地震动作用下刚体扭转效应的振动台模拟试验

赵世伟, 罗奇峰, 潘康, 翟永梅, 卢文胜, 赵斌, 曹文清

赵世伟,罗奇峰,潘康,翟永梅,卢文胜,赵斌,曹文清. 2022. 地震动作用下刚体扭转效应的振动台模拟试验. 地震学报,44(5):903−910. DOI: 10.11939/jass.20220092
引用本文: 赵世伟,罗奇峰,潘康,翟永梅,卢文胜,赵斌,曹文清. 2022. 地震动作用下刚体扭转效应的振动台模拟试验. 地震学报,44(5):903−910. DOI: 10.11939/jass.20220092
Zhao S W,Luo Q F,Pan K,Zhai Y M,Lu W S,Zhao B,Cao W Q. 2022. A shake table test for the rotation response of rigid bodies under seismic excitation. Acta Seismologica Sinica44(5):903−910. DOI: 10.11939/jass.20220092
Citation: Zhao S W,Luo Q F,Pan K,Zhai Y M,Lu W S,Zhao B,Cao W Q. 2022. A shake table test for the rotation response of rigid bodies under seismic excitation. Acta Seismologica Sinica44(5):903−910. DOI: 10.11939/jass.20220092

地震动作用下刚体扭转效应的振动台模拟试验

基金项目: 国家自然科学基金(51078273)资助
详细信息
    作者简介:

    赵世伟,博士,讲师,主要从事结构抗震研究,e-mail:zhaosw11@sina.com

    通讯作者:

    罗奇峰,博士,研究员,主要从事结构抗震研究,e-mail:luo@tongji.edu.cn

  • 中图分类号: P315.8

A shake table test for the rotation response of rigid bodies under seismic excitation

  • 摘要: 2008年汶川地震中江油市太白公园曲径桥上的石雕发生转动破坏现象,本文对这一转动现象进行了振动台模拟试验。模拟试验结果表明:① 在振动台三向加载1.5倍的汶川地震江油台记录的平动加速度后,模型的转动情况与实际观测的石雕转动情况比较一致;② 石雕的转动与石雕的非对称性、地震动输入角度和地震动的竖向作用有关;③ 加载竖向地震动作用后,石雕模型会发生摇摆现象,说明竖向地震动是造成模型扭转现象的重要原因,这也说明在分析相似震害现象时竖向地震动作用不可忽视。
    Abstract: In 2008 Wenchuan earthquake, an interesting torsion phenomenon attracts our attention: Most of the stone statues, which were placed upon the banisters of one zigzag bridge in Taibai Park, Jiangyou City, Sichuan Province, rotated an angle from their original location with little translation displacements. To simulate and further study this phenomenon, a group of stone statue models with different asymmetric characteristics were made, and then they were arranged in different location and direction on the shake table to do shake tests. The results show that: ① The torsional phenomena of the statue models appeared when input 3D accelerations from the shake table, and the acceleration amplitudes are 1.5 times of the original seismic records. Also, the phenomena were similar to those in the Taibai Park in Wenchuan earthquake. However, when the input accelerations were only in two horizontal directions, the torsional phenomena would not appear even when the amplitude was large enough. ② The torsional phenomena of the stone statue models showed different modes with different model asymmetric characteristics and different acceleration input angles. ③ The most significant factor that causes the torsional phenomena is the vertical seismic input. The statue rotation did not occur without it. So for this case, vertical ground motion is crucial and cannot be ignored.
  • 图  7   试验后各模型的位移及旋转角度示意图

    Figure  7.   Displacements and rotational angles of each model after test

    图  1   江油市太白公园曲径桥和桥上石雕在汶川地震中的转动破坏现象(Yang et al,2010

    Figure  1.   Rotation damage phenomena of stone carvings on the labyrinth bridge in Taibai Park of Jiangyou City in Wenchuan earthquake (Yang et al,2010

    图  2   四类模型示意图

    Figure  2.   Sketch maps of four type models

    图  3   典型模型设计图(单位:mm)

    Figure  3.   Classic model structural map (Unit:mm)

    图  4   模型在振动台上的布置和编号(a)及测量仪器的位置(b)

    Figure  4.   Layout and number of models on the shake table (a) and the location of measuring instrument (b)

    图  5   江油地震台东西方向(a)、南北方向(b)和竖向方向(c)的加速度记录

    Figure  5.   Acceleration time histories of EW (a),NS (b) and UD (c) directions for Jiangyou seismic station

    图  6   模型7在工况12下x方向的加速度(a)和位移(b)时程曲线

    Figure  6.   Acceleration (a) and displacement (b) time histories of model 7 in x direction under working condition 12

    图  8   试验后模型在振动台上的损伤状态

    Figure  8.   The damage state of models 4,6,7 and 8 on the shake table

    图  9   模型4,6,7和8的转角时程

    Figure  9.   Rotation time history of models 4,6,7 and 8

    图  10   模型2在三向地震动加载作用下的运动片段

    Figure  10.   The move segments of model 2 under three-direction seismic excitation

    表  1   振动台试验加载工况

    Table  1   Loading working conditions of shake table test

    工况序号输入地震波输入地震动峰值/g工况序号输入地震波输入地震动峰值/g
    x方向y方向x方向y方向z方向
    1 El-Centro波 0.03 0.03 7 El-Centro波 0.1 0.1 0.1
    2 0.05 0.05 8 江油台地震波 0.027 0.031 0.011
    3 江油台地震波 0.013 0.016 9 0.036 0.042 0.014
    4 0.023 0.026 10 0.045 0.052 0.017
    5 0.036 0.042 11 0.054 0.063 0.021
    6 0.045 0.052 12 0.068 0.079 0.026
    下载: 导出CSV

    表  2   各个模型的位移和转角

    Table  2   Displacement and rotational angle of each model

    模型编号x向位移/mmy向位移/mm模型绕中心的转角/°
    168018
    233280
    4282721
    661421
    7192131
    834715
    下载: 导出CSV
  • 何超,罗奇峰,洪钟. 2011. 关于地震动转动分量的研究[J]. 地震研究,34(1):81–87. doi: 10.3969/j.issn.1000-0666.2011.01.013

    He C,Luo Q F,Hong Z. 2011. Brief discussion on the study of the seismic rotational components[J]. Journal of Seismological Research,34(1):81–87 (in Chinese).

    罗奇峰,胡聿贤. 1997. 1976年唐山地震近、远场加速度的半经验合成[J]. 地震学报,19(3):275–282.

    Luo Q F,Hu Y X. 1997. Semi-empirical synthesis of near-field and far-field accelerations of the 1976 Tangshan earthquake[J]. Acta Seismologica Sinica,19(3):275–282 (in Chinese).

    潘康,罗奇峰. 2012. 地震动扭转分量对非对称结构的影响[J]. 国际地震动态,(6):159.

    Pan K,Luo Q F. 2012. Effects of asymmetric structure under the seismic torsional component[J]. Recent Developments in World Seismology,(6):159 (in Chinese).

    Hu Y X. 2002. Earthquake engineering in China[J]. Earthquake Engineering and Engineering Vibration,1(1):1–9. doi: 10.1007/s11803-002-0001-5

    Kozák J T. 2009. Tutorial on earthquake rotational effects:Historical examples[J]. Bull Seismol Soc Am,99(2B):998–1010. doi: 10.1785/0120080308

    Tobita T,Sawada S. 2006. Rotation response of a rigid body under seismic excitation[J]. J Eng Mech,132(4):375–384. doi: 10.1061/(ASCE)0733-9399(2006)132:4(375)

    Yang F,Luo Q F,Che W. 2010. Torsional phenomena in 2008 great Wenchuan earthquake[J]. Earthquake Science,23(1):79–85. doi: 10.1007/s11589-009-0077-3

图(10)  /  表(2)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  253
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-17
  • 网络出版日期:  2022-08-31
  • 发布日期:  2022-09-14

目录

    /

    返回文章
    返回