Analysis of the cross-correlation between seismicity and water level and estimation of the hydraulic diffusivity in the Longtan reservoir area
-
摘要:
对广西壮族自治区龙滩水库库区2013年3月1日至2019年10月31日的地震数目与水位进行互相关计算,得到了地震活动对库区蓄水响应的延迟时间为37天,并通过替代数据检验确认了其可靠性。37天的延迟时间说明在水位达到峰值后地震活动开始快速增强,可能暗示着现阶段库水流体作用的影响主要局限在库区内。根据延迟时间和地震深度分布,以及周期性边界条件下孔隙压力扩散方程的解,在不考虑孔隙压力扩散与应力耦合时得到孔隙压力扩散系数D=(8.66±4.11) m2/s;在考虑孔隙压力扩散与应力耦合时得到扩散系数D=(1.72±0.82) m2/s。后者在物理上更为合理,说明现阶段孔隙压力扩散与应力耦合可能是诱发龙滩库区水库地震的主要因素。
Abstract:In this study, the 37-day time lag was estimated by cross-correlating the daily number of earthquakes and the daily water level data from 1 March 2013 to 31 October 2019 in the Longtan reservoir, Guangxi Zhuang Autonomous Region. Based on the surrogate data test, we confirmed the 37-day time lag was reliable. The 37-day time lag indicates reservoir-induced enhances seismic activity rapidly after the water level reaches peak value, which may suggest the fluid effect of reservoir water is mainly confined within the reservoir area at present. With the time lag, the depth distribution of the earthquakes, and the solutions of pore pressue diffusion equations derived under periodic boundary condition, the vertical hydraulic diffusivity were estimated to be D=(8.66±4.11) m2/s and D=(1.72±0.82) m2/s on the condition that the pore pressure diffusion uncoupled and coupled the stress, respectively. The latter is more reasonable physically, which may indicate the coupling between diffusion of the pore pressure and stress is the main reason for inducing the earthquakes in the Longtan reservoir at present stage.
-
-
图 1 龙滩水库地质构造及2006年9月至2019年10月的地震事件分布
F1:罗甸—望谟断裂;F2:高圩—八茂断裂;F3:凤亭—下老断裂;F4:马耳—拉浪断裂;F5:达恒—达良断裂;F6:党明—桂花断裂;F7:望谟—逻西断裂;F8:长里—八南断裂;F9:龙凤—八腊断裂
Figure 1. Structural outlines and the distribution of seismic events from September of 2006 to October of 2019 in the Longtan reservoir
F1:Luodian-Wangmo fault;F2:Gaoyu-Bamao fault;F3:Fengting-Xialao fault;F4:Maer-Lalang fault;F5:Daheng-Daliang fault;F6:Dangming-Guihua fault;F7:Wangmo-Luoxi fault;F8:Changli-Ba’nan fault;F9:Longfeng-Bala fault
图 3 标准化地震数目与水位的互相关
(a) 以天为单位的标准化后的地震数目与水位的互相关,其中灰色代表滤波之前的结果,黑色为滤波后的结果;(b) 以月为单位的标准化后的地震数目与水位的互相关
Figure 3. Cross-correlation between the standardized number of earthquakes and water level
(a) Cross-correlation between standardized number of earthquakes and water level in day,where the gray line represents the results before filtering,and the black line represents the results after filtering;(b) Cross-correlation between standardized number of earthquakes and water level in month
-
陈翰林,赵翠萍,修济刚,陈章立. 2009a. 龙滩水库地震精定位及活动特征研究[J]. 地球物理学报,52(8):2035–2043. Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009a. Study on precise location of Longtan reservoir earthquake and its seismic activity[J]. Chinese Journal of Geophysics,52(8):2035–2043 (in Chinese).
陈翰林,赵翠萍,修济刚,陈章立. 2009b. 龙滩库区水库地震震源机制及应力场特征[J]. 地震地质,31(4):686–698. Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009b. Study on the characteristics of focal mechanisms of reservoir induced earthquakes and stress field in the Longtan reservoir area[J]. Seismology and Geology,31(4):686–698 (in Chinese).
陈颙. 2009. 汶川地震是由水库蓄水引起的吗?[J]. 中国科学:地球科学,39(3):257–259. Chen Y. 2009. Did the reservoir impoundment trigger the Wenchuan earthquake?[J]. Science in China:Series D,52(4):431–433.
龚钢延,谢原定. 1991. 新丰江水库地震区内孔隙流体扩散与原地水力扩散率的研究[J]. 地震学报,13(3):364–371. Gong G Y,Xie Y D. 1991. Research on the diffusion of pore fluid and in-situ hydraulic diffusivity in the epicentral region of Xinfengjiang reservoir earthquakes[J]. Acta Seismologica Sinica,13(3):364–371 (in Chinese).
广西壮族自治区地质局. 1972. 乐业幅地质图[CM]. 北京: 地质出版社: 1. Geology Bureau of Guangxi Zhuang Autonomous Region. 1972. Leye Geological Map[CM]. Beijing: Geological Publishing House: 1 (in Chinese).
郭培兰,姚宏,袁媛. 2006. 龙滩水库地震危险性分析[J]. 高原地震,18(4):17–23. doi: 10.3969/j.issn.1005-586X.2006.04.003 Guo P L,Yao H,Yuan Y. 2006. Analysis on potential seismic risk in Longtan reservoir[J]. Earthquake Research in Plateau,18(4):17–23 (in Chinese).
蒋海昆, 张晓东, 单新建. 2014. 中国大陆水库地震统计特征及预测方法研究[M]. 北京: 地震出版社: 3–5. Jiang H K, Zhang X D, Shan X J. 2014. Study on the Statistical Characteristics of Reservoir-Induced Earthquakes and Prediction Methods in China Mainland[M]. Beijing: Seismological Press: 3–5 (in Chinese).
刘鑫,鲍长春. 2014. 基于替代数据检测的音频信号非线性分析[J]. 数据采集与处理,29(2):243–247. doi: 10.3969/j.issn.1004-9037.2014.02.013 Liu X,Bao C C. 2014. Nonlinear analysis of audio signals using surrogate data test[J]. Journal of Data Acquisition and Processing,29(2):243–247 (in Chinese).
刘耀炜,许丽卿,杨多兴. 2011. 龙滩水库诱发地震的孔隙压力扩散特征[J]. 地球物理学报,54(4):1028–1037. Liu Y W,Xu L Q,Yang D X. 2011. Pore pressure diffusion characteristics of Longtan reservoir-induced-earthquake[J]. Chinese Journal of Geophysics,54(4):1028–1037 (in Chinese).
潘建雄. 1989. 红水河龙滩水库诱发地震地质条件的探讨[J]. 地震地质,11(4):91–99. Pan J X. 1989. The geological environment for induced earthquake in Longtan reservoir of Hongshui river[J]. Seismology and Geology,11(4):91–99 (in Chinese).
阎春恒,周斌,陆丽娟,孙学军,文翔. 2015. 龙滩水库蓄水后库区中小地震的震源机制[J]. 地球物理学报,58(11):4207–4222. doi: 10.6038/cjg20151127 Yan C H,Zhou B,Lu L J,Sun X J,Wen X. 2015. Focal mechanisms of moderate and small earthquakes occurred after reservoir recharger in the Longtan reservoir region[J]. Chinese Journal of Geophysics,58(11):4207–4222 (in Chinese).
阎春恒,周斌,李莎,向巍,郭培兰. 2020. 利用小震分布和区域应力场确定龙滩库区地震断层面参数[J]. 地震地质,42(3):562–580. Yan C H,Zhou B,Li S,Xiang W,Guo P L. 2020. Determination of fault plane parameters in the Longtan reservoir by using precisely located small earthquakes data and regional stress field[J]. Seismology and Geology,42(3):562–580 (in Chinese).
叶庆东,阎春恒,王生文,毛远凤,余大新,闫琳琳. 2018. 广西龙滩水库地壳QS二维成像[J]. 地震学报,40(6):689–700. Ye Q D,Yan C H,Wang S W,Mao Y F,Yu D X,Yan L L. 2018. Crustal 2-D QS tomography in Longtan reservoir,Guangxi region[J]. Acta Seismologica Sinica,40(6):689–700 (in Chinese).
詹艳,王立凤,王继军,肖骑彬,莫青云. 2012. 广西龙滩库区深部孕震结构大地电磁探测研究[J]. 地球物理学报,55(4):1400–1410. doi: 10.6038/j.issn.0001-5733.2012.04.036 Zhan Y,Wang L F,Wang J J,Xiao Q B,Mo Q Y. 2012. Electromagnetic survey of the seismogenic structures beneath the Longtan reservoir in Guangxi Province[J]. Chinese Journal of Geophysics,55(4):1400–1410 (in Chinese).
周斌,孙峰,阎春恒,薛世峰,史水平. 2014. 龙滩水库诱发地震三维孔隙弹性有限元数值模拟[J]. 地球物理学报,57(9):2846–2868. Zhou B,Sun F,Yan C H,Xue S F,Shi S P. 2014. 3D-pore elatstics finite element numerical simulation of Longtan reservoir-induced seismicity[J]. Chinese Journal of Geophysics,57(9):2846–2868 (in Chinese).
Biot M A. 1941. General theory of three-dimensional consolidation[J]. J App Phys,12(2):155–164. doi: 10.1063/1.1712886
Christiansen L B,Hurwitz S,Saar M O,Ingebritsen S E,Hsieh P A. 2005. Seasonal seismicity at western United States volcanic centers[J]. Earth Planet Sci Lett,240(2):307–321. doi: 10.1016/j.jpgl.2005.09.012
Doan M L,Brodsky E E,Kano Y,Ma K F. 2006. In situ measurement of the hydraulic diffusivity of the active Chelunpu fault,Taiwan[J]. Geophys Res Lett,33(16):L16317. doi: 10.1029/2006GL026889
Ferreira J M,De Oliveira R T,Assumpção M,Moreira J A M,Pearce R G,Takeya M K. 1995. Correlation of seismicity and water level in the Açu reservoir:An example from Northeast Brazil[J]. Bull Seismol Soc Am,85(5):1483–1489. doi: 10.1785/BSSA0850051483
Hardebeck J L,Nazareth J J,Hauksson E. 1998. The static stress change triggering model:Constraints from two southern California aftershock sequences[J]. J Geophys Res:Solid Earth,103(B10):24427–24437.
Little M A,McSharry P E,Moroz I M,Roberts S J. 2006. Testing the assumptions of linear prediction analysis in normal vowels[J]. J Acousti Soc Am,119(1):549–558. doi: 10.1121/1.2141266
Nur A,Booker J R. 1972. Aftershocks caused by pore fluid flow?[J]. Science,175(4024):885–887. doi: 10.1126/science.175.4024.885
Roeloffs E A. 1988. Fault stability change induced beneath a reservoir with cyclic variations in water level[J]. J Geophys Res:Solid Earth,93(B3):2107–2124. doi: 10.1029/JB093iB03p02107
Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrological phenomena[J]. Adv Geophys,37:135–195.
Saar M O,Manga M. 2003. Seismicity induced by seasonal groundwater recharge at Mt. Hood,Oregon[J]. Earth Planet Sci Lett,214(3/4):605–618. doi: 10.1016/S0012-821X(03)00418-7
Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature,402(6762):605–609.
Talwani P,Acree S. 1984. Pore pressure diffusion and the mechanism of reservoir-induced seismicity[J]. Pure Appl Geophys,122(6):947–965. doi: 10.1007/BF00876395
Telesca L. 2010. Analysis of the cross-correlation between seismicity and water Level in the Koyna area of India[J]. Bull Seismol Soc Am,100(5A):2317–2321. doi: 10.1785/0120090392
Telesca L,ElShafey Fat ElBary R,El-Ela Amin Mohamed A,ElGabry M. 2012. Analysis of the cross-correlation between seismicity and water level in the Aswan area (Egypt) from 1982 to 2010[J]. Nat Hazards Earth Syst Sci,12(7):2203–2207. doi: 10.5194/nhess-12-2203-2012
Telesca L,do Nascimento A F,Bezerra F H R,Ferreira J M. 2015. Analysis of the cross-correlation between water level and seismicity at Açu reservoir (Brazil)[J]. Tectonophysics,658:151–158. doi: 10.1016/j.tecto.2015.07.017
Telesca L,Kadirov F,Yetirmishli G,Safarov R,Babayev G,Islamova S,Kazimova S. 2020. Analysis of the relationship between water level temporal changes and seismicity in the Mingechevir reservoir (Azerbaijan)[J]. J Seismol,24(7):937–952.
Turcotte D L, Schubert G. 2002. Geodynamics[M]. 2nd edition. Cambridge: Cambridge University Press: 271−282.
Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114
Xue L,Brodsky E E,Erskine J,Fulton P M,Carter R. 2016. A permeability and compliance contrast measured hydrogeologically on the San Andreas fault[J]. Geochem Geophys Geosyst,17(3):858–871. doi: 10.1002/2015GC006167