:

    利用2008—2021年区域地震台网及部分流动地震台阵的近震走时观测资料,采用双差层析成像方法获得了龙门山断裂带和安宁河断裂带周边地区的高分辨率地壳三维P波速度结构。结果显示:四川盆地浅部呈明显的低速异常,在前陆盆地低速异常可一直延伸至约15 km深,推测与该地区接收大量来自青藏高原东缘的沉积物有关;在龙门山断裂带附近,中上地壳存在一些与断裂带平行的高速异常体,它们较好地揭示了该地区穹隆体和逆冲推覆体深浅部的分布特征,例如,位于龙门山断裂带中部的彭灌穹隆体下延深度可达15 km左右,而与之相邻的雪隆山穹隆体下延深度不超过5 km。在安宁河断裂带与大凉山断裂带之间存在震源深度超过20 km的微震活动带,其分布形态与P波高速异常的分布形态基本一致,推测高速异常体的存在可能导致地壳内部脆韧性转换带深度的增加,并且受安宁河与大凉山交会部位强烈变形的影响,该地区出现深度较大的地震活动。上述结果为认识该地区的深部地质构造和地震活动机制提供了新的依据。

    Abstract:

    The Anninghe and Longmenshan fault zones are the eastern boundary of the Tibetan Plateau, and they are also important strong earthquake active zones. The study of the deep structure of the fault zones and surrounding areas is of great significance to understand the dynamic process of the eastward expansion of the Tibetan Plateau and the tectonic mechanism of strong earthquake. In this paper, based on the seismic travel time data from regional seismic network and temporary seismic arrays from 2008 to 2021, the high-resolution 3D crustal P-wave velocity structure around the Longmenshan and Anninghe fault zones is obtained by double difference tomography. There are obvious low-velocity anomalies in the shallow part of the Sichuan Basin, and the low-velocity anomalies can extend to about 15 km near the foreland basin, which is related to the foreland basin receiving sediments from the eastern margin of the Tibetan Plateau. Near the Longmenshan fault zone, there are some high-velocity anomalies in the upper to middle crust parallel to the fault zone, which reveals the spatial distribution of domal complexes and thrust complexes in this area. For example, the Pengguan domal complex located in the middle of the Longmenshan fault zone extends down to a depth of about 15 km, while the adjacent Xuelongshan domal complex extends down to a depth not deeper than 5 km. There is an active microseismic zone with a focal depth deeper than 20 km between the Anninghe and Daliangshan fault zones, which is consistent with the distribution of P-wave high-velocity anomaly, therefore we speculate that the existence of high-velocity anomalies may increase the depth of the crustal brittle-ductile transition zone, and deep seismicity appeared in this region due to the strong deformation at the intersection of the Anninghe and the Daliangshan fault zones. The research results of this paper provide new information for further understanding of the deep geological structure and seismic activity mechanism in this area.

  • 根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2020年6月23日15时29分04秒(UTC),墨西哥南部瓦哈卡州发生了一次矩震级MW7.4的地震,NEIC初步确定的震中(preliminary determination epicenter, 缩写为PDE)位于(15.916 3°N,95.953 3°W),震源深度为20 km。美国地质调查局(USGS,2020)和全球矩心矩张量组(GCMT,2020)随后发布了这次地震的矩心矩张量解(表1)。根据USGS (2020)发布的地震目录,在该主震发生后的48小时内发生了9次较大余震,其中最大余震震级达到MW5.4,5次事件深达35 km。

    表  1  不同机构所得墨西哥MW7.4地震矩心矩张量解的比较
    Table  1.  Comparison of the centroid moment tensor solutions for the MW7.4 Mexico earthquake obtained by different institutions
    机构矩张量/(1020 N·m)矩心参数
    MrrMttMppMrtMrpMtpτc/s北纬/°西经/°矩心深度/km
    GCMT (2020) 0.729 −0.737 0.008 1.220 −0.712 0.200 7.0 16.04 96.06 20
    USGS (2020)(W震相) 0.731 −0.752 0.020 1.104 −0.479 0.168 13.2 15.93 95.90 21.5
    USGS (2020)(体波反演) 0.527 −0.544 0.017 0.504 −0.289 0.101 16.04 95.90 32
    本文 0.700 −0.789 0.089 0.825 −0.491 0.218 8.0 15.96 95.89 22
    下载: 导出CSV 
    | 显示表格

    类似于上述两个组织的工作(Dziewonski et al,1981Kanamori,Rivera,2008Duputel et al,2012Ekström et al,2012),我们收集了震中距处于32.5°—88.9°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和数字地震台网联盟(International Federation of Digital Seismograph Networks,缩写为FDSN)的42个台站的长周期垂直分量数据,基于AK135模型计算格林函数(Wang,1999),利用我们自主研发的反演软件(张喆,许力生,2020),通过反演0.01—0.05 Hz频带内的P波波形得到了这次地震的矩心矩张量解。根据反演结果(图1),矩心时间为8 s,矩心震中位于(15.96°N,95.89°W),矩心深度为22 km,标量地震矩为1.24×1024 N·m,相当于MW7.4。基于矩心矩张量解(表1图2),我们也求得了相应的最佳双力偶解(图2表2),最佳双力偶成分占97%。最后,我们利用反演结果计算了合成波形,并与观测波形进行了比较,结果如图3所示,可见二者之间的相关系数平均值达到0.93,大多数台站的相关系数在0.90以上,均方根误差达1.33×10−5 m。

    图  1  矩心矩张量反演过程
    (a) 矩心时间搜索;(b) 矩心搜索;(c) 矩心深度搜索;(d) PDE位置(灰色)和矩心位置(红色)反演得到的矩张量解
    Figure  1.  Inversion process of the centroid moment tensor
    (a) Search for the centroid time;(b) Search for the centroid;(c) Search for the centroid depth; (d) The moment tensor solutions at the PDE (gray) and centroid (red) locations
    图  2  矩心矩张量反演参数以及台站分布与反演结果
    Figure  2.  The parameters of the centroid moment tensor inversion,the station distribution and the inversion results
    表  2  不同机构所得墨西哥MW7.4地震的最佳双偶解
    Table  2.  The best double-couple solutions for the MW7.4 Mexico earthquake obtained by different institutes
    机构标量地震矩
    /(1020 N·m)
    双力偶成分
    占比
    节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    GCMT (2020) 1.600 100% 270 16 62 118 76 97
    USGS (2020)(W震相) 1.423 96% 271 17 70 112 74 96
    USGS (2020)(体波) 0.797 99% 266 24 63 114 69 101
    本文 1.236 97% 266 22 60 118 71 101
    下载: 导出CSV 
    | 显示表格
    图  3  观测波形与合成波形的比较
    Figure  3.  Comparison between the observed (blue) and synthetic (red) waveforms

    与USGS和GCMT的结果相比(图4),我们反演所得矩心位置(15.96°N,95.89°W,深度22 km)、矩心时间、最佳双力偶解均与其非常相近。根据最佳双力解的节面参数、矩心位置、余震分布以及地震所处的构造环境,我们判断走向266°、倾角22°、滑动角60°的节面为真实的发震断层面(图4)。这是一次以逆冲为主、具有相当走滑分量的断层错动,或者说这是一次发生在俯冲带的斜滑事件。

    图  4  主震震源机制解与余震分布
    不同颜色的沙滩球和正方形代表不同机构确定的震源机制解及其矩心位置,小圆圈表示余震(来自USGS地震目录),大圆圈表示主震的PDE位置,圆圈和正方形的填充色显示了震源深度
    Figure  4.  The focal mechanism solutions of the mainshock and the aftershock distribution
    Colored beach-balls and squares represent the focal mechanism solutions and centroid locations determined by the various institutions,the small circles refer to the aftershocks (from the USGS catalog),and the large circle indicates the PED locations of the mainshock. The colors filled in the circles and squares indicate the focal depths

    本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!

  • 图  9   剖面AA′ (a),BB′ (b),CC′ (c),DD′ (d),EE′ (e)的P波速度及地震分布图

    左侧为P波绝对速度剖面,右侧为P波速度扰动剖面;黑色实线为地形,黑色圆点为距离剖面两侧10 km范围内的地震

    Figure  9.   P wave velocity along vertical profiles AA′ (a),BB′ (b),CC ′ (c),DD ′ (d),EE ′ (e) and earthquake distribution

    Left column is the profile of absolute P wave velocity,right column is the perturbation velocity of P wave;black line represents topography,black dots denote seismic events within 10 km from both sides of the profile

    图  1   研究区构造背景及历史强震分布图(引自邓起东等,2002

    F1:鲜水河断裂带;F2:安宁河断裂带;F3:汶川—茂县断裂;F4:映秀—北川断裂;F5:灌县—江油断裂,下同

    Figure  1.   Tectonic settings and historical strong earthquake distribution of the studied area (after Deng et al,2002

    F1:Xianshuihe fault zone;F2:Anninghe fault zone;F3:Wenchuan-Maoxian fault;F4:Yingxiu-Beichuan fault;F5:Guanxian-Jiangyou fault,the same below

    图  2   研究区射线路径分布图

    Figure  2.   Ray path distribution in the studied area

    图  3   三维P波初始模型图

    图(a−f)分别为研究区不同深度的P波速度初始模型图;图(g,h)分别为沿102°E和30°N剖面的P波速度初始模型图

    Figure  3.   Three-dimensional P-wave initial model

    Figs. (a−f) are the three-dimensional P-wave initial models at different depths in the studied area;Figs. (g,h) are the P-wave initial models of the profiles along 102°E and 30°N

    图  4   利用L-curve选取的最优平滑因子(a)和阻尼因子(b)曲线图

    Figure  4.   The optimal smoothing factor (a) and damping factor (b) curves selected by L-curve

    图  5   研究区检测板结果图

    Figure  5.   The check-board resolution in studied area

    图  6   研究区不同深度的P波速度分布图

    灰色实线为断层,白色线条为垂直剖面位置,黑色实线为板块边界线

    Figure  6.   P wave velocity distribution at different depths in the studied area

    The gray lines represent faults,the white lines show the vertical sections position,and the black lines represent the plate boundary lines

    图  7   重定位前(左)、后(右)的震中(a,b)和震源深度(c,d)分布图

    Figure  7.   Distribution of epicenters (a,b) and focal depths (c,d) before (left) and after (right) relocation

    图  8   反演前(a)、后(b)走时残差分布图

    Figure  8.   Residual distribution of travel time before (a) and after (b) inversion

  • 陈运泰,杨智娴,张勇,刘超. 2013. 从汶川地震到芦山地震[J]. 中国科学:地球科学,43(6):1064–1072.

    Chen Y T,Yang Z X,Zhang Y,Liu C. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Scientia Sinica Terrae,43(6):1064–1072 (in Chinese). doi: 10.1360/zd-2013-43-6-1064

    邓起东,陈社发,赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,16(4):389–403.

    Deng Q D,Chen S F,Zhao X L. 1994. Tectonics,seismisity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology,16(4):389–403 (in Chinese).

    邓起东,张培震,冉永康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2002. Basic characteristics of active tectonics of China[J]. Science in China: Series D,46(4):356–372.

    邓文泽,陈九辉,郭飚,刘启元,李顺成,李昱,尹昕忠,齐少华. 2014. 龙门山断裂带精细速度结构的双差层析成像研究[J]. 地球物理学报,57(4):1101–1110.

    Deng W Z,Chen J H,Guo B,Liu Q Y,Li S C,Li Y,Yin X Z,Qi S H. 2014. Fine velocity structure of the Longmenshan fault zone by double-difference tomography[J]. Chinese Journal of Geophysics,57(4):1101–1110 (in Chinese).

    范莉苹,吴建平,房立华,王未来. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报,58(5):1555–1567.

    Fan L P,Wu J P,Fang L H,Wang W L. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics,58(5):1555–1567 (in Chinese).

    李勇,周荣军,Densmore A L,Ellis M A. 2006. 青藏高原东缘龙门山晚新生代走滑−逆冲作用的地貌标志[J]. 第四纪研究,26(1):40–51.

    Li Y,Zhou R J,Densmore A L,Elli M A. 2006. Geomorphic evidence for the Late Cenozoic strike-slipping and thrusting in Longmen mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences,26(1):40–51 (in Chinese).

    马宗晋,郑大林. 1981. 中蒙大陆中轴构造带及其地震活动[J]. 地震研究,4(4):421–436.

    Ma Z J,Zheng D L. 1981. The Chinese-Mongolian continental mid-axis tectonic belt and its seismicity[J]. Journal of Seismological Research,4(4):421–436 (in Chinese).

    冉勇康,陈立春,程建武,宫会玲. 2008. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学:D辑,38(5):543–554.

    Ran Y K,Chen L C,Cheng J W,Gong H L. 2008. Late Quaternary surface deformation and rupture behavior of strong earthquake on the segment north of Mianning of the Anninghe fault[J]. Science in China: Series D,51(9):1224–1237. doi: 10.1007/s11430-008-0104-6

    唐荣昌,黄祖智. 1983. 鲜水河断裂带的地震地质基本特征及其研究现状[J]. 国际地震动态,1(3):1–4.

    Tang R C,Huang Z Z. 1983. The basic seismo-geological characteristics of the Xianshuihe fracture zone and the current situation of research thereon[J]. Recent Developments in World Seismology,1(3):1–4 (in Chinese).

    唐荣昌,钱洪,黄祖智,文德华,伍先国,蔡长星,田鸿. 1992. 安宁河断裂带北段晚更新世以来的分段活动特征[J]. 中国地震,8(3):62–70.

    Tang R C,Qian H,Huang Z Z,Wen D H,Wu X G,Cai C X,Tian H. 1992. The feature of activity on the north segment of the Anninghe fracture zone since Late Pleistocene[J]. Earthquake Research in China,8(3):62–70 (in Chinese).

    滕吉文,白登海,杨辉,闫雅芬,张洪双,张永谦,阮小敏. 2008. 2008汶川 MS8.0地震发生的深层过程和动力学响应[J]. 地球物理学报,51(5):1385–1402.

    Teng J W,Bai D H,Yang H,Yan Y F,Zhang H S,Zhang Y Q,Ruan X M. 2008. Deep processes and dynamic responses associated with the Wenchuan MS8.0 earthquake of 2008[J]. Chinese Journal of Geophysics,51(5):1385–1402 (in Chinese).

    王小娜,于湘伟,章文波. 2015. 芦山震区地壳三维P波速度精细结构及地震重定位研究[J]. 地球物理学报,58(4):1179–1193

    Wang X N,Yu X W,Zhang W B. 2015. 3D P-wave velocity of the structure of the crust and relocation of earthquakes in the Lushan source area[J]. Chinese Journal of Geophysics,58(4):1179–1193 (in Chinese).

    吴建平,黄媛,张天中,明跃红,房立华. 2009. 汶川 MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报,52(2):320–328.

    Wu J P,Huang Y,Zhang T Z,Ming Y H,Fang L H. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics,52(2):320–328 (in Chinese).

    谢其锋,蔡元峰,董云鹏,吴灌洲,翟明国. 2018. 扬子板块西缘挖角地区晋宁期岩浆作用及大地构造意义[J]. 岩石学报,34(11):3287–3301.

    Xie Q F,Cai Y F,Dong Y P,Wu G Z,Zhai M G. 2018. The magmatism and tectonic significance of Jinningian monzogranite in Wajiao area,western margin of Yangtze Block[J]. Acta Petrologica Sinica,34(11):3287–3301 (in Chinese).

    许志琴,李化启,侯立炜,付小芳,陈文,曾令森,蔡志慧,陈方远. 2007. 青藏高原东缘龙门—锦屏造山带的崛起:大型拆离断层和挤出机制[J]. 地质通报,26(10):1262–1276.

    Xu Z Q,Li H Q,Hou L W,Fu X F,Chen W,Zeng L S,Cai Z H,Chen F Y. 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau:Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China,26(10):1262–1276 (in Chinese).

    颜丹平,孙铭,巩凌霄,周美夫,邱亮,李书兵,张森,古术航,木红旭. 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报,26(5):615–633.

    Yan D P,Sun M,Gong L X,Zhou M F,Qiu L,Li S B,Zhang S,Gu S H,Mu H X. 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics,26(5):615–633 (in Chinese).

    张杰,杨光亮,谈洪波,吴桂桔,王嘉沛. 2020. 基于接收函数约束的川滇地区莫霍面深度反演研究[J]. 地球物理学报,63(7):2579–2591.

    Zhang J,Yang G L,Tan H B,Wu G J,Wang J P. 2020. Inversion of Moho surface depth in Sichuan-Yunnan area based on the constraint of receiving function[J]. Chinese Journal of Geophysics,63(7):2579–2591 (in Chinese).

    张沛,周祖翼. 2008. 碎屑矿物热年代学研究进展[J]. 地球科学进展,23(11):1130–1140.

    Zhang P,Zhou Z Y. 2008. Geological applications of detrital thermochronology[J]. Advances in Earth Science,23(11):1130–1140 (in Chinese).

    Allen C R,Luo Z L,Qian H,Wen X Z,Zhou H W,Huang W S. 1991. Field study of a highly active fault zone:The Xianshuihe fault of southwestern China[J]. GSA Bull,103(9):1178–1199. doi: 10.1130/0016-7606(1991)103<1178:FSOAHA>2.3.CO;2

    Cao F H,Liang C T,Zhou L,Zhu J S. 2020. Seismic azimuthal anisotropy for the southeastern Tibetan Plateau extracted by Wave Gradiometry analysis[J]. J Geophys Res: Solid Earth,125(5):e2019JB018395. doi: 10.1029/2019JB018395

    Chen S F,Wilson C J L. 1996. Emplacement of the Longmen shan thrust-nappe belt along the eastern margin of the Tibetan Plateau[J]. J Struct Geol,18(4):413–430.

    Eberhart-Phillips D. 1986. Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times[J]. Bull Seismol Soc Am,76(4):1025–1052.

    Gray R,Pysklywec R N. 2012. Geodynamic models of mature continental collision:Evolution of an orogen from lithospheric subduction to continental retreat/delamination[J]. J Geophys Res: Solid Earth,117(B3):B03408.

    Holt W E,Ni J F,Wallace T C,Haines A J. 1991. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. J Geophys Res: Solid Earth,96(B9):14595–14632. doi: 10.1029/91JB01021

    Houseman G,England P. 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. J Geophys Res: Solid Earth,98(B7):12233–12249. doi: 10.1029/93JB00443

    Hu P Y,Zhai Q G,Wang J,Tang Y,Ren G M. 2017. The Shimian ophiolite in the western Yangtze Block,SW China:Zircon SHRIMP U-Pb ages,geochemical and Hf-O isotopic characteristics,and tectonic implications[J]. Precamb Res,298:107–122. doi: 10.1016/j.precamres.2017.06.005

    Huang Z C,Wang P,Xu M J,Wang L S,Ding Z F,Wu Y,Xu M J,Mi N,Yu D Y,Li H. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth Planet Sci Lett,411:100–111. doi: 10.1016/j.jpgl.2014.11.040

    Humphreys E,Clayton R W. 1988. Adaptation of back projection tomography to seismic travel time problems[J]. J Geophys Res: Solid Earth,93(B2):1073–1085. doi: 10.1029/JB093iB02p01073

    Lei J S,Zhao D P,Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data[J]. J Geophys Res: Solid Earth,114(B5):B05302.

    Lévěque J J,Rivera L,Wittlinger G. 1993. On the use of the checker-board test to assess the resolution of tomographic inversions[J]. Geophys J Int,115(1):313–318. doi: 10.1111/j.1365-246X.1993.tb05605.x

    Li H Y,Su W,Wang C Y,Huang Z X. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet[J]. Earth Planet Sci Lett,282(1/2/3/4):201–211.

    Lin G,Thurber C H,Zhang H,Hauksson E,Shearer P M,Waldhauser F,Brocher T M,Hardebeck J. 2010. A California statewide three-dimensional seismic velocity model from both absolute and differential times[J]. Bull Seismol Soc Am,100(1):225–240. doi: 10.1785/0120090028

    Liu Z Q,Liang C T,Hua Q,Li Y,Yang Y H,He F J,Fang L H. 2018. The seismic potential in the seismic gap between the Wenchuan and Lushan earthquakes revealed by the joint inversion of receiver functions and ambient noise data[J]. Tectonics,37(11):4226–4238. doi: 10.1029/2018TC005151

    Meng E,Liu F L,Du L L,Liu P H,Liu J H. 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions,southwestern China:Evidence from zircon U-Pb dating and Lu-Hf isotopes,and whole-rock geochemistry[J]. Gondwana Res,28(2):800–815. doi: 10.1016/j.gr.2014.07.003

    Paige C C,Saunders M A. 1982. Algorithm 583:LSQR:Sparse linear equations and least squares problems[J]. ACM Trans Math Softw,8(2):195–209. doi: 10.1145/355993.356000

    Pei S P,Su J R,Zhang H J,Sun Y S,Toksöz M N,Wang Z,Gao X,Zeng J L,He J K. 2010. Three-dimensional seismic velocity structure across the 2008 Wenchuan MS8.0 earthquake,Sichuan,China[J]. Tectonophysics,491(1/2/3/4):211–217.

    Shen Z K,Lü J N,Wang M,Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. J Geophys Res: Solid Earth,110(B11):B11409.

    Thurber C H. 1992. Hypocenter-velocity structure coupling in local earthquake tomography[J]. Phys Earth Planet Inter,75(1/2/3):55–62.

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays[J]. J Geophys Res: Solid Earth,122(9):7219–7235. doi: 10.1002/2017JB013978

    Wang Z,Fukao Y,Pei S P. 2009. Structural control of rupturing of the MW7.9 2008 Wenchuan earthquake,China[J]. Earth Planet Sci Lett,279(1/2):131–138.

    Wang Z,Zhao D P,Wang J. 2010. Deep structure and seismogenesis of the north-south seismic zone in southwest China[J]. J Geophys Res: Solid Earth,115(B12):B12334.

    Xie J Y,Ritzwoller M H,Shen W S,Yang Y J,Zheng Y,Zhou L Q. 2013. Crustal radial anisotropy across eastern Tibet and the western Yangtze Craton[J]. J Geophys Res: Solid Earth,118(8):4226–4252. doi: 10.1002/jgrb.50296

    Xie J Y,Ritzwoller M H,Shen W S,Wang W T. 2017. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium[J]. Geophys J Int,209(1):466–491.

    Xue Z H,Martelet G,Lin W,Faure M,Chen Y,Wei W,Li S J,Wang Q C. 2017. Mesozoic crustal thickening of the Longmenshan belt (NE Tibet,China) by imbrication of basement slices:Insights from structural analysis,petrofabric and magnetic fabric studies,and gravity modeling[J]. Tectonics,36(12):3110–3134. doi: 10.1002/2017TC004754

    Yan D P,Zhou M F,Wei G Q,Gao J F,Liu S F,Xu P,Shi X Y. 2008. The Pengguan tectonic dome of Longmen mountains,Sichuan Province:Mesozoic denudation of a Neoproterozoic magmatic arc-basin system[J]. Science in China: Series D,51(11):1545–1559. doi: 10.1007/s11430-008-0126-0

    Yao H J,van der Hilst R D,Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. J Geophys Res: Solid Earth,115(B12):B12307.

    Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190

    Zhang H J,Thurber C H. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2/3):373–403.

    Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the western Sichuan region,eastern margin of the Tibetan Plateau[J]. Tectonophysics,584:7–22. doi: 10.1016/j.tecto.2012.02.021

    Zhang Z Q,Yao H J,Wang W T,Liu C M. 2022. 3-D crustal azimuthal anisotropy reveals multi-stage deformation processes of the Sichuan basin and its adjacent area,SW China[J]. J Geophys Res: Solid Earth,127(1):e2021JB023289. doi: 10.1029/2021JB023289

    Zhou M F,Yan D P,Wang C L,Qi L,Kennedy A. 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province,China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth Planet Sci Lett,248(1/2):286–300.

  • 期刊类型引用(1)

    1. 杨天春,朱德兵,付国红,杨追,黄睿. 天然电场选频法在高压线干扰环境下的浅层地下水勘探. 中国科技论文. 2024(10): 1065-1072 . 百度学术

    其他类型引用(1)

图(9)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  148
  • PDF下载量:  112
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-22
  • 修回日期:  2022-06-18
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-12-24

目录

    /

    返回文章
    返回