Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea
-
摘要: 本文对2019年10月—2020年5月在中国南海西北次海盆布放的宽频带海底地震仪的数据进行了分析,利用长短时窗均值比算法在单个海底地震仪台站拾取了多达25万个短时事件(SDE)。对拾取到的SDE信号特征进行了分析,并根据信号特征将事件分为连续短时事件(C-SDE)和随机短时事件(R-SDE)。探讨C-SDE和R-SDE的信号源,可能的产生机制,结果表明:在布放时间段内中国南海西北次海盆存在着活跃的C-SDE信号源可能来自人类活动,如气枪放炮或者低频水声通信;R-SDE则来源于离台站很近的源,很可能是海底沉积层中的气体逃逸过程造成的沉积层破裂所导致,表明中国南海西北次海盆海底沉积层中存在气体泄露。Abstract: Based on the analysis of the data on broadband ocean bottom seismographs deployed in the Northwestern sub-basin of the South China Sea from October 2019 to May 2020. We detected more than 150 000 short duration events (SDEs) at each OBS station by using STA/LTA algorithm. The characteristic of SDE signals is analyzed. According to different signal characteristics, these SDEs are classified as consecutive short duration events (C-SDEs) and random short duration events (R-SDEs). The possible generation mechanisms for C-SDEs and R-SDEs are analyzed, respectively. We infer there are active sources of C-SDE signal in the Northwest Sub-basin of the SCS. The source may be caused by human activities, such as air gun firing or low frequency hydroacoustic communication signals. The R-SDE sources appear close to the OBS stations, likely generated by the ruptures due to gas escape from seafloor sediments. R-SDEs on OBS recordings indicate persistent gas escape from the sedimentary layer in the northwestern sub-basin of the SCS.
-
Keywords:
- ocean bottom seismographs (OBS) /
- short duration events /
- STA/LTA /
- gas escape
-
-
图 1 典型短时事件的三分量波形(左)和幅度频谱(右)
(a) 东北太平洋布放的OBS080台站记录的鲸鱼叫声产生的短时事件(数据来源:IRIS ,网络号:X9)( Kuna,Nábělek,2021);(b) 马尔马拉海布放的OBS01台站记录的海底沉积层中气泡逃逸产生的短时事件( Tsang-Hin-Sun et al,2019)
Figure 1. Waveforms (left) and amplitude (right) spectra of typical SDEs
(a) Three-component waveforms and amplitude spectra of SDEs produced by whale calls on OBS080 stations (IRIS data. Network:X9) in the Northeast Pacific (Kuna,Nábělek,2021);(b) Three-component waveforms and amplitude spectra of SDEs from bubble escape in seafloor sediment recorded by OBS01 in the Sea of Marmara (Tsang-Hin-Sun et al,2019)
图 5 C-SDE波形图
(a) K02,K03和K08台站垂直分量上的C-SDE信号,R1,R2,R3,R4分别表示R-SDE, E1表示地震事件;(b) K02,K03和K08台站上垂直分量的单一GE事件组波形;(c) K08台站上三个分量的波形
Figure 5. Waveform of C-SDEs
(a) The vertical components of C-SDE signals on OBS stations K02, K03, K08 and R1,R2,R3,R4 are the R-SDEs,and E1 is an earthquake event;(b) The GEs waveforms of vertical components on OBS stations K02,K03,K08;(c) The waveforms of the three components on K08 station
图 9 不同时间尺度下各种机制导致的C-SDE的波形对比
(a,b) OBS台站上的鲸鱼叫声记录(数据来源:IRIS data。网络号:X9) (Kuna,Nábělek,2021);(c,d) 短周期OBS的人工震源(气枪)信号;(e,f)本文研究
Figure 9. Comparison of C-SDEs caused by various mechanisms on different time scales
(a,b) Whale songs recorded by OBS station (IRIS data recorded at OBS stations,Network:X9) (Kuna,Nábělek,2021);Artificial sources (air guns) signal recorded by short-period OBS (c,d);(e,f) this paper studied
表 1 宽频带海底地震仪实验信息
Table 1 Experimental information of broadband OBS
台站编号 东经/° 北纬/° 深度/m 投放日期
年-月-日回收日期
年-月-日K08 115.499 17.799 3 780.01 2019-10-20 2020-05-15 K03 115.999 17.799 3 835.82 2019-10-20 2020-05-15 K02 116.499 17.799 3 896.38 2019-10-21 2020-05-14 表 2 STA/LTA方法拾取SDE参数设置表
Table 2 The parameter set of SDE pickup with the STA/LTA method
参数名称 STA 时间/s LTA 时间/s 开始触发值 结束触发值 持续时间/s 信噪比 设置值 0.1 50 8 6 0.05—2 3 表 3 SDE拾取结果
Table 3 The pick-up quantity of SDEs on each station
台站 各方向上的拾取数量 拾取总量 HHE HHN HHZ K02 28020 85721 40010 153751 K03 41549 122051 18829 182429 K08 77693 83942 93849 255484 表 4 2020年5月3—9日间C-SDE信号发生及持续时间
Table 4 Occurrence and duration of C-SDE signals from May 3 to 9,2020
序号 日期
年-月-日开始时间
时:分:秒结束时间
时:分:秒持续时间
时:分:秒1 2020-05-03 0:54:15 7:43:10 6:48:55 2 2020-05-03 16:30:35 1:12:50 (5月4日) 8:42:15 3 2020-05-05 0:33:30 7:55:30 7:22:00 4 2020-05-06 3:58:25 13:50:25 9:52:00 5 2020-05-08 3:28:40 8:24:10 4:55:30 6 2020-05-09 1:30:12 8:38:55 7:08:43 7 2020-05-09 18:42:07 22:20:10 3:38:03 -
刘晨光,华清峰,裴彦良,杨挺,夏少红,薛梅,黎伯孟,霍达,刘芳,黄海波. 2014. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报,59(16):1542–1552. Liu C G,Hua Q F,Pei Y L,Yang T,Xia S H,Xue M,Le B M,Huo D,Liu F,Huang H B. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bulletin,59(33):4524–4535. doi: 10.1007/s11434-014-0369-4
刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572. Liu D,Yang T,Le B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).
Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am,68(5):1521–1532. doi: 10.1785/BSSA0680051521
Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782
Baer M,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events[J]. Bull Seismol Soc Am,77(4):1437–1445. doi: 10.1785/BSSA0770041437
Batsi E,Tsang-Hin-Sun E,Klingelhoefer F,Bayrakci G,Chang E T Y,Lin J Y,Dellong D,Monteil C,Géli L. 2019. Nonseismic signals in the ocean:Indicators of deep sea and seafloor processes on ocean-bottom seismometer data[J]. Geochem Geophys Geosyst,20(8):3882–3900. doi: 10.1029/2019GC008349
Bayrakci G,Scalabrin C,Dupré S,Leblond I,Tary J B,Lanteri N,Augustin J M,Berger L,Cros E,Ogor A,Tsabaris C,Lescanne M,Géli L. 2014. Acoustic monitoring of gas emissions from the seafloor,Part Ⅱ:A case study from the Sea of Marmara[J]. Mar Geophys Res,35(3):211–229. doi: 10.1007/s11001-014-9227-7
Berndt C,Feseker T,Treude T,Krastel S,Liebetrau V,Niemann H,Bertics V J,Dumke I,Dünnbier K,Ferré B,Graves C,Gross F,Hissmann K,Hühnerbach V,Krause S,Lieser K,Schauer J,Steinle L. 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science,343(6168):284–287. doi: 10.1126/science.1246298
Beyreuther M,Barsch R,Krischer L,Megies T,Behr Y,Wassermann J. 2010. ObsPy:A python toolbox for seismology[J]. Seismol Res Lett,81(3):530–533. doi: 10.1785/gssrl.81.3.530
Brodie D C,Dunn R A. 2014. Low frequency baleen whale calls detected on ocean-bottom seismometers in the Lau basin,southwest Pacific Ocean[J]. J Acoust Soc Am,137(1):53–62.
Buskirk R E,Frohlich C,Latham G V,Chen A T,Lawton J. 1981. Evidence that biological activity affects ocean bottom seismograph recordings[J]. Mar Geophys Res,5(2):189–205.
Dréo R,Bouffaut L,Leroy E,Barruol G,Samaran F. 2019. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean[J]. Deep Sea Res Part Ⅱ:Top Stud Oceanogr,161:132–144. doi: 10.1016/j.dsr2.2018.04.005
Dunn R A,Hernandez O. 2009. Tracking blue whales in the eastern tropical Pacific with an ocean-bottom seismometer and hydrophone array[J]. J Acoust Soc Am,126(3):1084–1094. doi: 10.1121/1.3158929
Earle P S,Shearer P M. 1994. Characterization of global seismograms using an automatic-picking algorithm[J]. Bull Seismol Soc Am,84(2):366–376. doi: 10.1785/BSSA0840020366
Embriaco D,Marinaro G,Frugoni F,Monna S,Etiope G,Gasperini L,Polonia A,del Bianco F,Çağatay M N,Ulgen U B,Favali P. 2014. Monitoring of gas and seismic energy release by multiparametric benthic observatory along the North Anatolian fault in the sea of Marmara (NW Turkey)[J]. Geophys J Int,196(2):850–866. doi: 10.1093/gji/ggt436
Franek P,Plaza-Faverola A,Mienert J,Buenz S,Ferré B,Hubbard A. 2017. Microseismicity linked to gas migration and leakage on the Western Svalbard Shelf[J]. Geochem Geophys Geosyst,18(12):4623–4645. doi: 10.1002/2017GC007107
Hilmo R,Wilcock W S D. 2020. Physical sources of high-frequency seismic noise on Cascadia Initiative ocean bottom seismometers[J]. Geochem Geophys Geosyst,21(10):e2020GC009085.
Kuna V M,Nábělek J L. 2021. Seismic crustal imaging using fin whale songs[J]. Science,371(6530):731–735. doi: 10.1126/science.abf3962
Lepore S,Grad M. 2018. Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland[J]. Acta Geophys,66(5):915–929. doi: 10.1007/s11600-018-0194-2
Marcon Y,Kelley D,Thornton B,Manalang D,Bohrmann G. 2021. Variability of natural methane bubble release at Southern Hydrate Ridge[J]. Geochem Geophys Geosyst,22(10):e2021GC009894.
McDonald M A,Hildebrand J A,Webb S C. 1995. Blue and fin whales observed on a seafloor array in the Northeast Pacific[J]. J Acoust Soc Am,98(2):712–721. doi: 10.1121/1.413565
Ostrovsky A A. 1989. The estimation of ocean bottom seismographs’ coupling characteristics by means of microshock recordings[J]. Mar Geophys Res,11(2):119–127. doi: 10.1007/BF00285663
Pereira A,Romagosa M,Corela C,Silva M A,Matias L. 2021. Source levels of 20 Hz Fin whale notes measured as sound pressure and particle velocity from ocean-bottom seismometers in the North Atlantic[J]. J Mar Sci Eng,9(6):646. doi: 10.3390/jmse9060646
Person R, Favali P, Ruhl H A, Beranzoli L Rolin J F, Waldmann C, Huber R, Auffret Y, Çağatay M N, Cannat M, Dañobeitia J J, Delory E, Diepenbroek M, de Stigter H, de Miranda J M A, Ferré B, Gillooly M, Grant F, Greinert J, Hall P O J, Lykousis V, Mienert J, Puillat I, Priede I G, Thomsen L. 2015. From ESONET multidisciplinary scientific community to EMSO novel European research infrastructure for ocean observation[M]//Seafloor Observatories: A New Vision of the Earth from the Abyss. Berlin, Heidelberg: Springer: 531–563.
Pontoise B,Hello Y. 2002. Monochromatic infra-sound waves recorded offshore Ecuador:Possible evidence of methane release[J]. Terra Nova,14(6):425–435. doi: 10.1046/j.1365-3121.2002.00437.x
Soule D C,Wilcock W S D. 2013. Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge,Northeast Pacific Ocean[J]. J Acoust Soc Am,133(3):1751–1761. doi: 10.1121/1.4774275
Sultan N,Marsset B,Ker S,Marsset T,Voisset M,Vernant A M,Bayon G,Cauquil E,Adamy J,Colliat J L,Drapeau D. 2010. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. J Geophys Res:Solid Earth,115(B8):B08101.
Sultan N,Riboulot V,Ker S,Marsset B,Géli L,Tary J B,Klingelhoefer F,Voisset M,Lanfumey V,Colliat J L,Adamy J,Grimaud S. 2011. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. J Geophys Res:Solid Earth,116(B12):B12110. doi: 10.1029/2011JB008218
Tary J B,Geli L,Guennou C,Henry P,Sultan N,Çağatay N,Vidal V. 2012. Microevents produced by gas migration and expulsion at the seabed:A study based on sea bottom recordings from the Sea of Marmara[J]. Geophys J Int,190(2):993–1007. doi: 10.1111/j.1365-246X.2012.05533.x
Trnkoczy A. 2012. Understanding and parameter setting of STA/LTA trigger algorithm[M]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches Geo Forschungs Zentrum: 1–20.
Tsang-Hin-Sun E,Batsi E,Klingelhoefer F,Géli L. 2019. Spatial and temporal dynamics of gas-related processes in the sea of Marmara monitored with ocean bottom seismometers[J]. Geophys J Int,216(3):1989–2003. doi: 10.1093/gji/ggy535
Ugalde A,Gaite B,Ruiz M,Villaseñor A,Ranero C R. 2019. Seismicity and noise recorded by passive seismic monitoring of drilling operations offshore the eastern Canary Islands[J]. Seismol Res Lett,90(4):1565–1576.
Wang Y Z,Yang T,Wu Y C,Liu D,Huang X F,Wang J,Zhong W X,Shou H T,Zhou Y,Chen Y S. 2022. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophys J Int,230(1):684–695. doi: 10.1093/gji/ggac092
Weirathmueller M J,Wilcock W S D,Soule D C. 2013. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean[J]. J Acoust Soc Am,133(2):741–749. doi: 10.1121/1.4773277
Wilcock W S D,Hilmo R S. 2021. A method for tracking blue whales (Balaenoptera musculus) with a widely spaced network of ocean bottom seismometers[J]. PLoS ONE,16(12):e0260273. doi: 10.1371/journal.pone.0260273
-
期刊类型引用(9)
1. 李志海,朱成英,周晓成,张志斌,李慧峰. 新疆北天山地区泥火山变化特征及其在震情跟踪中的应用. 中国地震. 2024(03): 617-629 . 百度学术
2. 麻荣,朱成英,李新勇,汪成国,刘建明,刘代芹,李杰. 新疆乌苏艾其沟泥火山气体排放通量及其前兆异常特征研究. 内陆地震. 2022(03): 218-226 . 百度学术
3. 蒋雨函,高小其,王阳洋,张磊. 中国新疆北天山和台湾南部陆地泥火山研究进展. 地震. 2020(03): 65-82 . 百度学术
4. 朱成英,周晓成,麻荣,闫玮,梁卉,张涛,高小其,颜玉聪. 2017年8月9日精河M_S6.6地震前乌苏泥火山群流体地球化学变化特征. 地震地质. 2019(04): 1060-1075 . 百度学术
5. 梁卉,高小其,向阳,朱成英. 新疆北天山艾其沟泥火山强震前显著喷涌现象及其变化机理分析. 中国地震. 2018(03): 534-544 . 百度学术
6. 钟骏,王博,周志华. 精河M_S6.6地震前地下流体异常特征分析. 中国地震. 2018(04): 754-764 . 百度学术
7. 张涛,朱成英,梁卉. 2016年12月8日呼图壁M_S6.2地震震前流体异常. 内陆地震. 2017(03): 253-258 . 百度学术
8. 高小其,梁卉,王海涛,郑黎明,李杰,赵纯青,向阳,张涛. 北天山地区泥火山的地球化学成因. 地震地质. 2015(04): 1215-1224 . 百度学术
9. 高小其,王海涛,郑黎明,李娜,朱成英,杨晓芳,汪成国,向阳,梁卉,麻荣. 新疆泥火山群地震前兆异常实时监测与预报的研究. 震灾防御技术. 2015(03): 587-597 . 百度学术
其他类型引用(1)