The 2022 Lushan MS6.1 earthquake:A moderately strong earthquake on a blind back thrust fault
-
摘要:
继2008年汶川MS8.0地震和2013年芦山MS7.0地震后,2022年6月1日在龙门山断裂带南段又发生了一次MS6.1强震,距离2013年芦山MS7.0地震震中位置仅10 km。为研究此次地震的发震断层及两次芦山地震的关系,对震后60天的余震序列进行重定位,获得了933个高精度定位结果,EW,NS和UD方向上的定位误差分别为0.15 km,0.13 km和0.23 km。余震序列在水平分布上沿北东—南西向略长,在深度上主要分布在12—20 km,10 km以浅余震很少。余震震源深度剖面显示发震断层面倾向南东,与2013年芦山MS7.0地震发震断层结构中的反冲断层倾向一致,两次芦山地震的发震断层结构相交为复式Y型断裂结构,此次芦山地震的发震断层为其中一条深度更深的反冲断层。此次地震没有产生地表破裂,推测发震断层为一条埋深较深的隐伏断层。两次芦山地震的余震震中分布区跨过了该区域的一条大型逆冲型断裂带,即双石—大川断裂带。深度剖面显示芦山MS7.0地震的南东倾向余震带穿过双石—大川分支断裂,大部分集中在断裂下方,但有少量地震发生在断裂上方,由于断裂带下方上地壳存在高速异常体,推测芦山MS7.0地震的反冲断裂向上逆冲滑动时受到断裂所在高速区的阻挡。此次芦山MS6.1地震的余震主要发生在双石—大川分支断裂下方,但在发震断层的浅部位置没有明显的高速体分布,推测双石—大川分支断裂可能对发震断层的滑动起到了控制阻挡作用,使其没有继续向浅部破裂。
Abstract:On June 1, 2022, a moderately strong earthquake of MS6.1, henceforth referred to as the Lushan MS6.1 earthquake, occurred in the southern segment of the Longmenshan fault zone, following the 2008 Wenchuan MS8.0 earthquake and the 2013 Lushan MS7.0 earthquake. Notably, the epicenter of the Lushan MS6.1 earthquake was situated approximately 10 km northwest of the epicenter of the 2013 Lushan MS7.0 earthquake, and the aftershock regions of these two events were intimately connected. Investigating the seismogenic structures of the Lushan MS6.1 earthquake, its relationship with surrounding fault systems, and its connection with the Lushan MS7.0 earthquake holds pivotal scientific significance for comprehending earthquake mechanisms, seismic interactions, and assessing future seismic hazards. In this study, we relocated the mainshock and the aftershock sequences that occurred within 60 days, and obtained 933 high-precision relocation results using the double-difference relocation method (HYPODD). The root mean square (RMS) residual for all earthquakes decreased from 0.16 s to 0.05 s. Employing a method based on singular value decompositions for error estimation, we determined that the average location errors were 0.15 km, 0.13 km and 0.23 km in the EW, NS and UD directions, respectively. These results distinctly show that the double-difference relocation method significantly improved the precision of earthquake location. The aftershock epicenters exhibit a slightly longer spread in the NE-SW direction. The focal depths are mainly located within the range of 12−20 km, with only a limited number of aftershocks occurring above the 10 km. The depth profile of the aftershocks reveals a seismogenic fault plane with a southeastward dip, consistent with the tendency of the back thrust fault in the seismogenic fault structure of the 2013 Lushan MS7.0 earthquake. The seismogenic fault structures of the two Lushan earthquakes intersect in a complex Y-shaped structure, comprising two back thrust faults. The Lushan MS6.1 earthquake’s seismogenic fault corresponds to the deeper one of these back thrust faults. Given the absence of surface rupture, we presume that this seismogenic fault is a deeply buried blind fault. The Lushan MS6.1 earthquake and its aftershock sequences occurred within a high-velocity zone characterized by stable rocks, making them less susceptible to rupture and sliding. Over time, as stress and strain gradually accumulated, the back thrust fault experienced rupture and sliding, culminating in the occurrence of the Lushan MS6.1 earthquake. The depth profile indicates that the southeast-trending aftershock zone of the 2013 Lushan MS7.0 earthquake intersected with the Shuangshi-Dachuan branch fault, with the majority of aftershocks concentrated beneath this fault. It is hypothesized that high-velocity anomalies in the upper crust beneath the fault zone impeded the upward slip of the back thrust fault associated with the Lushan MS7.0 earthquake. However, the aftershocks related to the Lushan MS6.1 earthquake predominantly occurred beneath the Shuangshi-Dachuan branch fault, without obvious high-velocity zone in the shallow region of the seismogenic fault. We speculate that the Shuangshi-Dachuan branch fault may have played a role in obstructing the slip process of the seismogenic fault, impeding its rupture towards shallower depths.
-
-
图 5 余震序列重定位结果分布图
(a) 余震震中位置分布图;(b,c) 震源深度沿经度和纬度的剖面图;(d,e) 震源深度沿AA′和BB′剖面的分布图及地形分布
Figure 5. Relocation results of the aftershock sequences
(a) Distribution of the aftershock epicenters;(b,c) Focal depth profiles along longitude and latitude;(d,e) Distribution of focal depth and topography along profile AA′ and BB′
图 1 研究区地震台站和断裂分布图(a)及两次芦山地震的主震和余震分布(b)
F1:盐井—五龙断裂;F2:盐井—五龙分支断裂;F3:双石—大川主断裂;F4:双石—大川分支断裂;F5:新开店断裂;F6:名山断裂;F7:大邑断裂,下同
Figure 1. Distribution of seismic stations,faults in the studied area (a) and detailed distribution of mainshocks and aftershocks of the two Lushan earthquakes (b)
F1:Yanjing-Wulong fault;F2:Yanjing-Wulong branch fault;F3:Shuangshi-Dachuan main fault; F4:Shuangshi-Dachuan branch fault;F5:Xinkaidian fault;F6:Mingshan fault;F7:Dayi fault,the same below
图 4 震相时距曲线(a)及双差重定位所使用的速度模型(Fang et al,2015)(b)
Figure 4. Travel time-distance curves of seismic phases (a) and velocity model used in the double-difference relocation (Fang et al,2015) (b)
图 7 2014年4月20日(芦山MS7.0地震一年后)至2022年5月31日(芦山MS6.0地震发震前)两次芦山地震震区的地震分布(数据来自四川省地震局余震观测报告)(a)及2022年芦山MS6.1地震前区域Ⅰ(b)和区域Ⅱ(c)的震级时间分布图。区域Ⅰ和区域Ⅱ分别为2022年芦山MS6.1和2013年芦山MS7.0地震研究区
Figure 7. Seismic distribution in the two Lushan earthquake areas between 20 April 2014 (one year after the 2013 Lushan MS7.0 earthquake) and 31 May 2022 (before the 2022 Lushan MS6.1 earthquake)(data from the China Earthquake Network Center)(a) and the magnitude-time plots in earthquake studied area Ⅰ (b) and Ⅱ (c) before the 2022 Lushan MS6.1 earthquake. Earthquake studied area Ⅰ and Ⅱ are the selected studied areas for the 2022 Lushan MS6.1 earthquake and the 2013 Lushan MS7.0 earthquake,respectively
图 8 芦山MS6.1地震和MS7.0地震及其余震分布(a)以及沿CC′ (b)和DD′ (c)剖面的P波速度结构和震源深度剖面图。vP速度结构来自肖雨辰和吴建平(2022)的双差层析成像研究
Figure 8. Distribution of aftershocks of the Lushan MS6.1 earthquake and Lushan MS7.0 earthquake (a) and the distribution of the vP velocity structure (Xiao,Wu,2022) and focal depth along profile CC′ (b) and DD′ (c)
-
杜方,龙锋,阮祥,易桂喜,宫悦,赵敏,张致伟,乔慧珍,汪智,吴江. 2013. 四川芦山7.0级地震及其与汶川8.0级地震的关系[J]. 地球物理学报,56(5):1772–1783. Du F,Long F,Ruan X,Yi G X,Gong Y,Zhao M,Zhang Z W,Qiao H Z,Wang Z,Wu J. 2013. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan,China[J]. Chinese Journal of Geophysics,56(5):1772–1783 (in Chinese).
冯杨洋,于常青,范柱国,宋丽蓉,梁姗姗,何俊杰,梅中锋. 2016. 从反射地震剖面中认识芦山地区的地壳精细结构和构造[J]. 地球物理学报,59(9):3248–3259. Feng Y Y,Yu C Q,Fan Z G,Song L R,Liang S S,He J J,Mei Z F. 2016. Fine crustal structure of the Lushan area derived from seismic reflection profiling[J]. Chinese Journal of Geophysics,59(9):3248–3259 (in Chinese).
黄学猛, 谢富仁. 2009. 龙门山构造带的演化历史及构造样式综述[G]//地壳构造与地壳应力文集(21). 北京: 地震出版社: 16–29. Huang X M, Xie F R. 2009. Review of the evolutionary history and tectonic style of the Longmenshan tectonic belt[G]//Bulletin of the Institute of Crustal Dynamics (21). Beijing: Seismological Press: 16–29 (in Chinese).
金文正,汤良杰,杨克明,万桂梅,吕志洲,余一欣. 2007. 川西龙门山褶皱冲断带分带性变形特征[J]. 地质学报,81(8):1072–1080. Jin W Z,Tang L J,Yang K M,Wan G M,Lü Z Z,Yu Y X. 2007. Deformation and zonation of the Longmenshan fold and thrust zone in the western Sichuan basin[J]. Acta Geologica Sinica,81(8):1072–1080 (in Chinese).
李兵,谢富仁,黄金水,徐锡伟,郭啟良,张广伟,许俊闪,王建新,姜大伟,王健,丁立丰. 2022. 龙门山断裂带大邑地震空区地应力状态与地震危险性[J]. 中国科学:地球科学,52(7):1409–1418. Li B,Xie F R,Huang J S,Xu X W,Guo Q L,Zhang G W,Xu J S,Wang J X,Jiang D W,Wang J,Ding L F. 2022. In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt[J]. Science China Earth Sciences,65(7):1388–1398. doi: 10.1007/s11430-021-9915-4
刘树文,杨恺,李秋根,王宗起,闫全人. 2009. 新元古代宝兴杂岩的岩石成因及其对扬子西缘构造环境的制约[J]. 地学前缘,16(2):107–118. Liu S W,Yang K,Li Q G,Wang Z Q,Yan Q R. 2009. Petrogenesis of the Neoproterozoic Baoxing Complex and its constraint on the tectonic environment in western margin of Yangtze Craton[J]. Earth Science Frontiers,16(2):107–118 (in Chinese).
罗群. 2008. 鄂尔多斯盆地西缘马家滩地区冲断带断裂特征及其控藏模式[J]. 地球学报,29(5):619–627. Luo Q. 2008. Characteristics of faults in Majiatan area of west Ordos basin and their petroleum reservoir controlling model[J]. Acta Geoscientica Sinica,29(5):619–627 (in Chinese).
王夫运,赵成彬,酆少英,姬计法,田晓峰,魏学强,李怡青,李吉昌,花鑫升. 2015. 深反射剖面揭示的芦山7.0级地震发震构造[J]. 地球物理学报,58(9):3183–3192. Wang F Y,Zhao C B,Feng S Y,Ji J F,Tian X F,Wei X Q,Li Y Q,Li J C,Hua X S. 2015. Seismogenic structure of the 2013 Lushan MS7.0 earthquake revealed by a deep seismic reflection profile[J]. Chinese Journal of Geophysics,58(9):3183–3192 (in Chinese).
肖雨辰, 吴建平. 2022. 龙门山和安宁河断裂带周边地区的地壳三维P波速度结构研究[J]. 地震学报, 已接收, doi: 10.11939/jass.20220076. Xiao Y C, Wu J P. 2022. Three-dimensional crustal velocity structure around Longmenshan and Aninghe fault zones[J]. Acta Seismologica Sinica, accepted, doi: 10.11939/jass.20220076 (in Chinese).
徐锡伟,陈桂华,于贵华,程佳,谭锡斌,朱艾斓,闻学泽. 2013a. 芦山地震发震构造及其与汶川地震关系讨论[J]. 地学前缘,20(3):11–20. Xu X W,Chen G H,Yu G H,Cheng J,Tan X B,Zhu A L,Wen X Z. 2013a. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J]. Earth Science Frontiers,20(3):11–20 (in Chinese).
徐锡伟,闻学泽,韩竹军,陈桂华,李传友,郑文俊,张世民,任治坤,许冲,谭锡斌,魏占玉,王明明,任俊杰,何仲,梁明剑. 2013b. 四川芦山7.0级强震:一次典型的盲逆断层型地震[J]. 科学通报,58(20):1887–1893. Xu X W,Wen X Z,Han Z J,Chen G H,Li C Y,Zheng W J,Zhang S M,Ren Z K,Xu C,Tan X B,Wei Z Y,Wang M M,Ren J J,He Z,Liang M J. 2013b. Lushan MS7.0 earthquake:A blind reserve-fault event[J]. Chinese Science Bulletin,58(28):3437–3443.
杨宜海,张雪梅,花茜,苏利娜,丰成君,邱玉荣,梁春涛,苏金蓉,古云鹤,金昭娣,张媛媛,关昕. 2021. 龙门山断裂带的分段性特征:来自密集震源机制解的约束[J]. 地球物理学报,64(4):1181–1205. Yang Y H,Zhang X M,Hua Q,Su L N,Feng C J,Qiu Y R,Liang C T,Su J R,Gu Y H,Jin Z D,Zhang Y Y,Guan X. 2021. Segmentation characteristics of the Longmenshan fault:Constrained from dense focal mechanism data[J]. Chinese Journal of Geophysics,64(4):1181–1205 (in Chinese).
张广伟,雷建设. 2013. 四川芦山7.0级强震及其余震序列重定位[J]. 地球物理学报,56(5):1764–1771. Zhang G W,Lei J S. 2013. Relocations of Lushan,Sichuan strong earthquake (MS7.0) and its aftershocks[J]. Chinese Journal of Geophysics,56(5):1764–1771 (in Chinese).
张培震,邓起东,徐锡伟,冯先岳,彭斯震,杨晓平,赵瑞斌,李军. 1994. 盲断裂、褶皱地震与新疆1906年玛纳斯地震[J]. 地震地质,16(3):193–204. Zhang P Z,Deng Q D,Xu X W,Feng X Y,Peng S Z,Yang X P,Zhao R B,Li J. 1994. Blind thrust,folding earthquake,and the 1906 Manas earthquake,Xinjiang[J]. Seismology and Geology,16(3):193–204 (in Chinese).
张喆, 许力生. 2022. 矩心矩张量解[EB/OL]. [2022-06-02]. https://www.cea-igp.ac.cn/kydt/279025.html. Zhang Z, Xu L S. 2022. Focal mechanism solution[EB/OL]. [2022-06-02]. https://www.cea-igp.ac.cn/kydt/279025.html (in Chinese).
张竹琪,王伟涛,任治坤,张培震,房立华,吴建平. 2013. 芦山7.0级地震:特殊的弯曲断层地震[J]. 科学通报,58(20):1933–1940. Zhang Z Q,Wang W T,Ren Z K,Zhang P Z,Fang L H,Wu J P. 2013. Lushan MS7.0 earthquake:A special earthquake occurs on curved fault[J]. Chinese Science Bulletin,58(28):3483–3490.
赵荣涛,安美建,冯梅,张士安,张纪中,侯春堂. 2015. 利用余震震中分析芦山MS7.0 地震发震构造[J]. 地震学报,37(2):205–217. Zhao R T,An M J,Feng M,Zhang S A,Zhang J Z,Hou C T. 2015. Analysis on the seismogenic fault of Lushan MS7.0 earthquake by using epicenters of its aftershocks[J]. Acta Seismologica Sinica,37(2):205–217 (in Chinese).
Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Cai Y. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin,58(28):3451–3459.
Fang L H,Wu J P,Wang W L,Du W K,Su J R,Wang C Z,Yang T,Cai Y. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake[J]. Seismol Res Lett,86(4):1135–1142. doi: 10.1785/0220140186
Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185
Heaton T H,Hall J F,Wald D J,Halling M W. 1995. Response of high-rise and base-isolated buildings to a hypothetical MW7.0 blind thrust earthquake[J]. Science,267(5195):206–211. doi: 10.1126/science.267.5195.206
Houseman G,England P. 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. J Geophys Res:Solid Earth,98(B7):12233–12249. doi: 10.1029/93JB00443
King G C P,Vita-Finzi C. 1981. Active folding in the Algerian earthquake of 10 October 1980[J]. Nature,292(5818):22–26. doi: 10.1038/292022a0
Lei J S,Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0)[J]. Geochem Geophys Geosyst,10(10):Q10010.
Lei J S,Zhang G W,Xie F R. 2014. The 20 April 2013 Lushan,Sichuan,mainshock,and its aftershock sequence:Tectonic implications[J]. Earthquake Science,27(1):15–25. doi: 10.1007/s11589-013-0045-9
Long F,Wen X Z,Ruan X,Zhao M,Yi G X. 2015. A more accurate relocation of the 2013 MS7.0 Lushan,Sichuan,China,earthquake sequence,and the seismogenic structure analysis[J]. J Seismol,19(3):653–665. doi: 10.1007/s10950-015-9485-0
Lu R Q,Xu X W,He D F,John S,Liu B,Wang F Y,Tan X B,Li Y Q. 2017. Seismotectonics of the 2013 Lushan MW6.7 earthquake:Inversion tectonics in the eastern margin of the Tibetan Plateau[J]. Geophys Res Lett,44(16):8236–8243. doi: 10.1002/2017GL074296
Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
Shen Z K,Lü J N,Wang M,Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. J Geophys Res,110:B11409.
Tapponnier P,Molnar P. 1977. Active faulting and tectonics in China[J]. J Geophys Res,82(20):2905–2930. doi: 10.1029/JB082i020p02905
Tapponnier P E,Peltzer G R,Armijo R. 1986. On the mechanics of the collision between India and Asia[J]. Geol Soc Lond Spec Publ,19(1):113–157.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Waldhauser F,Ellsworth W L. 2002. Fault structure and mechanics of the Hayward fault,California,from double-difference earthquake locations[J]. J Geophys Res:Solid Earth,107(B3):ESE 3-1–ESE 3-15.
Wang F,Wang M,Wang Y Z,Shen Z K. 2015. Earthquake potential of the Sichuan-Yunnan region,western China[J]. J Asian Earth Sci,107:232–243. doi: 10.1016/j.jseaes.2015.04.041
Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays[J]. J Geophys Res:Solid Earth,122(9):7219–7235. doi: 10.1002/2017JB013978
Wiemer S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismol Res Lett,72(3):373–382. doi: 10.1785/gssrl.72.3.373
Xu Z Q,Ji S C,Li H B,Hou L W,Fu X F,Cai Z H. 2008. Uplift of the Longmenshan range and the Wenchuan earthquake[J]. Episodes,31(3):291–301. doi: 10.18814/epiiugs/2008/v31i3/002