江苏东海深井观测地震波形及其信噪比研究

徐纪人, 李海兵, 曾祥芝, 赵志新

徐纪人,李海兵,曾祥芝,赵志新. 2022. 江苏东海深井观测地震波形及其信噪比研究. 地震学报,44(6):1007−1018. DOI: 10.11939/jass.20220195
引用本文: 徐纪人,李海兵,曾祥芝,赵志新. 2022. 江苏东海深井观测地震波形及其信噪比研究. 地震学报,44(6):1007−1018. DOI: 10.11939/jass.20220195
Xu J R,Li H B,Zeng X Z,Zhao Z X. 2022. Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province. Acta Seismologica Sinica44(6):1007−1018. DOI: 10.11939/jass.20220195
Citation: Xu J R,Li H B,Zeng X Z,Zhao Z X. 2022. Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province. Acta Seismologica Sinica44(6):1007−1018. DOI: 10.11939/jass.20220195

江苏东海深井观测地震波形及其信噪比研究

基金项目: 国家自然科学基金(41374052)、国家地质调查局科学基金(J1901)和区域地质调查项目(D1911)联合资助
详细信息
    通讯作者:

    徐纪人,博士,研究员,主要从事地球物理学、地震学和大陆动力学方面的研究,e-mail:xujiren1125@hotmail.com

  • 中图分类号: P315.31

Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province

  • 摘要: 为了探索在高噪声干扰地区获取高信噪比地震信息的有效途径,本文分析了我国第一个超深井地震观测站江苏东海地壳活动国家野外科学观测研究站设置在地面与井下三个不同深度处的地震仪所记录的波形及其信噪比特征。结果显示:由于观测研究站周围强烈的噪声扰动,地面地震仪记录中无法识别ML0.8地方震波形,而深井地震仪可清晰地记录到该小震波形,且深井地震仪可观测到较地面地震仪更多的零级或负震级地震;井下三组不同深度地震仪所记录波形的信噪比均远高于地面地震仪,且不同深度地震波形信噪比的平均值随仪器深度的增大而增加。井下1 559.5 m处的地震仪的波形平均信噪比为69.20 dB,2 545.5 m处的信噪比达到74.15 dB,均达到高保真波形的信噪比值,这说明1 500 m深处地震仪所观测到的波形可以有效地避免地面干扰,因此深井地震观测能够提供高信噪比的波形资料,为研究震源过程和场地效应等提供真实可靠的基础资料,这也预示着深井观测将促进深井地震学的研究与发展。
    Abstract: The Jiangsu Donghai Crustal Activity in Continental Deep Hole National Observation and Research Station (Donghai station for short) is the first deep borehole seismic observation station in China. In order to explore an effective way to observe seismic information with high signal-to-noise ratio in high noise interference areas and to carry out the study on the borehole seismology, this paper analyzed the waveform characteristics and signal-to-noise ratios of waveforms recorded by a seismometer on the ground and three borehole seismometers at different depths underground in Donghai station. The results show that the waveform of a ML0.8 local event cannot be recognized on the seismogram of the seismograph on the ground due to the strong non-seismic noise disturbance around the Donghai station. However, the waveforms of the ML0.8 event can clearly be recognized on the seismograms of the three deep borehole seismographs. Furthermore, the earthquakes with zero magnitude or weaker negative magnitude recorded by the deep borehole seismographs are also more than those recorded by the seismograph on the ground. Meanwhile, the signal-to-noise ratios of waveforms recorded by borehole seismometers at three different depths are much higher than those recorded by the seismometer on the ground; moreover, the average signal-to-noise ratios of waveforms increase with the depths of observation instruments in the borehole. The average signal-to-noise ratio of the waveforms recorded by the seismograph at 1 559.5 m depth underground is 69.20 dB, and that of the seismograph at 2 545.5 m depth is 74.15 dB. Both of the two ratios reached the signal-to-noise ratio value of high fidelity waveform. Therefore, the observation data of seismograph at about 1 500 m depth can effectively avoid the interference on ground and record waveform with high signal-to-noise ratio. Such waveforms provide real and reliable data for the study on source process and site effect, promoting the development of deep borehole seismology.
  • 图  5   东海站地面L0与深井下L1L2L3地震仪观测地震信噪比计算结果

    Figure  5.   Signal-to-noise ratio curves of seismic waveforms observed by seismometers L0 on the surface and L1L2 and L3 in the borehole underground in Donghai station

    图  1   江苏东海地壳活动国家野外科学观测研究站周缘地质构造图(引自徐纪人等,2016

    Figure  1.   Geological structure around the Jiangsu Donghai Crustal Activity in Continental Deep Hole National Observation and Research Station in China (after Xu et al,2016

    图  2   东海观测站地面与井下地震仪记录的2013年2月3日江苏灌云ML0.8地震(震中距97.2 km,方位角80°)的三分量波形图

    (a) 地面宽频地震仪L0记录波形;(b) 图(a)波形经中通滤波后的波形;(c) 井下地震仪L3记录波形

    Figure  2.   Three-component waveforms of the ML0.8 earthquake (epicentral distance is 97 km,azimuth is 80°) in Guanyun,Jiangsu on February 3,2013 recorded by the seismographs on the ground and in the borehole of the Donghai station

    (a) Waveforms recorded by the broadband seismograph L0 on the ground;(b) Waveforms after medium-pass filtering to the waveforms in Fig.(a);(c) Waveforms recorded by the seismograph L3 in the borehole underground

    图  3   东海观测站地面与井下不同深度地震仪记录的2013年5月24日安徽利辛ML2.7地震(震中距271.5 km,方位角56°)的三分量波形图

    (a) 地面L0地震仪记录波形;(b) 图(a)中波形经中通滤波后所得波形;(c) 井下544.5 m深处地震仪L1记录波形;(d) 井下2 545.5 m深处地震仪L3记录波形

    Figure  3.   Three-component seismic waveforms of the ML2.7 event in Lixin,Anhui on May 24,2013 recorded by seismometers on the ground and at different depths in the borehole underground of the Donghai station

    (a) Waveforms recorded by seismograph L0 on the ground;(b) Waveforms after medium-pass filtering to the waveforms in Fig.(a);(c) Waveforms recorded by seismograph L1 at 544.5 m depth in the borehole;(d) Waveforms recorded by seismograph L3 at 2 545.5 m depth in the borehole

    图  4   东海观测站深井地震仪L3观测的微小地震三分量波形

    Figure  4.   Three-component waveforms of the earthquakes recorded by seismograph L3 in the borehole underground of the Donghai station

    表  1   深井中的地震仪参数及工作环境岩性和地球物理参数

    Table  1   Seismograph parameters and lithologic and geophysical parameters around the seismographs in the borehole

    地震仪编号深度/m地震仪主频/Hz岩性围岩vP/(km·s−1 围岩vS/(km·s−1温度/℃
    L00宽频3ESP
    L1544.54.5斜长角闪岩和退变榴辉岩 6.65 3.7029.1
    L21559.54.5花岗质片麻岩(正片麻岩) 5.50 2.9451.0
    L32545.54.5斜长片麻岩5.98 75.0
    下载: 导出CSV
  • 龚正,李海兵,荆燕,李丽. 2020. 2016年M6.2呼图壁地震发震构造及其对天山构造带隆升的启示:来自中近场钻孔应变观测的证据[J]. 地球物理学报,63(4):1368–1402.

    Gong Z,Li H B,Jing Y,Li L. 2020. Seismogenic structure of the 2016 M6.2 Hutubi earthquake and its implication for the uplift process in Tian Shan:Evidence from borehole strainmeters in the near to intermediate field[J]. Chinese Journal of Geophysics,63(4):1386–1402 (in Chinese).

    何丽娟,胡圣标,杨文采,汪集旸,杨树春,袁玉松,程振炎. 2006. 中国大陆科学钻探主孔动态地温测量[J]. 地球物理学报,49(3):745–752. doi: 10.3321/j.issn:0001-5733.2006.03.018

    He L J,Hu S B,Yang W C,Wang J Y,Yang S C,Yuan Y S,Cheng Z Y. 2006. Temperature measurement in the main hole of the Chinese continental scientific drilling[J]. Chinese Journal of Geophysics,49(3):745–752 (in Chinese).

    李海兵,许志琴,王焕,张蕾,何祥丽,司家亮,孙知明. 2018. 汶川地震断裂带滑移行为、物理性质及其大地震活动性:来自汶川地震断裂带科学钻探的证据[J]. 地球物理学报,61(5):1680–1697. doi: 10.6038/cjg2018M0257

    Li H B,Xu Z Q,Wang H,Zhang L,He X L,Si J L,Sun Z M. 2018. Fault behavior,physical properties and seismic activity of the Wenchuan earthquake fault zone:Evidences from the Wenchuan earthquake fault scientific drilling project (WFSD)[J]. Chinese Journal of Geophysics,61(5):1680–1697 (in Chinese).

    罗诚,谢俊举,温增平. 2018. 熊本MW7.0地震近场地表与井下地震动对比研究[J]. 地震学报,40(1):108–120. doi: 10.11939/jass.20170111

    Luo C,Xie J J,Wen Z P. 2018. Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica,40(1):108–120 (in Chinese).

    沈伟森,罗艳,倪四道,崇加军,陈颙. 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报,32(2):137–146.

    Shen W S,Luo Y,Ni S D,Chong J J,Chen Y. 2010. Resolving near surface S velocity structure in natural earthquake frequency band:A case study in Beijing region[J]. Acta Seismologica Sinica,32(2):137–146 (in Chinese).

    滕吉文. 2021. 高精度地球物理学是创新未来的必然发展轨迹[J]. 地球物理学报,64(4):1131–1144. doi: 10.6038/cjg2021N0100

    Teng J W. 2021. High-precision geophysics:The inevitable development track of the innovative future[J]. Chinese Journal of Geophysics,64(4):1131–1144 (in Chinese).

    涂毅敏,陈运泰. 2002. 德国大陆超深钻井注水诱发地震的精确定位[J]. 地震学报,24(6):587–598. doi: 10.3321/j.issn:0253-3782.2002.06.004

    Tu Y M,Chen Y T. 2002. The accurate location of the injection-induced microearthquakes in German continental deep drilling program[J]. Acta Seismologica Sinica,24(6):587–598 (in Chinese).

    王芳,李丽,王宝善. 2017. 普洱大寨深井噪声压制效果及井孔附近波场特征研究[J]. 地震学报,39(6):831–847.

    Wang F,Li L,Wang B S. 2017. Ability of decreasing noise and the characteristics of near-surface wave field around Dazhai borehole in Pu’er[J]. Acta Seismologica Sinica,39(6):831–847 (in Chinese).

    王俊国,卫鹏飞,吴晓芝. 1988. 井下与地面地震波记录特征的对比研究[J]. 地震学报,10(3):270–279.

    Wang J G,Wei P F,Wu X Z. 1988. Comparative study between the characteristics of seismic waves recorded downhole and on groundsurface[J]. Acta Seismologica Sinica,10(3):270–279 (in Chinese).

    徐纪人,赵志新,石川有三. 2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报,51(3):770–781. doi: 10.3321/j.issn:0001-5733.2008.03.018

    Xu J R,Zhao Z X,Ishikawa Y. 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics,51(3):770–781 (in Chinese).

    徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003

    Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).

    徐纪人,赵志新,曾祥芝,皮金云. 2016. 东海深井地球物理长期观测仪器设置与观测研究[J]. 地震学报,38(2):321–325. doi: 10.11939/jass.2016.02.016

    Xu J R,Zhao Z X,Zeng X Z,Pi J Y. 2016. Instrument installation and observation research for borehole geophysical long-term observation in Donghai,Jiangsu[J]. Acta Seismologica Sinica,38(2):321–325 (in Chinese).

    周翠英,刁桂苓,耿杰,李永红,许萍,胡新亮,冯向东,李冬梅. 2013. 1668年郯城大地震震源断层三维特征反演[J]. 地球物理学进展,28(6):2814–2824. doi: 10.6038/pg20130602

    Zhou C Y,Diao G L,Geng J,Li Y H,Xu P,Hu X L,Feng X D,Li D M. 2013. 3-D characteristics inversion of hypocenter fault-plane of the 1668 Tancheng great earthquake[J]. Progress in Geophysics,28(6):2814–2824 (in Chinese).

    Asai Y,Okubo M,Ishii H,Aoki H,Yamauchi T,Kitagawa Y,Koizumi N. 2005. Co-seismic strain-steps associated with the 2004 off the Kii peninsula earthquakes:Observed with Ishii-type borehole strainmeters and quartz-tube extensometers[J]. Earth Planet Space,57(4):309–314. doi: 10.1186/BF03352568

    Baisch S,Bohnhoff M,Ceranna L,Tu Y M,Harjes H P. 2002. Probing the crust to 9-km depth:Fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole,Germany[J]. Bull Seismol Soc Am,92(6):2369–2380. doi: 10.1785/0120010236

    Chavarria J A,Malin P,Catchings R D,Shalev E. 2003. A look inside the San Andreas fault at Parkfield through vertical seismic profiling[J]. Science,302(5651):1746–1748. doi: 10.1126/science.1090711

    Fujimoto K,Ueda A,Ohtani T,Takahashi M,Ito H,Tanaka H,Boullier A M. 2007. Borehole water and hydrologic model around the Nojima fault,SW Japan[J]. Tectonophysics,443(3/4):174–182.

    Hung R J, Ma K F, Song T R A, Lin Y Y, Weingarten M. 2022. Observation of temporal variations inseismic anisotropy within an activefault-zone revealed from the TaiwanChelungpu-fault drilling projectborehole seismic array[J]. JGeophys Res: Solid Earth, 127: e2021JB023050.

    Ikari M J,Kameda J,Saffer D M,Kopf A J. 2015. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake[J]. Earth Planet Sci Lett,412(15):35–41. doi: 10.1016/j.jpgl.2014.12.014

    Ishii H, Yamauchi T, Asai Y, Ohkubo M, Matsumoto S. 2003. Continuous multi-component monitoring of crustal activities in 1020 m borehole by Tono Research Institute of Earthquake Science: The deepest multiple observation in the world consisting of stress, strain, tilt, seismic wave, geomagnetism, temperature[C]//Proceedings of Crustal Movements Research Meeting. Kyoto: Disaster Prevention Research Institute of Kyoto University: 81–87 (in Japanese).

    Ito T,Zoback M D. 2000. Fracture permeability and in situ stress to 7 km depth in the KTB scientific drill hole[J]. Geophys Res Lett,27(7):1045–1048. doi: 10.1029/1999GL011068

    Jeong J,Park E,Emelyanova I,Pervukhina M,Esteban L,Yun S T. 2020. Interpreting the subsurface lithofacies at high lithological resolution by integrating information from well-log data and rock-core digital images[J]. J Geophys Res:Solid Earth,125(2):e2019JB018204.

    Jeppson T N,Tobin H J. 2015. San Andreas fault zone velocity structure at SAFOD at core,log,and seismic scales[J]. J Geophys Res:Solid Earth,120(7):4983–4997. doi: 10.1002/2015JB012043

    Langet N,Goertz-Allmann B,Oye V,Bauer R A,Williams-Stroud S,Dichiarante A M,Greenberg S E. 2020. Joint focal mechanism inversion using downhole and surface monitoring at the Decatur,Illinois,CO2 injection site[J]. Bull Seismol Soc Am,110(5):2168–2187. doi: 10.1785/0120200075

    Lay V,Buske S,Bodenburg S B,Townend J,Kellett R,Savage M K,Schmitt D R,Constantinou A,Eccles J D,Bertram M,Hall K,Lawton D,Gorman A R,Kofman R S. 2020. Seismic P wave velocity model from 3-D surface and borehole seismic data at the Alpine fault DFDP-2 drill site (Whataroa,New Zealand)[J]. J Geophys Res:Solid Earth,125(4):e2019JB018519.

    Lei C,Alves T M,Ren J Y,Tong C X. 2020. Rift structure and sediment infill of hyperextended continental crust:Insights from 3D seismic and well data (Xisha Trough,South China Sea)[J]. J Geophys Res,125(5):e2019JB018610.

    Lellouch A,Yuan S Y,Ellsworth W L,Biondi B. 2019. Velocity-based earthquake detection using downhole distributed acoustic sensing:Examples from the San Andreas Fault Observatory at Depth[J]. Bull Seismol Soc Am,109(6):2491–2500. doi: 10.1785/0120190176

    Liu L B,Zoback M D,Segall P. 1992. Rapid intraplate strain accumulation in the New Madrid seismic zone[J]. Science,257(5077):1666–1669. doi: 10.1126/science.257.5077.1666

    Luttrell K,Hardebeck J. 2021. A unified model of crustal stress heterogeneity from borehole breakouts and earthquake focal mechanisms[J]. J Geophys Res:Solid Earth,126(2):e2020JB020817.

    Ma K F,Lin Y Y,Lee S J,Mori J,Brodsky E E. 2012. Isotropic events observed with a borehole array in the Chelungpu fault zone,Taiwan[J]. Science,337(6093):459–463.

    Okubo M,Ishii H,Yamauchi T. 2004. The 2003 Tokachi-Oki earthquake observed by borehole strainmeter array:Comparison with broadband seismogram[J]. Zisin,57(2):105–113 (in Japanese).

    Oye V,Chavarria J A,Mali P E. 2004. Determining SAFOD area microearthquake locations solely with the Pilot hole seismic array data[J]. Geophys Res Lett,31(12):L12S10.

    Pierdominici S,Millett J M,Kück J K M,Thomas D,Jerram D A,Planke S,Haskins E,Lautze N,Galland O. 2020. Stress field interactions between overlapping shield volcanoes:Borehole breakout evidence from the Island of Hawai’i,USA[J]. J Geophys Res:Solid Earth,125(8):e2020JB019768.

    Riga E,Hollender F,Roumelioti Z,Bard P Y,Pitilakis K. 2019. Assessing the applicability of deconvolution of borehole records for determining near-surface shear-wave attenuation[J]. Bull Seismol Soc Am,109(2):621–635. doi: 10.1785/0120180298

    Shashidhar D,Rodriguez I V,Mallika K,Kühn D,Wilks M,Satyanarayana H V S,Oye V. 2020. Relative locations of an earthquake sequence recorded during June 2017 on the Koyna-Warna borehole seismic network of western India[J]. Bull Seismol Soc Am,110(6):3130–3138. doi: 10.1785/012020068

    Shearer P M,Abercrombie R E. 2021. Calibrating spectral decomposition of local earthquakes using borehole seismic records:Results for the 1992 Big Bear aftershocks in southern California[J]. J Geophys Res:Solid Earth,126(3):e2020JB020561.

    Tembe S,Lockner D,Wong T F. 2009. Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from San Andreas fault Observatory at Depth (SAFOD) drilling phases 1 and 2[J]. J Geophys Res:Solid Earth,114(B11):B11401.

    Xu J R,Zhao Z X,Zeng X Z,Pi J Y. 2016. Long-term geophysical observations and analysis of the world’s deepest borehole[J]. Acta Geologica Sinica,90(3):1061–1062. doi: 10.1111/1755-6724.12753

    Xu J R,Li H B,Qi X X,Zhao Z X. 2021. Shallow structure of the crust in the Sulu-Dabie region,China and its seismotectonic implication[J]. Acta Geologica Sinica,95(3):988–995.

    Xu S,Tang X M,Su Y D,Torres-Verdín C. 2020. Crack-induced shear-wave orthorhombic anisotropy:Modeling and inversion of shear-wave borehole measurements[J]. J Geophys Res:Solid Earth,125(3):e2019JB018741.

    Zeng X Z,Yang W C. 2021. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Appl Sci,11(14):6606.

    Zhang K H,Tian J Y,Hu Z F. 2019. Theoretical frequency response and corresponding bandwidth of an empty borehole for the measurement of strain waves in borehole tensor strainmeters[J]. Bull Seismol Soc Am,109(6):2459–2469. doi: 10.1785/0120180264

    Zhao Z,Zhao Z X,Xu J R. 2012. Velocity structure heterogeneity and tectonic motion in and around the Tan-Lu fault of China[J]. J Asian Earth Sci,57:6–14. doi: 10.1016/j.jseaes.2012.05.019

图(5)  /  表(1)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  160
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 修回日期:  2022-03-14
  • 网络出版日期:  2022-10-16
  • 发布日期:  2022-12-12

目录

    /

    返回文章
    返回