Seismicity in Zemuhe fault zone based on dense seismic array
-
摘要:
利用2019—2021年布设在则木河断裂带的20个宽频带流动测震台和周边6个固定台站的波形数据,对连续波形记录进行P和S震相识别、震相自动关联和初步定位,并应用传统的绝对定位技术得到了研究区绝对地震目录,再运用双差定位法对检测出的1 075个地震事件进行重定位。结果表明:① 研究区地震活动分布不均匀,多数地震沿着深大断裂带呈条带状分布,显示出断裂在地表的展布形态; ② 研究区地震的震源优势深度范围为5—15 km,说明本区地震发生在中上地壳;③ 地震在各个剖面深度的分布特征显示出断裂在深部的构造特征。从重定位后的震中空间分布可见,则木河断裂带中段存在倾向为60°左右的NW向小震密集带,分析认为研究时期以来小震活动频繁,该地区的局部应力较高,构造活动较强。
Abstract:Based on the continuous waveforms of twenty portable broadband seismic stations deployed in the Zemuhe fault and six local stations in the surrounding areas of the fault zone in the period of 2019−2021, we performed automatic earthquake detection with an integrated event detection system called PAL, and then obtained the absolute earthquake catalogue in the study area by using traditional absolute positioning technology, finally relocated 1 075 detected seismic events by the double-difference positioning method. The results show that: ① The seismic activity in the study area is unevenly distributed, and most of the earthquakes are distributed in strips along the deep-large fault zones, showing the distribution pattern of the fault on the surface; ② The focal depth of the earthquakes in the study area ranges 5−15 km, which indicates that the earthquake occurred in the middle to upper crust; ③ The distribution characteristics of earthquakes at the depth of each section show the structural characteristics of faults in the deep. It can be seen from the spatial distribution of the epicenters after relocation that there is a small earthquake dense zone with dip of 60° in the middle section of the Zemuhe fault zone. The analysis shows that the small earthquakes have been frequent since the study period, the local stress in this area is high, and the tectonic activity is strong.
-
Keywords:
- Zemuhe fault /
- PALM /
- double-difference location /
- depth distribution
-
-
图 1 研究区主要断裂展布和地震台站分布(断层数据来自邓起东等,2003)
Figure 1. Distribution of main faults and seismic stations in study area (the fault data is from Deng et al,2003)
图 8 重定位前后2019—2021年则木河地区地震震中分布图
(a) 震相关联初始事件震中分布;(b) 震相人工核查后绝对定位震中分布;(c) 基于绝对定位震相报告的双差定位结果
Figure 8. Distribution of earthquake hypocenters in Zemuhe area from 2019 to 2021 before and after relocation
(a) Initial epicentral distribution;(b) Hypoinverse epicentral distribution after manual inspection;(c) HypoDD epicentral distribution
表 1 本文使用计算的R量规函数表
Table 1 Rcalibration functions in this study
震中距Δ/km R 震中距Δ/km R 震中距Δ/km R 震中距Δ/km R 0—5 2.0 40 2.8 85 3.3 150 3.7 10 2.0 45 2.9 90 3.4 160 3.7 15 2.1 50 3.0 100 3.4 170 3.8 20 2.2 55 3.1 110 3.5 180 3.8 25 2.4 60 3.2 120 3.5 190 3.9 30 2.6 70 3.2 130 3.6 20 3.9 35 2.7 75 3.3 140 3.6 210 3.9 -
邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊1):66–73. Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
杜平山,冯元保. 2000. 则木河活动断裂的内部结构[J]. 四川地震,(1/2):24–48. Du P S,Feng Y B. 2000. Inner tectonic of active faults of Zemuhe[J]. Earthquake Research in Sichuan,(1/2):24–48 (in Chinese).
刘翰林,吴庆举. 2017. 地震自动识别及震相自动拾取方法研究进展[J]. 地球物理学进展,32(3):1000–1007. Liu H L,Wu Q J. 2017. Developments of research on earthquake detection and seismic phases picking[J]. Progress in Geophy sics,32(3):1000–1007 (in Chinese).
路鹏,袁一凡,袁洪克,刘学领,于晓辉,段玉石. 2012. 安宁河、则木河构造区近期强震危险性的概率估计[J]. 地震,32(4):62–72. Lu P,Yun Y F,Yuan H K,Liu X L,Yu X H,Duan Y S. 2012. Probabilistic estimate of strong earthquake risk in the Anninghe-Zemuhe tectonic zone[J]. Earthquake,32(4):62–72 (in Chinese).
谭夏露,房立华,王未来,吴建平. 2018. 安宁河—则木河断裂带及周边地区Rayleigh波群速度背景噪声成像研究[J]. 中国地震,34(3):400–413. Tan X L,Fang L H,Wang W L,Wu J P. 2018. Rayleigh wave group velocity tomography with ambient noise in the Anninghe-Zemuhe fault zone and its surrounding areas[J]. Earthquake Research in China,34(3):400–413 (in Chinese).
孟娟,吴燕雄,李亚南. 2022. 基于改进长短时窗比值及优化变分模态分解的微震初至拾取算法[J]. 地震学报,44(3):388–400. Meng J,Wu Y X,Li Y N. 2022. First arrival time picking algorithm of micro-seismic based on improved STA/LTA and adaptive VMD[J]. Acta Seismologica Sinica,44(3):388–400 (in Chinese).
王椿镛,Mooney W D,王溪莉,吴建平,楼海,王飞. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报,24(1):1–16. Wang C R,Mooney W D,Wang X L,Wu J P,Lou H,Wang F. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region,China[J]. Acta Seismologica Sinica,24(1):1–16 (in Chinese).
易桂喜,闻学泽,范军,王思维. 2004. 由地震活动参数分析安宁河—则木河断裂带的现今活动习性及地震危险性[J]. 地震学报,26(3):294–303. Yi G X,Wen X Z,Fan J,Wang S W. 2004. Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters[J]. Acta Seismologica Sinica,26(3):294–303 (in Chinese).
赵静,江在森,牛安福,刘杰,武艳强,魏文薪,刘晓霞,闫伟. 2015. 川滇菱形块体东边界断层闭锁程度与滑动亏损动态特征研究[J]. 地球物理学报,58(3):872–885. Zhao J,Jiang Z S,Niu A F,Liu J,Wu Y Q,Wei W X,Liu X X,Yan W. 2015. Study on dynamic characteristics of fault locking and fault slip deficit in the eastern boundary of the Sichuan-Yunnan rhombic block[J]. Chinese Journal of Geophysics,58(3):872–885 (in Chinese).
朱艾斓,徐锡伟,甘卫军,陈桂华. 2009. 鲜水河—安宁河—则木河断裂带上可能存在的凹凸体:来自背景地震活动性的证据[J]. 地学前缘,1 6 (1):218−225. Zhu A L,Xu X W,Gan W J,Chen G H. 2009. The possible asperities on the Xianshuihe-Anninghe-Zemuhe fault zone:Evidence from background seismicity[J]. Earth Science Frontiers,16(1):218–225 (in Chinese).
中国地震局. 2017. GB 17740—2017 地震震级的规定[S/OL]. [2021-05-19]. http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=05EBFF86A8F8C24DCF99016C9C7DBF2F. China Earthquake Administration. 2017. GB 17740−2017 General Ruler for Earthquake Magnitude[S/OL]. [2021-05-19]. http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=05EBFF86A8F8C24DCF99016C9C7DBF2F (in Chinese).
Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
Baillard C,Crawford W C,Ballu V,Hibert C,Mangeney A. 2014. An automatic Kurtosis-based P- and S-phase picker designed for local seismic networks[J]. Bull Seismol Soc Am,104(1):394–409. doi: 10.1785/0120120347
Fang L H,Wu J P,Wang W L,Du W K,Su J R,Wang C Z,Yang T,Cai Y. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake[J]. Seismol Res Lett,86(4):1135–1142. doi: 10.1785/0220140186
Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34:185–188. doi: 10.1785/BSSA0340040185
Klein F W. 2002. User’s Guide to HYPOINVERSE-2000,A Fortran Program to Solve for Earthquake Locations and Magnitudes[R]. U. S. Geology Survey:1−148.
Mendoza M M,Ghosh A,Karplus M S,Klemperer S L,Sapkota S N,Adhikari L B,Velasco A. 2019. Duplex in the Main Himalayan Thrust illuminated by aftershocks of the 2015 MW7.8 Gorkha earthquake[J]. Nat Geosci,12(12):1018–1022. doi: 10.1038/s41561-019-0474-8
Ross Z E,Trugman D T,Hauksson E,Shearer P M. 2019. Searching for hidden earthquakes in Southern California[J]. Science,364(6442):767–771. doi: 10.1126/science.aaw6888
Shelly D R,Hardebeck J L,Ellsworth W L,Hill D P. 2016. A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis:Application to the 2014 Long Valley Caldera earthquake swarm[J]. J Geophys Res: Solid Earth,121(12):8622–8641. doi: 10.1002/2016JB013437
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Waldhauser F,Ellsworth W L. 2002. Fault structure and mechanics of the Hayward fault,California,from double-difference earthquake locations[J]. J Geophys Res:Solid Earth, 107 (B3):ESE 3−1−ESE 3−15.
Wessel P,Luis J F,Uieda L,Scharroo R,Wobbe F,Smith W H F,Tian D. 2019. The Generic Mapping Tools version 6[J]. Geochem Geophys Geosyst,20(11):5556–5564. doi: 10.1029/2019GC008515
Wiemer S. 2001. A software package to analyze seismicity: ZMAP[J]. Seismol Res Lett,72(3):373–382.
Yin X Z,Chen J H,Peng Z G,Meng X F,Liu Q Y,Guo B,Li S C. 2018. Evolution and distribution of the early aftershocks following the 2008 MW7.9 Wenchuan earthquake in Sichuan,China[J]. J Geophys Res: Solid Earth,123(9):7775–7790. doi: 10.1029/2018JB015575
Zhou Y J,Ghosh A,Fang L H,Yue H,Zhou S Y,Su Y J. 2021. A high-resolution seismic catalog for the 2021 MS6.4/ MW6.1 Yangbi earthquake sequence,Yunnan,China:Application of AI picker and matched filter[J]. Earthq Sci,34(5):390–398. doi: 10.29382/eqs-2021-0031
Zhou Y J,Yue H,Fang L H,Zhou S Y,Zhao L,Ghosh A. 2022a. An earthquake detection and location architecture for continuous seismograms:Phase picking,association,location,and matched filter (PALM)[J]. Seismol Res Lett,93(1):413–425. doi: 10.1785/0220210111
Zhou Y J,Yue H,Zhou S Y,Fang L H,Zhou Y,Xu L S,Liu Z M,Wang T,Zhao L,Ghosh A. 2022b. Microseismicity along Xiaojiang fault zone (Southeastern Tibetan Plateau) and the characterization of interseismic fault behavior[J]. Tectonophysics,833:229364. doi: 10.1016/j.tecto.2022.229364