中国南海西北次海盆海底地震记录的短时事件分析

王宜志, 杨挺, 刘晨光, 刘丹, 吴越楚

王宜志,杨挺,刘晨光,刘丹,吴越楚. 2023. 中国南海西北次海盆海底地震记录的短时事件分析. 地震学报,45(3):431−444. DOI: 10.11939/jass.20220175
引用本文: 王宜志,杨挺,刘晨光,刘丹,吴越楚. 2023. 中国南海西北次海盆海底地震记录的短时事件分析. 地震学报,45(3):431−444. DOI: 10.11939/jass.20220175
Wang Y Z,Yang T,Liu C G,Liu D,Wu Y C. 2023. Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea. Acta Seismologica Sinica45(3):431−444. DOI: 10.11939/jass.20220175
Citation: Wang Y Z,Yang T,Liu C G,Liu D,Wu Y C. 2023. Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea. Acta Seismologica Sinica45(3):431−444. DOI: 10.11939/jass.20220175

中国南海西北次海盆海底地震记录的短时事件分析

基金项目: 国家自然科学基金(92058209)和深圳市科创委项目(KQTD20170810111725321; JCYJ20180504170422082)共同资助
详细信息
    作者简介:

    王宜志,在读博士研究生,主要从事海底地震仪研制及非地震信号研究,e-mail:wangyz@mail.sustech.edu.cn

    通讯作者:

    杨挺,博士,教授,主要从事海洋地球物理和地震学研究以及相关仪器研发工作,e-mail:tyang@sustech.edu.cn

  • 中图分类号: P315.6

Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea

  • 摘要: 本文对2019年10月—2020年5月在中国南海西北次海盆布放的宽频带海底地震仪的数据进行了分析,利用长短时窗均值比算法在单个海底地震仪台站拾取了多达25万个短时事件(SDE)。对拾取到的SDE信号特征进行了分析,并根据信号特征将事件分为连续短时事件(C-SDE)和随机短时事件(R-SDE)。探讨C-SDE和R-SDE的信号源,可能的产生机制,结果表明:在布放时间段内中国南海西北次海盆存在着活跃的C-SDE信号源可能来自人类活动,如气枪放炮或者低频水声通信;R-SDE则来源于离台站很近的源,很可能是海底沉积层中的气体逃逸过程造成的沉积层破裂所导致,表明中国南海西北次海盆海底沉积层中存在气体泄露。
    Abstract: Based on the analysis of the data on broadband ocean bottom seismographs deployed in the Northwestern sub-basin of the South China Sea from October 2019 to May 2020. We detected more than 150 000 short duration events (SDEs) at each OBS station by using STA/LTA algorithm. The characteristic of SDE signals is analyzed. According to different signal characteristics, these SDEs are classified as consecutive short duration events (C-SDEs) and random short duration events (R-SDEs). The possible generation mechanisms for C-SDEs and R-SDEs are analyzed, respectively. We infer there are active sources of C-SDE signal in the Northwest Sub-basin of the SCS. The source may be caused by human activities, such as air gun firing or low frequency hydroacoustic communication signals. The R-SDE sources appear close to the OBS stations, likely generated by the ruptures due to gas escape from seafloor sediments. R-SDEs on OBS recordings indicate persistent gas escape from the sedimentary layer in the northwestern sub-basin of the SCS.
  • 图  1   典型短时事件的三分量波形(左)和幅度频谱(右)

    (a) 东北太平洋布放的OBS080台站记录的鲸鱼叫声产生的短时事件(数据来源:IRIS ,网络号:X9)( Kuna,Nábělek,2021);(b) 马尔马拉海布放的OBS01台站记录的海底沉积层中气泡逃逸产生的短时事件( Tsang-Hin-Sun et al,2019

    Figure  1.   Waveforms (left) and amplitude (right) spectra of typical SDEs

    (a) Three-component waveforms and amplitude spectra of SDEs produced by whale calls on OBS080 stations (IRIS data. Network:X9) in the Northeast Pacific (Kuna,Nábělek,2021);(b) Three-component waveforms and amplitude spectra of SDEs from bubble escape in seafloor sediment recorded by OBS01 in the Sea of Marmara (Tsang-Hin-Sun et al,2019

    图  2   海底地震仪在中国南海西北次海盆布放位置

    Figure  2.   Sites of OBSs in the Northwest Sub-basin of the South China Sea

    图  3   单个(a)和连续(b)SDE波形序列及其STA/LTA的特征曲线

    粉色区域为噪音数据,浅绿色区域为SDE信号数据

    Figure  3.   The waveform and the character curves of a single SDE (a) and the consecutive SDEs (b) in detections using STA/LTA method

    The pink box is noise data and the light green box is the SDE signal data

    图  4   台站K02,K03和K08不同时段拾取到SDE的数量分布

    Figure  4.   Temporal distribution of the SDE number in OBS stations K02,K03and K08

    (a) 2019−10—2020−05;(b) 2020−05−03—10;(c) 2020−01−03—10

    图  5   C-SDE波形图

    (a) K02,K03和K08台站垂直分量上的C-SDE信号,R1R2R3R4分别表示R-SDE, E1表示地震事件;(b) K02,K03和K08台站上垂直分量的单一GE事件组波形;(c) K08台站上三个分量的波形

    Figure  5.   Waveform of C-SDEs

    (a) The vertical components of C-SDE signals on OBS stations K02, K03, K08 and R1R2R3R4 are the R-SDEs,and E1 is an earthquake event;(b) The GEs waveforms of vertical components on OBS stations K02,K03,K08;(c) The waveforms of the three components on K08 station

    图  6   SDE信号的频率分布

    Figure  6.   The frequency distribution of SDEs

    图  7   K02 (a),K03 (b)和 K08 (c)台站观测到的GE信号的波形及频谱图

    Figure  7.   The waveforms and spectra of GE signals on OBS stations K02 (a),K03 (b),K08 (c)

    图  8   K08台站地震信号(a)与典型R-SDE信号(b-f)波形及频谱图

    Figure  8.   The waveforms and spectra of earthquake signals (a) and typical R-SDE signals (b-f) on the K08 station

    图  9   不同时间尺度下各种机制导致的C-SDE的波形对比

    (a,b) OBS台站上的鲸鱼叫声记录(数据来源:IRIS data。网络号:X9) (Kuna,Nábělek,2021);(c,d) 短周期OBS的人工震源(气枪)信号;(e,f)本文研究

    Figure  9.   Comparison of C-SDEs caused by various mechanisms on different time scales

    (a,b) Whale songs recorded by OBS station (IRIS data recorded at OBS stations,Network:X9) (Kuna,Nábělek,2021);Artificial sources (air guns) signal recorded by short-period OBS (c,d);(e,f) this paper studied

    表  1   宽频带海底地震仪实验信息

    Table  1   Experimental information of broadband OBS

    台站编号东经/°北纬/°深度/m投放日期
    年-月-日
    回收日期
    年-月-日
    K08115.49917.7993 780.012019-10-202020-05-15
    K03115.99917.7993 835.82 2019-10-20 2020-05-15
    K02116.49917.7993 896.382019-10-212020-05-14
    下载: 导出CSV

    表  2   STA/LTA方法拾取SDE参数设置表

    Table  2   The parameter set of SDE pickup with the STA/LTA method

    参数名称STA 时间/sLTA 时间/s开始触发值结束触发值持续时间/s信噪比
    设置值0.150 860.05—2 3
    下载: 导出CSV

    表  3   SDE拾取结果

    Table  3   The pick-up quantity of SDEs on each station

    台站各方向上的拾取数量拾取总量
    HHEHHNHHZ
    K02280208572140010153751
    K034154912205118829182429
    K08776938394293849255484
    下载: 导出CSV

    表  4   2020年5月3—9日间C-SDE信号发生及持续时间

    Table  4   Occurrence and duration of C-SDE signals from May 3 to 9,2020

    序号日期
    年-月-日
    开始时间
    时:分:秒
    结束时间
    时:分:秒
    持续时间
    时:分:秒
    12020-05-030:54:157:43:106:48:55
    22020-05-0316:30:35 1:12:50 (5月4日)8:42:15
    32020-05-050:33:307:55:307:22:00
    42020-05-063:58:2513:50:25 9:52:00
    52020-05-083:28:408:24:104:55:30
    62020-05-091:30:128:38:557:08:43
    72020-05-0918:42:07 22:20:10 3:38:03
    下载: 导出CSV
  • 刘晨光,华清峰,裴彦良,杨挺,夏少红,薛梅,黎伯孟,霍达,刘芳,黄海波. 2014. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报,59(16):1542–1552.

    Liu C G,Hua Q F,Pei Y L,Yang T,Xia S H,Xue M,Le B M,Huo D,Liu F,Huang H B. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bulletin,59(33):4524–4535. doi: 10.1007/s11434-014-0369-4

    刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572.

    Liu D,Yang T,Le B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).

    Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am,68(5):1521–1532. doi: 10.1785/BSSA0680051521

    Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782

    Baer M,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events[J]. Bull Seismol Soc Am,77(4):1437–1445. doi: 10.1785/BSSA0770041437

    Batsi E,Tsang-Hin-Sun E,Klingelhoefer F,Bayrakci G,Chang E T Y,Lin J Y,Dellong D,Monteil C,Géli L. 2019. Nonseismic signals in the ocean:Indicators of deep sea and seafloor processes on ocean-bottom seismometer data[J]. Geochem Geophys Geosyst,20(8):3882–3900. doi: 10.1029/2019GC008349

    Bayrakci G,Scalabrin C,Dupré S,Leblond I,Tary J B,Lanteri N,Augustin J M,Berger L,Cros E,Ogor A,Tsabaris C,Lescanne M,Géli L. 2014. Acoustic monitoring of gas emissions from the seafloor,Part Ⅱ:A case study from the Sea of Marmara[J]. Mar Geophys Res,35(3):211–229. doi: 10.1007/s11001-014-9227-7

    Berndt C,Feseker T,Treude T,Krastel S,Liebetrau V,Niemann H,Bertics V J,Dumke I,Dünnbier K,Ferré B,Graves C,Gross F,Hissmann K,Hühnerbach V,Krause S,Lieser K,Schauer J,Steinle L. 2014. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science,343(6168):284–287. doi: 10.1126/science.1246298

    Beyreuther M,Barsch R,Krischer L,Megies T,Behr Y,Wassermann J. 2010. ObsPy:A python toolbox for seismology[J]. Seismol Res Lett,81(3):530–533. doi: 10.1785/gssrl.81.3.530

    Brodie D C,Dunn R A. 2014. Low frequency baleen whale calls detected on ocean-bottom seismometers in the Lau basin,southwest Pacific Ocean[J]. J Acoust Soc Am,137(1):53–62.

    Buskirk R E,Frohlich C,Latham G V,Chen A T,Lawton J. 1981. Evidence that biological activity affects ocean bottom seismograph recordings[J]. Mar Geophys Res,5(2):189–205.

    Dréo R,Bouffaut L,Leroy E,Barruol G,Samaran F. 2019. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean[J]. Deep Sea Res Part Ⅱ:Top Stud Oceanogr,161:132–144. doi: 10.1016/j.dsr2.2018.04.005

    Dunn R A,Hernandez O. 2009. Tracking blue whales in the eastern tropical Pacific with an ocean-bottom seismometer and hydrophone array[J]. J Acoust Soc Am,126(3):1084–1094. doi: 10.1121/1.3158929

    Earle P S,Shearer P M. 1994. Characterization of global seismograms using an automatic-picking algorithm[J]. Bull Seismol Soc Am,84(2):366–376. doi: 10.1785/BSSA0840020366

    Embriaco D,Marinaro G,Frugoni F,Monna S,Etiope G,Gasperini L,Polonia A,del Bianco F,Çağatay M N,Ulgen U B,Favali P. 2014. Monitoring of gas and seismic energy release by multiparametric benthic observatory along the North Anatolian fault in the sea of Marmara (NW Turkey)[J]. Geophys J Int,196(2):850–866. doi: 10.1093/gji/ggt436

    Franek P,Plaza-Faverola A,Mienert J,Buenz S,Ferré B,Hubbard A. 2017. Microseismicity linked to gas migration and leakage on the Western Svalbard Shelf[J]. Geochem Geophys Geosyst,18(12):4623–4645. doi: 10.1002/2017GC007107

    Hilmo R,Wilcock W S D. 2020. Physical sources of high-frequency seismic noise on Cascadia Initiative ocean bottom seismometers[J]. Geochem Geophys Geosyst,21(10):e2020GC009085.

    Kuna V M,Nábělek J L. 2021. Seismic crustal imaging using fin whale songs[J]. Science,371(6530):731–735. doi: 10.1126/science.abf3962

    Lepore S,Grad M. 2018. Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland[J]. Acta Geophys,66(5):915–929. doi: 10.1007/s11600-018-0194-2

    Marcon Y,Kelley D,Thornton B,Manalang D,Bohrmann G. 2021. Variability of natural methane bubble release at Southern Hydrate Ridge[J]. Geochem Geophys Geosyst,22(10):e2021GC009894.

    McDonald M A,Hildebrand J A,Webb S C. 1995. Blue and fin whales observed on a seafloor array in the Northeast Pacific[J]. J Acoust Soc Am,98(2):712–721. doi: 10.1121/1.413565

    Ostrovsky A A. 1989. The estimation of ocean bottom seismographs’ coupling characteristics by means of microshock recordings[J]. Mar Geophys Res,11(2):119–127. doi: 10.1007/BF00285663

    Pereira A,Romagosa M,Corela C,Silva M A,Matias L. 2021. Source levels of 20 Hz Fin whale notes measured as sound pressure and particle velocity from ocean-bottom seismometers in the North Atlantic[J]. J Mar Sci Eng,9(6):646. doi: 10.3390/jmse9060646

    Person R, Favali P, Ruhl H A, Beranzoli L Rolin J F, Waldmann C, Huber R, Auffret Y, Çağatay M N, Cannat M, Dañobeitia J J, Delory E, Diepenbroek M, de Stigter H, de Miranda J M A, Ferré B, Gillooly M, Grant F, Greinert J, Hall P O J, Lykousis V, Mienert J, Puillat I, Priede I G, Thomsen L. 2015. From ESONET multidisciplinary scientific community to EMSO novel European research infrastructure for ocean observation[M]//Seafloor Observatories: A New Vision of the Earth from the Abyss. Berlin, Heidelberg: Springer: 531–563.

    Pontoise B,Hello Y. 2002. Monochromatic infra-sound waves recorded offshore Ecuador:Possible evidence of methane release[J]. Terra Nova,14(6):425–435. doi: 10.1046/j.1365-3121.2002.00437.x

    Soule D C,Wilcock W S D. 2013. Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge,Northeast Pacific Ocean[J]. J Acoust Soc Am,133(3):1751–1761. doi: 10.1121/1.4774275

    Sultan N,Marsset B,Ker S,Marsset T,Voisset M,Vernant A M,Bayon G,Cauquil E,Adamy J,Colliat J L,Drapeau D. 2010. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. J Geophys Res:Solid Earth,115(B8):B08101.

    Sultan N,Riboulot V,Ker S,Marsset B,Géli L,Tary J B,Klingelhoefer F,Voisset M,Lanfumey V,Colliat J L,Adamy J,Grimaud S. 2011. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. J Geophys Res:Solid Earth,116(B12):B12110. doi: 10.1029/2011JB008218

    Tary J B,Geli L,Guennou C,Henry P,Sultan N,Çağatay N,Vidal V. 2012. Microevents produced by gas migration and expulsion at the seabed:A study based on sea bottom recordings from the Sea of Marmara[J]. Geophys J Int,190(2):993–1007. doi: 10.1111/j.1365-246X.2012.05533.x

    Trnkoczy A. 2012. Understanding and parameter setting of STA/LTA trigger algorithm[M]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches Geo Forschungs Zentrum: 1–20.

    Tsang-Hin-Sun E,Batsi E,Klingelhoefer F,Géli L. 2019. Spatial and temporal dynamics of gas-related processes in the sea of Marmara monitored with ocean bottom seismometers[J]. Geophys J Int,216(3):1989–2003. doi: 10.1093/gji/ggy535

    Ugalde A,Gaite B,Ruiz M,Villaseñor A,Ranero C R. 2019. Seismicity and noise recorded by passive seismic monitoring of drilling operations offshore the eastern Canary Islands[J]. Seismol Res Lett,90(4):1565–1576.

    Wang Y Z,Yang T,Wu Y C,Liu D,Huang X F,Wang J,Zhong W X,Shou H T,Zhou Y,Chen Y S. 2022. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophys J Int,230(1):684–695. doi: 10.1093/gji/ggac092

    Weirathmueller M J,Wilcock W S D,Soule D C. 2013. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean[J]. J Acoust Soc Am,133(2):741–749. doi: 10.1121/1.4773277

    Wilcock W S D,Hilmo R S. 2021. A method for tracking blue whales (Balaenoptera musculus) with a widely spaced network of ocean bottom seismometers[J]. PLoS ONE,16(12):e0260273. doi: 10.1371/journal.pone.0260273

  • 期刊类型引用(9)

    1. 李志海,朱成英,周晓成,张志斌,李慧峰. 新疆北天山地区泥火山变化特征及其在震情跟踪中的应用. 中国地震. 2024(03): 617-629 . 百度学术
    2. 麻荣,朱成英,李新勇,汪成国,刘建明,刘代芹,李杰. 新疆乌苏艾其沟泥火山气体排放通量及其前兆异常特征研究. 内陆地震. 2022(03): 218-226 . 百度学术
    3. 蒋雨函,高小其,王阳洋,张磊. 中国新疆北天山和台湾南部陆地泥火山研究进展. 地震. 2020(03): 65-82 . 百度学术
    4. 朱成英,周晓成,麻荣,闫玮,梁卉,张涛,高小其,颜玉聪. 2017年8月9日精河M_S6.6地震前乌苏泥火山群流体地球化学变化特征. 地震地质. 2019(04): 1060-1075 . 百度学术
    5. 梁卉,高小其,向阳,朱成英. 新疆北天山艾其沟泥火山强震前显著喷涌现象及其变化机理分析. 中国地震. 2018(03): 534-544 . 百度学术
    6. 钟骏,王博,周志华. 精河M_S6.6地震前地下流体异常特征分析. 中国地震. 2018(04): 754-764 . 百度学术
    7. 张涛,朱成英,梁卉. 2016年12月8日呼图壁M_S6.2地震震前流体异常. 内陆地震. 2017(03): 253-258 . 百度学术
    8. 高小其,梁卉,王海涛,郑黎明,李杰,赵纯青,向阳,张涛. 北天山地区泥火山的地球化学成因. 地震地质. 2015(04): 1215-1224 . 百度学术
    9. 高小其,王海涛,郑黎明,李娜,朱成英,杨晓芳,汪成国,向阳,梁卉,麻荣. 新疆泥火山群地震前兆异常实时监测与预报的研究. 震灾防御技术. 2015(03): 587-597 . 百度学术

    其他类型引用(1)

图(9)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-09-17
  • 修回日期:  2022-11-13
  • 网络出版日期:  2023-01-29
  • 发布日期:  2023-05-14

目录

    /

    返回文章
    返回