台风黑格比和巴威对地脉动的影响

孙冬军, 刘芳, 王鹏, 于海英, 王成睿

孙冬军,刘芳,王鹏,于海英,王成睿. 2023. 台风黑格比和巴威对地脉动的影响. 地震学报,45(3):445−454. DOI: 10.11939/jass.20220183
引用本文: 孙冬军,刘芳,王鹏,于海英,王成睿. 2023. 台风黑格比和巴威对地脉动的影响. 地震学报,45(3):445−454. DOI: 10.11939/jass.20220183
Sun D J,Liu F,Wang P,Yu H Y,Wang C R. 2023. The influence of Typhoon Hagupit and Typhoon Bavi on microseisms. Acta Seismologica Sinica45(3):445−454. DOI: 10.11939/jass.20220183
Citation: Sun D J,Liu F,Wang P,Yu H Y,Wang C R. 2023. The influence of Typhoon Hagupit and Typhoon Bavi on microseisms. Acta Seismologica Sinica45(3):445−454. DOI: 10.11939/jass.20220183

台风黑格比和巴威对地脉动的影响

基金项目: 上海佘山地球物理国家野外科学观测研究站海洋地震观测研究室课题(2022SSY04)和上海市地震局地震监测预警科技创新团队联合资助
详细信息
    作者简介:

    孙冬军,工程师,主要从事地震数据处理方面的工作,e-mail:sundongjunvip@163.com

    通讯作者:

    于海英,博士,高级工程师,主要从事地震监测、台网和台阵数据处理等工作,e-mail:6168658@qq.com

  • 中图分类号: P315.31

The influence of Typhoon Hagupit and Typhoon Bavi on microseisms

  • 摘要: 台风引起的海浪通常可加强地脉动能量,而地脉动的激发机制和噪声源位置存在一定争议。通过计算沿海和内陆的7个宽频带地震台站2020年7月1日—9月1日连续波形数据的功率谱密度并对连续波型数据进行极化分析,定量讨论台风期间不同频段的功率谱密度值变化,研究佘山台、大洋山台、横湖台、天平山台和秦皇山台的噪声源方向分布。结果表明:台风黑格比和巴威明显加强了双频地脉动功率谱密度值,尤其对于长周期双频地脉动的加强作用更为显著,对于单频地脉动及≥20 s周期地脉动的影响则相对不显著;佘山台、大洋山台、秦皇山台、天平山台和横湖台记录的短周期双频地脉动可能是邻近海域不同噪声源起主导作用;长周期双频地脉动的噪声源方向一致性较好,指向南南西方向,可能受到南海海域或者更南边的源区的影响,而单频地脉动则主要受到海岸线上不同噪声源的影响。
    Abstract: Typhoon-induced waves can usually enhance the microseisms energy, the generation mechanism and source locations of microseisms are controversial. We calculated the power spectral density and carried out polarization analysis of the continuous waveform data of seven wide-band seismic stations on the coast or inland from July 1 to September 1, 2020. The variation of power spectral density in different frequency bands during typhoons has been quantitatively discussed, and the distribution of noise sources at the seismic stations SSE, DYS, HUH, TPS and QHS were studied. The results show that the power spectral density of double-frequency microseisms significantly increased after Typhoon Hagupit and Typhoon Bavi, especially the long period double-frequency microseisms. The single frequency microseisms and microseisms with period ≥20 s increased inconspicuously. The short period double-frequency microseisms recorded at SSE, DYS, HUH, TPS, and QHS seismic stations are affected by different sources in the adjacent sea area. The sources of the long period double-frequency microseisms are consistent, pointing to the south-south-west direction, which may be affected by the source area of the South China Sea or further south. The single frequency microseisms are affected by different noise sources along the coastline.
  • 图  1   2020年7月—9月影响我国东南沿海的台风路径及本文所用台站

    Figure  1.   Typhoon tracks affecting the southeastern coast of China from July to September in 2020 and the stations used in this study

    图  2   台风黑格比风速变化和台风风眼与佘山台间的距离随时间的变化(左)及佘山地震台5—10 s PSD值和观测点浪高值的变化(右)

    Figure  2.   Variation of wind speed of Typhoon Hagupit and distance variation from typhoon eye to SSE seismic station with time (left)and variation of PSD at SSE seismic station for 5−10 s and wave hight at observation point (right)

    图  3   台风黑格比(a)和台风巴威(b)期间各地震台站双频地脉动PSD值变化

    Figure  3.   Variation of double frequency microseisms PSD values of seismic stations during Typhoon Hagupit (a) and Typhoon Bavi (b)

    图  4   台风巴威(a)和台风黑格比(b)期间地震台站周期≥10 s 波形的PSD值变化

    Figure  4.   Variation of PSD values of the seismic stations for periods ≥10 s during Typhoon Bavi (a) and Typhoon Hagupit (b)

    图  5   台风黑格比期间各内陆台站(左)与沿海台站(右)50 s 以上周期PSD值变化差异

    Figure  5.   Variation difference of PSD values between inland (left) and coastal (right) seismic stations over 50 s period during Typhoon Hagupit

    图  6   短周期双频地脉动(a)、长周期双频地脉动(b)和单频地脉动(c)极化方向概率分布图

    圆环内径到外径分别代表周期2—4 s 、4—10 s 和10—20 s 的极化结果

    Figure  6.   Polarization direction probability distribution diagram of SPDF (a),LPDF (b) and SF (c)

    The inner to outer diameter of the ring represents the polarization results of the period 10—20 s , 4—10 s and 10—20 s

  • 郑露露,林建民,倪四道,祝捍皓,郑红. 2017. 台风激发的第二类地脉动特征及激发模式分析[J]. 地球物理学报,60(1):187–197.

    Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinese Journal of Geophysics,60(1):187–197 (in Chinese).

    Ardhuin F,Stutzmann E,Schimmel M,Mangeney A. 2011. Ocean wave sources of seismic noise[J]. J Geophys Res:Solid Earth,116(C9):C09004.

    Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782

    Beucler É,Mocquet A,Schimmel M,Chevrot S,Quillard O,Vergne J,Sylvander M. 2015. Observation of deep water microseisms in the North Atlantic Ocean using tide modulations[J]. Geophys Res Lett,42(2):316–322. doi: 10.1002/2014GL062347

    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009.

    Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268

    Casey R,Templeton M E,Sharer G,Keyson L,Weertman B R,Ahern T. 2018. Assuring the quality of IRIS data with MUSTANG[J]. Seismol Res Lett,89(2A):630–639. doi: 10.1785/0220170191

    Davy C,Barruol G,Fontaine F R,Sigloch K,Stutzmann E. 2014. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophys Res Lett,41(24):8825–8831. doi: 10.1002/2014GL062319

    Fang S K,Lin J M,Ni S D,Li X F,Xu X Q,Zheng H,Xu W. 2020. Improving seismic remote sensing of typhoon with a three-dimensional Earth model[J]. J Acoust Soc Am,148(2):478–491. doi: 10.1121/10.0001624

    Fichtner A. 2015. Source-structure trade-offs in ambient noise correlations[J]. Geophys J Int,202(1):678–694. doi: 10.1093/gji/ggv182

    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177

    Kanasewich E R. 1973. Time Sequence Analysis in Geophysics[M]. Camrose: University of Alberta Press: 274–296.

    Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proc Roy Soc A:Math Phys Eng Sci,464(2091):777–793.

    Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5

    Koper K D,Burlacu R. 2015. The fine structure of double-frequency microseisms recorded by seismometers in North America[J]. J Geophys Res:Solid Earth,120(3):1677–1691. doi: 10.1002/2014JB011820

    Lin J M,Wang Y T,Wang W T,Li X F,Fang S K,Chen C,Zheng H. 2018. Seismic remote sensing of Super Typhoon Lupit (2009) with seismological array observation in NE China[J]. Remote Sens,10(2):235. doi: 10.3390/rs10020235

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35.

    Lu X Q,Yu H,Ying M,Zhao B K,Zhang S,Lin L M,Bai L N,Wan R J. 2021. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci,38(4):690–699. doi: 10.1007/s00376-020-0211-7

    Lü Y,Ni S D,Xie J,Xia Y J,Zeng X F,Liu B. 2013. Crustal S-wave velocity structure of the Yellowstone region using a seismic ambient noise method[J]. Earthquake Science,26(5):283–291. doi: 10.1007/s11589-013-0016-1

    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001

    Roux P,Sabra K G,Gerstoft P,Kuperman W A,Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett,32(19):L19303.

    Samson J C. 1983. Pure states,polarized waves,and principal components in the spectra of multiple,geophysical time-series[J]. Geophys J Int,72(3):647–664. doi: 10.1111/j.1365-246X.1983.tb02825.x

    Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339

    Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3):431–448.

    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018b. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017JB015291

    Xiao H,Xue M,Pan M H,Gao J Y. 2018a. Characteristics of microseisms in South China[J]. Bull Seismol Soc Am,108(5A):2713–2723. doi: 10.1785/0120170237

    Yao H J,van der Hilst R D,Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. J Geophys Res:Solid Earth,115(B12):B12307. doi: 10.1029/2009JB007142

    Ying Y Z,Bean C J,Bromirski P D. 2014b. Propagation of microseisms from the deep ocean to land[J]. Geophys Res Lett,41(18):6374–6379. doi: 10.1002/2014GL060979

    Ying M,Zhang W,Yu H,Lu X Q,Feng J X,Fan Y X,Zhu Y T,Chen D Q. 2014a. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol,31(2):287–301. doi: 10.1175/JTECH-D-12-00119.1

    Zheng Y,Shen W S,Zhou L Q,Yang Y J,Xie Z J,Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the Sea of Japan from ambient noise tomography[J]. J Geophys Res:Solid Earth,116(B12):B12312. doi: 10.1029/2011JB008637

图(6)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  182
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-01-06
  • 网络出版日期:  2023-04-03
  • 发布日期:  2023-05-14

目录

    /

    返回文章
    返回