Ground motion prediction of MW≥7.5 on Xiadian fault
-
摘要: 针对夏垫断裂开展了MW≥7.5地震动预测研究。首先基于全破裂模式设定震源(使其尽可能涵盖夏垫断裂的未知信息)模拟得到夏垫断裂发生MW≥7.5地震时研究区域内的地面地震动场,进而依据分位数筛选出各场点的地震动空间分布,讨论了包含不确定震源下的加速度峰值和速度峰值的分布特征,结果显示当夏垫断裂发生MW7.9地震时,通州城区、北京中心城区均会发生强烈的运动。之后对比讨论了仿真震源下MW7.5地震所引起的地面运动场的空间变化,结果显示对于同等震级而言,两种震源的模拟结果可以相互印证。
-
关键词:
- 夏垫断裂 /
- NNSIM随机有限断层法 /
- 震源设定 /
- 地震动预测
Abstract: The prediction of ground motion fields for potential earthquakes is important for urban planning and regional seismic hazard assessment. In this paper, the prediction of MW≥7.5 ground motion is carried out for the Xiadian fault. Firstly, the earthquake source is set based on the full rupture patterns to cover the unknown information of the Xiadian fault as much as possible. Then the ground motion field in the study area is simulated due to the MW≥7.5 earthquake on the Xiadian fault. Furthermore, the spatial distribution of ground motion at each site is filtered based on the quantile method, and the distribution characteristics of peak ground acceleration and peak ground velocity for the inclusion of uncertain sources are discussed. The results show that an MW7.9 earthquake on the Xiadian fault will produce the strong ground motion in Tongzhou district and Beijing center zone. After that, the spatial distribution of the ground motion due to the MW7.5 earthquake from the simulated source is discussed. The results illustrate that the simulated ground motion from the two types of sources can corroborate each other for the same magnitude. Our study provides a method for the earthquake hazard predictions due to the potential sources with some unknowns. -
2021年5月21日21时48分(北京时间)云南省大理白族自治州漾濞县(99.87°E,25.67°N)发生MS6.4地震。该地震发生后,我们对震中附近的地下流体观测资料进行了系统的总结,结果显示云南省地震台在2021年2月24日提出洱源井水温异常,该井水温在漾濞MS6.4地震前呈现明显的异常现象。
洱源水温观测井位于云南省大理白族自治州洱源县玉湖镇,地理坐标为(99.95°E,26.11°N),地处洱源盆地,位于红河断裂带与维西—巍山断裂之间(图1)。该井建成于1984年,井深266.56 m,套管下至165.56 m,其中80.22—144.02 m为滤水管,165.56—266.56 m为裸孔。0—73.16 m的岩性为冲积湖积层,其中上部为黏土及砂土层、下部为石英质、石英颗粒砂土及碎石砾石层;73.16—170.3 m为千枚岩及粉砂质千枚岩,中间夹有变质砾岩、片岩;170.3—175.1 m为千枚岩破碎带;175.1—202.4 m为砂质千枚岩及少量变粒片岩;202.4—266.56 m以变质泥岩为主,中间为片岩及角砾(云南省地震局,2005)。
图 1 洱源井的构造位置及附近的地震分布断层数据据中国活动构造图(邓起东等,2007)修改补充;地震目录引自中国地震台网中心;震源机制解源于哈佛大学(Dziewonski,Ekström,2021);地质单元和河流数据源于MapSIS软件(蒋骏等,2000)Figure 1. Tectonic position of the Eryuan well and the distribution of nearby earthquakesThe fault data are revised from China ative tectonic map (Deng et al,2007),earthquake catalogue are from China Earthquake Networks Center,focal mechanisms are from Harvard University (Dziewonski,Ekström,2021),and geological units and rivers refer to MapSIS (Jiang et al,2000)洱源井从1991年开始观测水温,观测仪器为中国地震局地壳应力研究所(现应急管理部国家自然灾害防治研究院)研制的SZW-1A水温仪,温度探头放置在井下190 m。2015年10月SZW-1A水温仪器发生故障,10月13日更换为中科光大公司研制的ZKGD3000-NT水温仪,温度探头置于90 m处,该水温仪的观测精度优于0.05 ℃,1分钟采样1次。
洱源井距离漾濞MS6.4地震仅50 km,洱源井水温在漾濞地震前的变化如图2所示,可见:2020年10月3日水温开始下降,2021年4月中旬下降速率减缓,至2021年5月21日下降幅值约0.15 ℃,下降持续230天;漾濞地震发生时,洱源井水温出现显著的同震上升,上升幅值为0.018 ℃,之后持续上升。
针对洱源井水温的下降异常,云南省地震台于2021年3月1日开展了异常核实。通过观测系统检查、环境因素调查及气象因素分析,认为洱源井水温的下降异常不存在人为、仪器和环境等干扰因素(高文斐,胡小静,2021)。
为分析洱源井水温下降异常与漾濞MS6.4地震的关系,将洱源井水温历史观测资料与周围地震的对应情况进行对比。图3a为洱源观测井自采用中科光大水温仪以来的观测曲线,可见洱源井水温共出现过两次与漾濞MS6.4地震前类似的下降异常。一次为2015年10月至2016年4月出现的持续下降,2016年4月底下降转缓,下降幅值约0.19 ℃,转缓1个月后发生2016年5月18日云龙MS5.0地震,该地震与洱源井相距42 km,地震发生时记录到显著的水温同震响应,响应幅值为0.013 ℃,地震后水温回升。另一次为2016年12月初至2017年3月中旬出现的水温持续下降,降幅为0.11 ℃,下降有所转缓后发生2017年3月27日漾濞MS5.1地震,该地震与洱源井相距29 km,地震发生时同样记录到显著的水温同震响应,响应幅值为0.024 ℃,地震后水温回升。图4为三次MS≥5.0地震前洱源井水温下降变化的对比曲线,可见,2015年观测以来,洱源井水温共出现三次显著下降异常现象,之后周边均发生了MS5.0以上地震,地震发生时均记录到显著的同震响应,震后转折回升,因此三次地震前水温下降异常具有一定的重复性。
将洱源井水温异常与地震的对应情况进行统计检验,图3b为洱源井100 km范围内2015年10月13日至2021年8月21日期间MS5.0以上地震的M-t图,可见该时段内共发生6次MS5.0以上地震,因为2021年5月21日发生在漾濞县的四次地震为前震-主震-余震型地震事件(龙锋等,2021),本文将其视为一个地震序列,即洱源井水温自2015年观测以来在三次地震事件前均出现重复性下降异常。洱源井水温异常与地震一一对应,通过统计检验。
综合洱源井水温历史资料对比分析和统计检验的结果,本文认为洱源井水温2020年10月至2021年5月的异常变化与2021年5月21日漾濞MS6.4地震有关,为水温地震前兆观测积累了一次震例。洱源井水温异常的机理可能与震源断层及外围区域的应力演化有关,尚待进一步研究。
① Wang Z Y,Li Y L,Wang W Q,Zhang W Q,Zhang Z G. 2022. Revisiting paleoearthquakes with computational seismology:A case study of the 1679 Sanhe-Pinggu earthquake (submitted). -
-
巴振宁,赵靖轩,吴孟桃,梁建文. 2022. 基于CPU-GPU异构并行的复杂场地近断层地震动谱元法模拟[J]. 地震学报,44(1):182–193. doi: 10.11939/jass.20210076 Ba Z N,Zhao J X,Wu M T,Liang J W. 2022. Simulation of near-fault ground motions in complex sites based on CPU-GPU heterogeneous parallelism by spectral element method[J]. Acta Seismologica Sinica,44(1):182–193 (in Chinese).
邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊1):66–73. Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
付长华,高孟潭,陈鲲. 2012. 北京盆地结构对长周期地震动反应谱的影响[J]. 地震学报,34(3):374–382. doi: 10.3969/j.issn.0253-3782.2012.03.009 Fu C H,Gao M T,Chen K. 2012. A study on long-period response spectrum of ground motion affected by basin structure of Beijing[J]. Acta Seismologica Sinica,34(3):374–382 (in Chinese).
高景华,徐明才,荣立新,柴铭涛,王广科,王小江,刘冠军. 2007. 探测城市断裂活动性的浅层地震方法技术[J]. 物探与化探,31(增刊1):4–8. Gao J H,Xu M C,Rong L X,Chai M T,Wang G K,Wang X J,Liu G J. 2007. The shallow seismic method for detecting city fault activity[J]. Geophysical and Geochemical Exploration,31(S1):4–8 (in Chinese).
高景华,徐明才,荣立新,柴铭涛,王广科,王小江,刘冠军. 2008. 利用地震剖面研究夏垫断裂西南段的活动性[J]. 地震地质,30(2):497–504. doi: 10.3969/j.issn.0253-4967.2008.02.014 Gao J H,Xu M C,Rong L X,Chai M T,Wang G K,Wang X J,Liu G J. 2008. Activity of the southwest segment of Xiadian fault investigated by seismic reflection profiling[J]. Seismology and Geology,30(2):497–504 (in Chinese).
高孟潭,俞言祥,张晓梅,吴健,胡平,丁彦慧. 2002. 北京地区地震动的三维有限差分模拟[J]. 中国地震,18(4):356–364. doi: 10.3969/j.issn.1001-4683.2002.04.005 Gao M T,Yu Y X,Zhang X M,Wu J,Hu P,Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China,18(4):356–364 (in Chinese).
高清武,李霓. 1998. 夏垫断裂氢释放与地震活动的关系[J]. 地震学报,20(4):432–436. Gao Q W,Li N. 1998. Relationship between H2 release and seismicity on Xiadian fault[J]. Acta Seismologica Sinica,11(4):501–505. doi: 10.1007/s11589-998-0097-4
高振寰. 1979. 唐山地震引起北京地区烈度异常区的原因分析[J]. 地震地质,1(2):74–82. Gao Z H. 1979. On distribution of intensity anomalies in the Beijing region caused by the Tangshan earthquake[J]. Seismology and Geology,1(2):74–82 (in Chinese).
何付兵,白凌燕,王继明,刘予,蔡向民,孙永华,张磊,方同明,郭高轩. 2013. 夏垫断裂带深部构造特征与第四纪活动性讨论[J]. 地震地质,35(3):490–505. doi: 10.3969/j.issn.0253-4967.2013.03.004 He F B,Bai L Y,Wang J M,Liu Y,Cai X M,Sun Y H,Zhang L,Fang T M,Guo G X. 2013. Deep structure and Quaternary activities of the Xiadian fault zone[J]. Seismology and Geology,35(3):490–505 (in Chinese).
何宏林,闵伟,原口强. 2008. 1679年三河—平谷8级地震破裂带的大地切片实验研究[J]. 地震地质,30(1):289–297. doi: 10.3969/j.issn.0253-4967.2008.01.021 He H L,Min W,Haraguchi T. 2008. Testing geo-slicer on the rupture of the M8 Sanhe-Pinggu earthquake of 1679[J]. Seismology and Geology,30(1):289–297 (in Chinese).
黄秀铭,汪良谋,徐杰,方仲景,张裕明,向家翠,王辉. 1991. 北京地区新构造运动特征[J]. 地震地质,13(1):43–51. Huang X M,Wang L M,Xu J,Fang Z J,Zhang Y M,Xiang J C,Wang H. 1991. Characteristics of neotectonic movement in Beijing area[J]. Seismology and Geology,13(1):43–51 (in Chinese).
江娃利,侯治华,肖振敏,谢新生. 2000. 北京平原夏垫断裂齐心庄探槽古地震事件分析[J]. 地震地质,22(4):413–422. doi: 10.3969/j.issn.0253-4967.2000.04.010 Jiang W L,Hou Z H,Xiao Z M,Xie X S. 2000. Study on paleoearthquakes of Qixinzhuang trench at the Xiadian fault,Beijing plain[J]. Seismology and Geology,22(4):413–422 (in Chinese).
焦青, 邱泽华. 2006. 北京平原地区主要活动断裂带研究进展[G]//地壳构造与地壳应力文集(18). 北京: 地震出版社: 72–84. Jiao Q, Qiu Z H. 2006. Research progress of major active faults in Beijing plain area[G]//Bulletin of the Institute of Crustal Dynamics (18). Beijing: Seismological Press: 72–84 (in Chinese).
李赫,董一兵,王熠熙,彭研枫,刘双庆,吴博洋. 2020. 廊固凹陷深部剪切破裂构造的地震学证据[J]. 地球物理学报,63(2):492–504. doi: 10.6038/cjg2020N0192 Li H,Dong Y B,Wang Y X,Peng Y F,Liu S Q,Wu B Y. 2020. Seismological evidence for a deep-seated shear zone in the Langgu depression[J]. Chinese Journal of Geophysics,63(2):492–504 (in Chinese).
刘保金,胡平,孟勇奇,酆少英,石金虎,姬计法. 2009. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报,52(9):2264–2272. doi: 10.3969/j.issn.0001-5733.2009.09.010 Liu B J,Hu P,Meng Y Q,Feng S Y,Shi J H,Ji J F. 2009. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics,52(9):2264–2272 (in Chinese).
刘博研,史保平,张健. 2007. 复合地震源模拟强地面运动:以1679年三河—平谷MS8.0地震为例[J]. 地震学报,29(3):302–313. doi: 10.3321/j.issn:0253-3782.2007.03.009 Liu B Y,Shi B P,Zhang J. 2007. Strong motion simulation by the composite source modeling:A case study of 1679 M8.0 Sanhe-Pinggu earthquake[J]. Acta Seismologica Sinica,29(3):302–313 (in Chinese).
毛昌伟, 丁锐, 龚正, 张世民. 2010. 1679年三河—平谷8级地震地表断层陡坎的GPS测量[G]//地壳构造与地壳应力文集(22). 北京: 地震出版社: 11–18. Mao C W, Ding R, Gong Z, Zhang S M. 2010. GPS survey of the surface fault scarp of 1679 Sanhe-Pinggu M8 earthquake[G]//Bulletin of the Institute of Crustal Dynamics (22). Beijing: Seismological Press: 11–18 (in Chinese).
潘波,许建东,关口春子,何宏林. 2006. 北京地区近断层强地震动模拟[J]. 地震地质,28(4):623–634. doi: 10.3969/j.issn.0253-4967.2006.04.010 Pan B,Xu J D,Sekigguchi H,He H L. 2006. Simulation of the near-fault strong ground motion in Beijing region[J]. Seismology and Geology,28(4):623–634 (in Chinese).
潘波,许建东,刘启方. 2009. 1679年三河-平谷8级地震近断层强地震动的有限元模拟[J]. 地震地质,31(1):69–83. doi: 10.3969/j.issn.0253-4967.2009.01.007 Pan B,Xu J D,Liu Q F. 2009. Simulations of the near-fault strong ground motion of the 1679 Sanhe-Pinggu M8 earthquake[J]. Seismology and Geology,31(1):69–83 (in Chinese).
冉勇康,邓起东,杨晓平,张晚霞,李如成,向宏发. 1997. 1679年三河—平谷8级地震发震断层的古地震及其重复间隔[J]. 地震地质,19(3):2–10. Ran Y K,Deng Q D,Yang X P,Zhang W X,Li R C,Xiang H F. 1997. Paleoearthquakes and recurrence interval on the seismogenic fault of 1679 Sanhe Pinggu M8 earthquake,Hebei and Beijing[J]. Seismology and Geology,19(3):2–10 (in Chinese).
冉志杰,李皓,吕国军,温超,杨柳,杨歧炎,孟立鹏,彭远黔,骆艳欣. 2013. 夏垫断裂夏垫段浅部构造特征地震探测[J]. 地震工程学报,35(3):656–663. doi: 10.3969/j.issn.1000-0844.2013.03.0651 Ran Z J,Li H,Lü G J,Wen C,Yang L,Yang Q Y,Meng L P,Peng Y Q,Luo Y X. 2013. Seismic detecting for the shallow tectonic features of the Xiadian fault[J]. China Earthquake Engineering Journal,35(3):656–663 (in Chinese).
沈正康,万永革,甘卫军,李铁明,曾跃华. 2004. 华北地区700年来地壳应力场演化与地震的关系研究[J]. 中国地震,(3):2–19. Shen Z K,Wan Y G,Gan W J,Li T M,Zeng Y H. 2004. Crustal stress evolution of the last 700 years in North China and earthquake occurrence[J]. Earthquake Research in China,(3):2–19 (in Chinese).
吴晶,高原,陈运泰,黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报,50(1):209–220. doi: 10.3321/j.issn:0001-5733.2007.01.027 Wu J,Gao Y,Chen Y T,Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics,50(1):209–220 (in Chinese).
向宏发,方仲景,徐杰,李如成,贾三发,郝书俭,王景钵,张晚霞. 1988. 三河—平谷8级地震区的构造背景与大震重复性研究[J]. 地震地质,10(1):15–28. Xiang H F,Fang Z J,Xu J,Li R C,Jia S F,Hao S J,Wang J B,Zhang W X. 1988. Seismotectonic background and recurrence interval of great earthquakes in 1679 Sanhe-Pinggu M=8 earthquake area[J]. Seismology and Geology,10(1):15–28 (in Chinese).
肖修来,李莹甄,许同旭,沈军. 2017. 三河—平谷地区b值和地震复发周期的时间变化分析[J]. 防灾科技学院学报,19(4):23–29. doi: 10.3969/j.issn.1673-8047.2017.04.004 Xiao X L,Li Y Z,Xu T X,Shen J. 2017. Analysis on the time variation of b-value and earthquake recurrence period in Sanhe-Pinggu area[J]. Journal of Institute of Disaster Prevention,19(4):23–29 (in Chinese).
徐锡伟,张培震,闻学泽,秦尊丽,陈桂华,朱艾斓. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质,27(3):446–461. doi: 10.3969/j.issn.0253-4967.2005.03.010 Xu X W,Zhang P Z,Wen X Z,Qin Z L,Chen G H,Zhu A L. 2005. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology,27(3):446–461 (in Chinese).
杨晓平,曹景虎,陈献程. 2012. 夏垫活动断裂两盘岩心氧化铁变化[J]. 地震地质,34(4):659–671. doi: 10.3969/j.issn.0253-4967.2012.04.010 Yang X P,Cao J H,Chen X C. 2012. The iron oxide changes in drilling cores from the two walls of Xiadian active fault[J]. Seismology and Geology,34(4):659–671 (in Chinese).
雍凡,蒋正中,罗水余,李颜贵,刘建生,刘子龙. 2014. 夏垫断裂北段浅部构造的高分辨率地震反射勘探研究[J]. 工程地球物理学报,11(6):832–836. doi: 10.3969/j.issn.1672-7940.2014.06.016 Yong F,Jiang Z Z,Luo S Y,Li Y G,Liu J S,Liu Z L. 2014. The seismic reflection study on high-resolution profile of shallow structure in north part of Xiadian fault[J]. Chinese Journal of Engineering Geophysics,11(6):832–836 (in Chinese).
余中元,潘华,沈军,李金臣,张萌,戴训也. 2020. 夏垫断裂荣家堡探槽揭示的断裂活动特征及未来地震危险性概率评价[J]. 地震地质,42(3):688–702. doi: 10.3969/j.issn.0253-4967.2020.03.010 Yu Z Y,Pan H,Shen J,Li J C,Zhang M,Dai X Y. 2020. The activity features of Xiadian fault zone revealed by Rongjiabao trench and its probabilistic seismic hazard evaluation[J]. Seismology and Geology,42(3):688–702 (in Chinese).
张培震,张会平,郑文俊,郑德文,王伟涛,张竹琪. 2014. 东亚大陆新生代构造演化[J]. 地震地质,36(3):574–585. doi: 10.3969/j.issn.0253-4967.2014.03.003 Zhang P Z,Zhang H P,Zheng W J,Zheng D W,Wang W T,Zhang Z Q. 2014. Cenozoic tectonic evolution of continental Eastern Asia[J]. Seismology and Geology,36(3):574–585 (in Chinese).
张晚霞,向宏发,李如成. 1995. 夏垫隐伏断裂土壤气氡分布特征的初步研究[J]. 西北地震学报,17(2):46–50. Zhang W X,Xiang H F,Li R C. 1995. Preliminary study on soil-radon distribution along the Xiadian buried fault[J]. Northwestern Seismological Journal,17(2):46–50 (in Chinese).
张先康,赵金仁,刘国华,宋文荣,刘保金,赵成斌,成双喜,刘建达,顾梦林,孙振国. 2002. 三河—平谷8.0级大震区震源细结构的深地震反射探测研究[J]. 中国地震,18(4):326–336. doi: 10.3969/j.issn.1001-4683.2002.04.002 Zhang X K,Zhao J R,Liu G H,Song W R,Liu B J,Zhao C B,Cheng S X,Liu J D,Gu M L,Sun Z G. 2002. Study on fine crustal structure of the Sanhe-Pinggu earthquake (M8.0) region by deep seismic reflection profiling[J]. Earthquake Research in China,18(4):326–336 (in Chinese).
赵金仁,张先康,张成科,张建狮,杨卓欣,刘宝峰,刘保金,赵成斌. 2004. 利用宽角反射/折射和深反射探测剖面揭示三河—平谷大震区深部结构特征[J]. 地球物理学报,47(4):646–653. doi: 10.3321/j.issn:0001-5733.2004.04.015 Zhao J R,Zhang X K,Zhang C K,Zhang J S,Yang Z X,Liu B F,Liu B J,Zhao C B. 2004. Deep structural features of the Sanhe-Pinggu great earthquake area imaged by wide-angle and deep seismic reflection profiling[J]. Chinese Journal of Geophysics,47(4):646–653 (in Chinese).
周红. 2018. 基于NNSIM随机有限断层法的7.0级九寨沟地震强地面运动场重建[J]. 地球物理学报,61(5):2111–2121. doi: 10.6038/cjg2018L0651 Zhou H. 2018. Reconstruction of strong ground motion of Jiuzhaigou M7.0 earthquake based on NNSIM stochastic finite fault method[J]. Chinese Journal of Geophysics,61(5):2111–2121 (in Chinese).
周红,李亚南,常莹. 2021. 云南漾濞6.4级地震强地面运动的模拟和空间分布特征分析[J]. 地球物理学报,64(12):4526–4537. doi: 10.6038/cjg2021P0421 Zhou H,Li Y N,Chang Y. 2021. Simulation and analysis of spatial distribution characteristics of strong ground motions by the 2021 Yangbi,Yunnan Province MS6.4 earthquake[J]. Chinese Journal of Geophysics,64(12):4526–4537 (in Chinese).
Andrews D J. 1980. A stochastic fault model:1. Static case[J]. J Geophys Res,85(B7):3867–3877. doi: 10.1029/JB085iB07p03867
Beresnev I A,Atkinson G M. 1997. Modeling finite-fault radiation from the ωn spectrum[J]. Bull Seismol Soc Am,87(1):67–84.
Harris R A. 2000. Earthquake stress triggers,stress shadows,and seismic hazard[J]. Curr Sci,79(9):1215–1225.
Karakostas V,Papadimitriou E,Jin X S,Liu Z H,Paradisopoulou P,He Z. 2013. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes[J]. J Asian Earth Sci,75:1–12. doi: 10.1016/j.jseaes.2013.06.015
Li S Z,Zhao G C,Santosh M,Liu X,Dai L M,Suo Y H,Tam P Y,Song M C,Wang P C. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji belt,North China Craton[J]. Precambrian Res,200/201/202/203:59–73. doi: 10.1016/j.precamres.2012.01.007
Liu M A, Yang Y Q, Shen Z K, Wang S M, Wang M, Wan Y G. 2007. Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics[G]//Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Boulder: Geological Society of America: 13–24.
Robinson R,Zhou S Y. 2005. Stress interactions within the Tangshan,China,earthquake sequence of 1976[J]. Bull Seismol Soc Am,95(6):2501–2505. doi: 10.1785/0120050091
Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
Stein R S,Barka A A,Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophys J Int,128(3):594–604. doi: 10.1111/j.1365-246X.1997.tb05321.x
Sun R,Vaccari F,Marrara F,Panza G F. 1998. The main features of the local geological conditions can explain the macroseismic intensity caused in Xiji-Langfu (Beijing) by the MS7.7 Tangshan 1976 earthquake[J]. Pure Appl Geophys,152(3):507–521. doi: 10.1007/s000240050164
Wang X S,Feng X D,Xu X W,Diao G L,Wan Y G,Wang L B,Ma G Q. 2014. Fault plane parameters of Sanhe-Pinggu M8 earthquake in 1679 determined using present-day small earthquakes[J]. Earthquake Science,27(6):607–614. doi: 10.1007/s11589-014-0099-3
Yu Z Y, Pan H, Xi H, Zhang Y H, Chen H. 2019. Late Quaternary paleoseismicity of the Xiadian fault in the North China Plain with implications for earthquake potential[J]. J Asian Earth Sci, 184. https://doi.org/10.1016/j.jseaes.2019.103997.
Zhang X, Wang M F. 2017. Research on the application of change detection technology based on multisource remote sensing images in the dynamic change of land use[C]//2017 3rd International Conference on Computational Systems and Communications (ICCSC 2017). Beijing: Int. Conf. Comput. Syst. Commun: 34–40.
Zhou H, Chang Y. 2019. Stochastic finite-fault method controlled by the fault rupture process and its application to the MS7.0 Lushan Earthquake[J]. Soil Dyn Earthq Eng, 126: 1–14. https://doi.org/10.1016/j.soildyn.2019.105782.
-
期刊类型引用(6)
1. 鲁明贵,谷洪彪,巩浩波,张文旭,迟宝明. 基于Molchan图表法的流体监测井水位地震预测效能检验. 地震研究. 2024(02): 200-211 . 百度学术
2. 周卫东,道伟,王娟,姜佳佳,田野,牛延平,苏小芸. 积石山M6.2地震前通渭东川地震台流体观测数据异常分析. 高原地震. 2024(02): 1-6 . 百度学术
3. 郭宇鑫,张骞,高熹微,李玉. 淮扬地区水位、水温观测质量影响因素分析. 地震地磁观测与研究. 2024(06): 142-148 . 百度学术
4. 王艳,马利军,张娜,吕文青,王会芳. 永清井水温多次畸变的跟踪研究. 华北地震科学. 2023(04): 102-106 . 百度学术
5. 芮雪莲,杨耀,官致君,杜方,薛乔文,龙锋,杨星,杨鹏. 四川理塘毛垭51泉水温在青藏高原东南缘中强地震前的异常特征及机理分析. 地震研究. 2022(02): 318-328 . 百度学术
6. 黎明晓,邓世广,马玉川,解孟雨,王月,郭菲. 2021年11月17日江苏大丰海域M_S 5.0地震总结. 地震地磁观测与研究. 2022(04): 148-159 . 百度学术
其他类型引用(0)