Component azimuths of the permanent seismic stations in the Northeast China estimated from P-wave particle motion
-
摘要:
现代地震研究依赖于可靠的三分量观测数据,地震计的北分量是否严格指北将直接影响研究的准确性。然而,受台站附近磁异常或人为安装错误的影响,地震计的方位角可能出现偏差。基于东北地区154个固定台站2020年的远震数据,利用P波质点运动方法,估算了每个台站的北向分量方位角,以判断台站地震计是否存在方位角偏转问题。结果表明,84%的台站运行良好,12%的台站存在方位角偏差绝对值过大(>20°)或分量极性反转等问题。此外,分析后发现方位角偏转较大会导致H-κ叠加方法计算得到的地壳厚度和地震波速比出现偏差。因此,为确保地震学分析的可靠性,固定台站的地震计方位角需要进行定期校标。
Abstract:Modern seismic studies rely on reliable three-component seismological observations, whether the station sensor’s north component strictly aligns to the geographical north or not will directly affect the accuracy of the research. However, due to magnetic anomalies near the station or artificial error, the azimuth of seismometer may be deviated. In this study, the component azimuths of 154 permanent seismic stations in Northeast China were rechecked using the P-wave particle motions based on the teleseismic events in 2020, and we used the same seismic events to calculate the component azimuth by the principal component analysis and the signal-to-noise-weighted-multievent method, respectively. The azimuth deviation determined by these two methods are very consistent, with a correlation coefficient of 0.998 6. Among the 154 stations, the azimuth of 84% of the stations deviate slightly from the true north, and some of the stations have some sort of problems, including azimuth deviation of the two horizontal components (>20° or <−20°) or polarity reversal in one or more components. We found a large deviation in sensor azimuth could result in incorrect estimatiog of both crustal thickness and vP/vS ratio by H-κ stacking. Therefore, in order to ensure the reliability of seismological analysis, the azimuth of the station needs to be checked and calibrated regularly.
-
Keywords:
- azimuth /
- P-wave particle motion /
- seismometer /
- Northeast China /
- H-κ stacking
-
-
图 1 仪器方位角示意图
BHN方向为地震计北向方向,与地理北之间的方位角偏差用φ表示,θb为台站的后方位角,θa为P波质点运动求出的视后方位角
Figure 1. A schematic plot of station sensor orientation
The clockwise deviation angle between geographical north and BHN is defined as the misorientation φ,θb is back azimuth measured from source-station geometry,and θa is apparent back azimuth measured from P-wave particle motion
图 3 LN.SHS (a)和NM.JIP (b)单地震事件信噪比和PCA方法计算方位角的相关性分析
圆圈代表单个地震事件的方位角计算结果,相关系数越大,校正效果越好;黑色虚线表示参与计算台站方位角的数据筛选条件;灰色区域为方位角偏差集中区域
Figure 3. The relationship between single event misorientation estimated by PCA method and its signal-to-noiseratio for LN.SHS and NM.JIP stations
Circles and colors represent the misorientations and cross-correlation values of R and Z components for each event,respectively. The larger cross-correlation values mean the better correction for sensor misorientations. The dashed lines denote the thresholds to select data in the sensor misorientation calculation,and the gray areas highlight the dominant estimation of misorientation
图 4 HL.BAQ (a)和NM.JIP (b)台站PCA方法估算地震计方位角偏差
图中紫色三角表示单地震事件PCA方法估算方位角结果,红色正方形表示校正后垂向和径向分量对应相关系数,在理想情况下为1.0
Figure 4. The misorientation calculated by PCA method for HL.BAQ (a) and NM.JIP (b) stations
The purple triangles represent the single event PCA measurement,the red squares represent the cross-correlation values of R and T components,which is 1.0 in ideal case
表 1 存在问题台站方位角列表
Table 1 Misoriented stations
台站代码 事件数 φMin-T/° φPCA/° 数据起止时间 仪器分量偏移 BJ.CIQ 60 −14.70±4.60 −14.33±4.07 2020−01−01—2020−12−31 BJ.DAX 101 −7.80±4.80 −7.58±4.68 2020−01−01—2020−12−31 N → E,E → −N BJ.NSC 92 −15.40±4.00 −15.44±3.54 2020−01−01—2020−12−31 BJ.ZKD 96 10.20±4.10 10.57±4.14 2020−01−01—2020−12−31 HE.CHC 109 4.80±3.50 5.43±3.92 2020−01−01—2020−12−31 HE.CHD 90 3.60±4.40 3.34±5.30 2020−01−01—2020−12−31 HE.FEN 80 4.40±4.30 4.88±5.60 2020−01−01—2020−12−31 HE.SHC 105 5.50±7.40 5.59±14.59 2020−01−01—2020−12−31 HE.XLD 108 3.80±3.20 4.07±3.96 2020−01−01—2020−12−31 HE.XUH 85 5.60±3.80 6.34±4.29 2020−01−01—2020−12−31 HE.ZUH 88 −1.80±3.40 −2.50±3.37 2020−01−01—2020−12−31 N → −N,E → −E HL.BAQ 58 2.70±4.20 3.20±4.76 2020−01−01—2020−07−22 HL.BAQ 40 −30.10±3.90 −29.46±3.24 2020−07−27—2020−12−31 HL.FUY 77 −15.50±3.50 −14.72±3.86 2020−01−01—2020−12−31 HL.JIY 42 −31.90±3.80 −32.02±4.30 2020−01−01—2020−12−31 N → E,E → −N HL.LIH 96 5.10±3.30 4.86±3.31 2020−01−01—2020−12−31 HL.MDJ 102 −3.70±4.70 −2.38±5.20 2020−01−01—2020−12−31 HL.SHZ 73 −8.20±4.40 −7.88±7.35 2020−01−01—2020−12−31 HL.TOH 65 −8.60±3.60 −9.06±2.91 2020−01−01—2020−12−31 JL.BCT 63 −4.30±2.90 −4.45±2.65 2020−01−01—2020−12−31 JL.BST 21 23.30±2.90 23.65±2.70 2020−08−18—2020−12−31 JL.CBS 50 2.10±5.80 2.92±5.03 2020−01−01—2020−11−07 N → −N,E → −E JL.CBT 55 6.90±3.60 7.12±4.05 2020−01−01—2020−12−31 JL.HCT 72 32.20±3.30 31.62±3.52 2020−01−01—2020−12−31 N → −E,E → N JL.JCT 83 29.90±3.40 29.80±5.04 2020−01−01—2020−12−31 N → −E,E → N JL.LJT 35 −10.50±4.40 −10.81±5.66 2020−01−01—2020−12−31 JL.LYT 48 −7.50±7.10 −6.87±11.90 2020−01−01—2020−12−31 JL.PST 94 29.80±3.70 29.88±3.98 2020−01−01—2020−12−31 JL.SGT 28 −4.80±4.70 −4.09±4.17 2020−01−01—2020−12−31 JL.WQT 18 −13.80±4.30 −13.13±5.86 2020−01−01—2020−10−01 JL.WQT 53 −12.80±3.20 −12.48±2.95 2020−10−19—2020−12−31 N → −N,E → −E JL.YFT 91 30.60±3.80 30.14±3.97 2020−01−01—2020−12−31 N → −E,E → N LN.BXI 65 −5.40±3.90 −5.46±4.81 2020−01−01—2020−12−31 LN.FXI 93 −3.00±3.10 −3.28±2.85 2020−01−01—2020−12−31 N → −N,E → −E LN.GUS 95 −4.50±3.20 −4.37±2.75 2020−01−01—2020−12−31 LN.LYN 94 36.00±3.80 36.07±4.87 2020−01−01—2020−12−31 NM.CHR 77 3.20±3.90 2.89±3.75 2020−01−01—2020−12−31 NM.HJN 48 −43.70±3.50 −43.55±2.33 2020−01−01—2020−12−31 N → −E,E → N NM.IDR 48 −17.00±4.60 −17.60±7.48 2020−01−01—2020−12−31 NM.JIP 49 −22.00±2.90 −22.32±2.32 2020−01−01—2020−07−06 N → E,E → −N NM.JIP 51 2.10±2.70 1.95±2.82 2020−07−14—2020−12−31 NM.LIX 16 −16.40±3.50 −17.40±3.36 2020−01−01—2020−06−13 N → E,E → −N NM.LIX 42 2.80±4.50 2.56±4.99 2020−07−22—2020−12−31 NM.WLT 91 1.40±3.20 1.54±2.42 2020−01−01—2020−12−31 N → −E,E → N NM.WLY 67 15.60±3.40 15.62±3.38 2020−01−01—2020−12−31 NM.XIQ 63 −21.20±3.60 −21.66±4.02 2020−01−01—2020−12−31 NM.XLT 99 3.10±3.40 2.29±3.84 2020−01−01—2020−12−31 TJ.BAD 69 −4.10±6.00 −2.47±7.39 2020−01−01—2020−12−31 -
陈继锋,李亮,李少睿,刘白云,陈晓龙. 2016. 甘肃省测震台网地震台站地震计方位角检验与校正[J]. 地震工程学报,38(3):460–465. Chen J F,Li L,Li S R,Liu B Y,Chen X L. 2016. Check and correction of seismometer azimuth for Gansu seismic network stations[J]. China Earthquake Engineering Journal,38(3):460–465 (in Chinese).
陈家樑,戴丽金,张宝剑. 2021. 利用P波质点运动检测福建台网地震计方位角[J]. 华北地震科学,39(3):45–50. Chen J L,Dai L J,Zhang B J. 2021. The azimuths of Fujian seismic network detected by P-wave particle motion[J]. North China Earthquake Sciences,39(3):45–50 (in Chinese).
黄静,房立华,王长在,郭永霞. 2015. 采用P波分析法校正北京遥测地震台网地震计方位角[J]. 地震地磁观测与研究,36(4):47–53. Huang J,Fang L H,Wang C Z,Guo Y X. 2015. Application of P waveform analysis in the seismometer azimuth correction of Beijing seismic telemetry network[J]. Seismological and Geomagnetic Observation and Research,36(4):47–53 (in Chinese).
李天觉,陈棋福. 2019. 利用接收函数方法研究中国东北东南部地区不同构造体的地壳特征[J]. 地球物理学报,62(8):2899–2917. Li T J,Chen Q F. 2019. Crustal structure of different tectonic units in southeastern part of Northeast China using receiver functions[J]. Chinese Journal of Geophysics,62(8):2899–2917 (in Chinese).
林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯,尹成孝. 1998. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学,33(2):129–139. Lin Q,Ge W C,Sun D Y,Wu F Y,Won C K,Min G D,Jin M S,Lee W M,Kwon C S,Yun S H. 1998. Tectonic significance of Mesozoic volcanic rocks in northeastern China[J]. Scientia Geologica Sinica,33(2):129–139 (in Chinese).
王婷,薛梅. 2020. 阿留申群岛地震台站方位角变化及其对横波分裂的影响[J]. 地震学报,42(2):187–195. Wang T,Xue M. 2020. Orientation variations of the seismometers in the Aleutian islands and their impacts on shear wave splitting analyses[J]. Acta Seismologica Sinica,42(2):187–195 (in Chinese).
魏贵春,姚运生,张丽芬,申学林. 2017. 方位角对地方震震级测定的影响[J]. 地震学报,39(6):880–890. Wei G C,Yao Y S,Zhang L F,Shen X L. 2017. Influences of azimuth on the local earthquake magnitude measurement[J]. Acta Seismologica Sinica,39(6):880–890 (in Chinese).
吴福元,曹林. 1999. 东北亚地区的若干重要基础地质问题[J]. 世界地质,18(2):1–13. Wu F Y,Cao L. 1999. Some important problems of geology in northeastern Asia[J]. World Geology,18(2):1–13 (in Chinese).
张广成,吴庆举,潘佳铁,张风雪,余大新. 2013. 利用 H- κ叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报,56(12):4084–4094. Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. Study of crustal structure and Poisson ratio of NE China by H- κ stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).
张瑞青,李永华,姚雪绒. 2006. 西北太平洋俯冲带东北地区壳幔结构研究进展[J]. 地球物理学进展,21(4):1080–1085. Zhang R Q,Li Y H,Yao X R. 2006. A review of latest crustal and upper mantle discontinuities sduties beneath Northeast China in northwest Pacific subduction zone[J]. Progress in Geophysics,21(4):1080–1085 (in Chinese).
Chen C X,Zhao D P,Tian Y,Wu S G,Hasegawa A,Lei J S,Park J H,Kang I B. 2017. Mantle transition zone,stagnant slab and intraplate volcanism in Northeast Asia[J]. Geophys J Int,209(1):68–85.
Davis P M. 2003. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle[J]. J Geophys Res: Solid Earth,108(B1):2052.
Doran A K,Laske G. 2017. Ocean-bottom seismometer instrument orientations via automated Rayleigh-wave arrival-angle measurements[J]. Bull Seismol Soc Am,107(2):691–708. doi: 10.1785/0120160165
Ekström G,Busby R W. 2008. Measurements of seismometer orientation at USArray transportable array and backbone stations[J]. Seismol Res Lett,79(4):554–561. doi: 10.1785/gssrl.79.4.554
Fontaine F R,Barruol G,Kennett B L N,Bokelmann G H R,Reymond D. 2009. Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization:Implications for real-time earthquake location[J]. J Geophys Res,114(B3):B03306.
Han G J,Li J,Guo G R,Mooney W D,Karato S I,Yuen D A. 2021. Pervasive low-velocity layer atop the 410 km discontinuity beneath the northwest Pacific subduction zone:Implications for rheology and geodynamics[J]. Earth Planet Sci Lett,554:116642. doi: 10.1016/j.jpgl.2020.116642
Jurkevics A. 1988. Polarization analysis of three-component array data[J]. Bull Seismol Soc Am,78(5):1725–1743.
Laske G. 1995. Global observation of off-great-circle propagation of long-period surface waves[J]. Geophys J Int,123(1):245–259. doi: 10.1111/j.1365-246X.1995.tb06673.x
Lockman A B. 2005. Single-station earthquake characterization for early warning[J]. Bull Seismol Soc Am,95(6):2029–2039. doi: 10.1785/0120040241
Niu F L,Li J. 2011. Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthq Sci,24(1):3–13. doi: 10.1007/s11589-011-0764-8
Noda S,Yamamoto S,Sato S,Iwata N,Korenaga M,Ashiya K. 2012. Improvement of back-azimuth estimation in real-time by using a single station record[J]. Earth Planets Space,64(3):305–308. doi: 10.5047/eps.2011.10.005
Ojo A O,Zhao L,Wang X. 2019. Estimations of sensor misorientation for broadband seismic stations in and around Africa[J]. Seismol Res Lett,90(6):2188–2204. doi: 10.1785/0220190103
Revenaugh J,Sipkin S A. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity[J]. Nature,369(6480):474–476. doi: 10.1038/369474a0
Ringler A T,Hutt C R,Persefield K,Gee L S. 2013. Seismic station installation orientation errors at ANSS and IRIS/USGS stations[J]. Seismol Res Lett,84(6):926–931. doi: 10.1785/0220130072
Rost S,Thomas C. 2002. Array seismology:Methods and applications[J]. Rev Geophys,40(3):1008.
Schulte-Pelkum V,Masters G,Shearer P M. 2001. Upper mantle anisotropy from long-period P polarization[J]. J Geophys Res: Solid Earth,106(B10):21917–21934. doi: 10.1029/2001JB000346
Wang X,Chen Q F,Li J,Wei S J. 2016. Seismic sensor misorientation measurement using P-wave particle motion:An application to the NECsaids array[J]. Seismol Res Lett,87(4):901–911. doi: 10.1785/0220160005
Wei W,Zhao D P,Xu J D,Wei F X,Liu G M. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia:Constraints on stagnant slab and intraplate volcanism[J]. J Geophys Res: Solid Earth,120(3):1642–1666. doi: 10.1002/2014JB011254
Zeng S J,Zheng Y,Niu F L,Ai S X. 2021. Measurements of seismometer orientation of the first phase CHINArray and their implications on vector-recording-based seismic studies[J]. Bull Seismol Soc Am,111(1):36–49. doi: 10.1785/0120200129
Zha Y,Webb S C,Menke W. 2013. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophys Res Lett,40(14):3585–3590. doi: 10.1002/grl.50698
Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res: Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322