Strong earthquakes loading of the 2021 Madoi MW7.4 earthquake and its effects on stress disturbances in surrounding area
-
摘要:
2021年5月22日在青海玛多发生MW7.4地震,为了探究玛多地震的不同滑动模型对周围地区及断层应力的加卸载作用,本文首先以GNSS数据为约束,结合中国地震局地质研究所公布的玛多地震同震滑动模型(模型A)断层面几何结构反演获得同震滑动模型(模型C),再分别利用模型A、模型B(USGS)、模型C计算玛多地震对周围地区及断层的应力加卸载作用。结果显示:① 模型C矩震级为MW7.46,最大滑动量为3.39 m,主体破裂位于0—10 km深度范围,整体破裂东侧大于西侧,滑动分布相对于模型A也更加均匀平滑,反演效果较好;② 不同模型计算的应力分布基本相同,沿破裂段同震库仑应力加载区域面积随着深度的增加而增加,且在发震断裂带西端、东端分别各有两处明显的库仑应力加载区域,在昆仑山口—江错断裂东、西段、甘孜—玉树断裂、东昆仑断裂东段、玛多—甘德断裂、清水河断裂中、西段、达日断裂西段均产生了明显的应力加载,但模型B计算结果有所差异,昆仑山口—江错断裂中段处于应力卸载状态,震后10年断层应力状态变化不大,但清水河断裂东段在震后应力调整中卸载作用较为明显,地震危险性降低;③ 为了探究强震对玛多地震的影响,本文分别计算了2008年汶川地震以后巴颜喀拉地块M≥7.0强震同震及震后效应对玛多地震的应力加卸载,结果表明所有强震均对玛多地震有应力加载作用,但累积库仑应力并未超过触发阈值。
Abstract:On May 22, 2021, the MW7.4 earthquake occurred in Madoi, Qinghai. In order to explore the loading and unloading effects of different sliding models of Madoi earthquake on the surrounding areas and fault stresses, in this paper, the co-seismic sliding model (Model C) is obtained by taking GNSS data as a constraint combining the inversion of the geometric structure of the fault plane of Model A (Institute of Geology, China Earthquake Administration), and then the loading and unloading effects of Madoi earthquake on the surrounding areas and fault stresses are calculated by using Model A, Model B (USGS), and Model C respectively. The results show that: ① The moment magnitude of Model C is MW7.46, the maximum slip is 3.39 m, the main fracture is located in the depth range of 0−10 km, the east side of the overall fracture is larger than the west side, the slip distribution is more uniform and smoother than Model A, and the inversion effect is good. ② The stress distributions calculated by different models are basically the same. The area of co-seismic Coulomb stress loading along the fracture segment increases with the depth, and there are both two distinct Coulomb stress loading areas at the west and east ends of the seismogenic fault zone. Significant stress loading occurs in the east and west sections of Kunlunshankou-Jiangcuo fault, Garze-Yushu fault, east section of the East Kunlun fault, Madoi-Gander fault, middle and west sections of Qingshuihe fault and west section of Dari fault. However, the Model B calculations differ, with the middle section of the Kunlunshankou-Jiangcuo fault in a state of stress unloading at the location. The fault stress state did not change much in the 10 post-seismic years, but the eastern section of the Qingshuihe fault had more significant stress unloading in the post-seismic stress adjustment, and the seismic hazard was reduced. ③ In order to explore the impact of strong earthquakes on Madoi earthquake, this paper calculated the co-seismic and post-seismic effects of the M≥7.0 strong earthquakes in Bayan Hara block after the 2008 Wenchuan earthquake on the stress loading and unloading of Madoi earthquake respectively. The results show that the Madoi earthquake is subject to strong earthquake loading, but it does not exceed the trigger threshold.
-
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2020年6月23日15时29分04秒(UTC),墨西哥南部瓦哈卡州发生了一次矩震级MW7.4的地震,NEIC初步确定的震中(preliminary determination epicenter, 缩写为PDE)位于(15.916 3°N,95.953 3°W),震源深度为20 km。美国地质调查局(USGS,2020)和全球矩心矩张量组(GCMT,2020)随后发布了这次地震的矩心矩张量解(表1)。根据USGS (2020)发布的地震目录,在该主震发生后的48小时内发生了9次较大余震,其中最大余震震级达到MW5.4,5次事件深达35 km。
表 1 不同机构所得墨西哥MW7.4地震矩心矩张量解的比较Table 1. Comparison of the centroid moment tensor solutions for the MW7.4 Mexico earthquake obtained by different institutions机构 矩张量/(1020 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 西经/° 矩心深度/km GCMT (2020) 0.729 −0.737 0.008 1.220 −0.712 0.200 7.0 16.04 96.06 20 USGS (2020)(W震相) 0.731 −0.752 0.020 1.104 −0.479 0.168 13.2 15.93 95.90 21.5 USGS (2020)(体波反演) 0.527 −0.544 0.017 0.504 −0.289 0.101 − 16.04 95.90 32 本文 0.700 −0.789 0.089 0.825 −0.491 0.218 8.0 15.96 95.89 22 类似于上述两个组织的工作(Dziewonski et al,1981;Kanamori,Rivera,2008;Duputel et al,2012;Ekström et al,2012),我们收集了震中距处于32.5°—88.9°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和数字地震台网联盟(International Federation of Digital Seismograph Networks,缩写为FDSN)的42个台站的长周期垂直分量数据,基于AK135模型计算格林函数(Wang,1999),利用我们自主研发的反演软件(张喆,许力生,2020),通过反演0.01—0.05 Hz频带内的P波波形得到了这次地震的矩心矩张量解。根据反演结果(图1),矩心时间为8 s,矩心震中位于(15.96°N,95.89°W),矩心深度为22 km,标量地震矩为1.24×1024 N·m,相当于MW7.4。基于矩心矩张量解(表1,图2),我们也求得了相应的最佳双力偶解(图2,表2),最佳双力偶成分占97%。最后,我们利用反演结果计算了合成波形,并与观测波形进行了比较,结果如图3所示,可见二者之间的相关系数平均值达到0.93,大多数台站的相关系数在0.90以上,均方根误差达1.33×10−5 m。
图 1 矩心矩张量反演过程(a) 矩心时间搜索;(b) 矩心搜索;(c) 矩心深度搜索;(d) PDE位置(灰色)和矩心位置(红色)反演得到的矩张量解Figure 1. Inversion process of the centroid moment tensor(a) Search for the centroid time;(b) Search for the centroid;(c) Search for the centroid depth; (d) The moment tensor solutions at the PDE (gray) and centroid (red) locations表 2 不同机构所得墨西哥MW7.4地震的最佳双偶解Table 2. The best double-couple solutions for the MW7.4 Mexico earthquake obtained by different institutes机构 标量地震矩
/(1020 N·m)双力偶成分
占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2020) 1.600 100% 270 16 62 118 76 97 USGS (2020)(W震相) 1.423 96% 271 17 70 112 74 96 USGS (2020)(体波) 0.797 99% 266 24 63 114 69 101 本文 1.236 97% 266 22 60 118 71 101 与USGS和GCMT的结果相比(图4),我们反演所得矩心位置(15.96°N,95.89°W,深度22 km)、矩心时间、最佳双力偶解均与其非常相近。根据最佳双力解的节面参数、矩心位置、余震分布以及地震所处的构造环境,我们判断走向266°、倾角22°、滑动角60°的节面为真实的发震断层面(图4)。这是一次以逆冲为主、具有相当走滑分量的断层错动,或者说这是一次发生在俯冲带的斜滑事件。
图 4 主震震源机制解与余震分布不同颜色的沙滩球和正方形代表不同机构确定的震源机制解及其矩心位置,小圆圈表示余震(来自USGS地震目录),大圆圈表示主震的PDE位置,圆圈和正方形的填充色显示了震源深度Figure 4. The focal mechanism solutions of the mainshock and the aftershock distributionColored beach-balls and squares represent the focal mechanism solutions and centroid locations determined by the various institutions,the small circles refer to the aftershocks (from the USGS catalog),and the large circle indicates the PED locations of the mainshock. The colors filled in the circles and squares indicate the focal depths本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!
-
表 1 断层滑动模型参数
Table 1 Parameters of fault slip model
断层来源 长度/km 宽度/km 走向/° 倾角/° 滑动角/° 子断层个数 断层块/km 模型A 160 30.0 276 80 4 301 5.0×5.0 模型B 182 31.5 106 76 −9 468 3.5×3.5 表 2 地壳结构模型
Table 2 Crustal structure model
序号 深度/km vP/(km·s−1) vS/(km·s−1) ρ/(kg·m−3) ηk/(1018 Pa·s) ηm/(1019 Pa·s) 1 0 4.50 2.60 2 600.0 1000.0 1000.0 2 5 5.60 3.30 2 600.0 1000.0 1000.0 3 5 5.60 3.30 2 700.0 1000.0 1000.0 4 10 6.05 3.55 2 700.0 1000.0 1000.0 5 10 6.05 3.55 2 850.0 1000.0 1000.0 6 15 6.05 3.60 2 850.0 1000.0 1000.0 7 15 6.05 3.60 2 850.0 1000.0 1000.0 8 20 5.75 3.40 2 850.0 1000.0 1000.0 9 20 5.75 3.40 2 850.0 20.0 20.0 10 30 5.75 3.40 2 850.0 20.0 20.0 11 30 5.75 3.40 3 000.0 6.3 6.3 12 40 6.10 3.55 3 000.0 6.3 6.3 13 40 6.10 3.55 3 000.0 6.3 6.3 14 50 6.10 3.55 3 000.0 6.3 6.3 15 50 6.10 3.55 3 100.0 6.3 6.3 16 60 7.10 4.05 3 100.0 6.3 6.3 17 60 7.10 4.05 3 100.0 6.3 6.3 18 80 8.00 4.35 3 100.0 6.3 6.3 19 80 8.00 4.35 3 320.0 6.3 6.3 20 100 7.95 4.35 3 320.0 100.0 100.0 表 3 研究区域主要断层参数
Table 3 Main fault parameters in the studied area
断层序号 断层名称 起点 终点 走向/° 倾角/° 滑动角/° 东经/° 北纬/° 东经/° 北纬/° F1 东昆仑断裂西段 96.71 35.67 96.04 35.74 278 89 0 F2 东昆仑断裂中段A 98.10 35.46 96.71 35.67 281 89 0 F3 东昆仑断裂中段B 99.29 34.94 98.10 35.46 298 89 0 F4 东昆仑断裂中段C 99.68 34.65 99.29 34.94 312 89 0 F5 东昆仑断裂东段A 100.49 34.34 99.68 34.65 295 89 0 F6 东昆仑断裂东段B 100.98 34.27 100.49 34.34 280 89 0 F7 玛多—甘德断裂A 99.18 34.47 98.78 35.15 334 80 0 F8 玛多—甘德断裂B 100.61 33.12 99.18 34.47 319 80 0 F9 达日断裂A 98.89 33.96 98.03 34.30 199 80 −12 F10 达日断裂B 99.68 33.25 98.92 33.84 313 80 −12 F11 达日断裂C 100.71 32.55 99.73 33.24 310 80 −12 F12 清水河断裂A 97.11 34.05 96.82 34.45 329 89 0 F13 清水河断裂B 98.62 33.11 97.11 34.05 307 89 0 F14 清水河断裂C 99.30 32.52 98.62 33.11 316 89 0 F15 甘孜—玉树断裂A 97.29 32.75 96.24 33.34 304 88 23 F16 甘孜—玉树断裂B 97.86 32.52 97.29 32.75 290 88 23 F17 昆仑山口—江错断裂A 97.88 34.74 97.45 34.77 275 80 −9 F18 昆仑山口—江错断裂B 98.99 34.50 97.88 34.74 285 80 2 F19 昆仑山口—江错断裂C 99.95 34.54 98.99 34.50 267 80 18 表 4 强震震源机制解及数据来源
Table 4 Focal mechanism solutions and data source of the strong earthquakes
发震日期 地震名称 北纬
/°东经
/°走向
/°倾角
/°滑动角
/°深度/km MS 模型来源 年-月-日 2008-05-12 汶川地震 30.986 103.364 222.6 28.0 110.0 14.0 8.00 USGS (2008) 2010-04-14 玉树地震 33.160 96.530 298.0 88.0 4.0 13.0 7.10 孟国杰等(2016) 2013-04-20 芦山地震 30.308 102.888 218.0 39.0 103.0 11.0 7.00 Jiang等(2014) 2017-08-08 九寨沟地震 33.193 103.855 246.0 57.0 −173.0 9.0 7.00 单新建等(2017) 2021-05-22 玛多地震 34.590 98.340 101.0 87.0 −7.0 10.0 7.40 表 5 汶川地震后巴颜喀拉地块内强震同震及震后效应在玛多地震破裂中心产生的库仑应力加载
Table 5 Coulomb stress loading caused by strong earthquake coseismic and post-seismic effects of Bayan Hara block in Madoi earthquake rupture center after Wenchuan earthquake
库仑应力加载/Pa 汶川地震 玉树地震 芦山地震 九寨沟地震 同震 870.100 341.900 13.200 3.293 震后 360.900 523.900 3.980 0.505 同震+震后 1 231.000 865.800 17.180 3.798 -
程佳,刘杰,甘卫军,余怀忠. 2011. 1997年以来巴颜喀拉块体周缘强震之间的黏弹性触发研究[J]. 地球物理学报,54(8):1997–2010. doi: 10.3969/j.issn.0001-5733.2011.08.007 Cheng J,Liu J,Gan W J,Yu H Z. 2011. Coulomb stress interaction among strong earthquakes around the Bayan Har block since the Manyi earthquake in 1997[J]. Chinese Journal of Geophysics,54(8):1997–2010 (in Chinese).
程佳,徐锡伟. 2018. 巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析[J]. 地震地质,40(1):133–154. doi: 10.3969/j.issn.0253-4967.2018.01.011 Cheng J,Xu X W. 2018. Features of earthquake clustering from calculation of Coulomb stress around the Bayan Har block,Tibetan Plateau[J]. Seismology and Geology,40(1):133–154 (in Chinese).
防灾科技学院河北省地震动力学重点实验室Seismology小组. 2021. 2021年5月22日青海果洛州玛多县7.4级地震的震源机制中心解和在周围产生的位移场与应变场 [EB/OL]. [2021-05-25]. https://ses-kled.cidp.edu.cn/info/1084/1265.htm. Seismology Group, Hebei Key Laboratory of Earthquake Dynamics, Institute of Disaster Prevention. 2021. The central solution of the focal mechanism and the displacement field and strain field generated around the 7.4 earthquake in Maduo County, Guoluo Prefecture, Qinghai Province on May 22,2021[EB/OL]. [2021-05-25]. https://ses-kled.cidp.edu.cn/info/1084/1265.htm (in Chinese).
冯淦,万永革,许鑫,李枭. 2021. 2021年青海玛多MS7.4地震对周围地区的应力影响[J]. 地球物理学报,64(12):4562–4571. doi: 10.6038/cjg2021P0454 Feng G, Wan Y G, Xu X, Li X. 2021. Static stress influence of the 2021 MS7.4 Madoi, Qinghai earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571 (in Chinese).
冯雅杉,熊熊,单斌,刘成利. 2022. 2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化[J]. 中国科学:地球科学,52(6):1100–1112. Feng Y S,Xiong X,Shan B,Liu C L. 2022. Coulomb stress changes due to the 2021 MS7.4 Maduo earthquake and expected seismicity rate changes in the surroundings[J]. Science China Earth Sciences,65(4):675–686. doi: 10.1007/s11430-021-9882-8
华俊,赵德政,单新建,屈春燕,张迎峰,龚文瑜,王振杰,李成龙,李彦川,赵磊,陈晗,范晓冉,王绍俊. 2021. 2021年青海玛多MW7.3地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动[J]. 地震地质,43(3):677–691. doi: 10.3969/j.issn.0253-4967.2021.03.013 Hua J,Zhao D Z,Shan X J,Qu C Y,Zhang Y F,Gong W Y,Wang Z J,Li C L,Li Y C,Zhao L,Chen H,Fan X R,Wang S J. 2021. Coseismic deformation field,slip distribution and Coulomb stress disturbance of the 2021 MW7.3 Maduo earthquake using Sentinel-1 InSAR observations[J]. Seismology and Geology,43(3):677–691 (in Chinese).
李志才,丁开华,张鹏,温扬茂,赵利江,陈建峰. 2021. GNSS观测的2021年青海玛多地震(MW7.4)同震形变及其滑动分布[J]. 武汉大学学报·信息科学版,46(10):1489–1497. Li Z C,Ding K H,Zhang P,Wen Y M,Zhao L J,Chen J F. 2021. Coseismic deformation and slip distribution of 2021 MW7.4 Madoi earthquake from GNSS observation[J]. Geomatics and Information Science of Wuhan University,46(10):1489–1497 (in Chinese).
李智敏,李文巧,李涛,徐岳仁,苏鹏,郭鹏,孙浩越,哈广浩,陈桂华,袁兆德,李忠武,李鑫,杨理臣,马震,姚生海,熊仁伟,张彦博,盖海龙,殷翔,徐玮阳,董金元. 2021. 2021年5月22日青海玛多MS7.4地震的发震构造和地表破裂初步调查[J]. 地震地质,43(3):722–737. doi: 10.3969/j.issn.0253-4967.2021.03.016 Li Z M,Li W Q,Li T,Xu Y R,Su P,Guo P,Sun H Y,Ha G H,Chen G H,Yuan Z D,Li Z W,Li X,Yang L C,Ma Z,Yao S H,Xiong R W,Zhang Y B,Gai H L,Yin X,Xu W Y,Dong J Y. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai,China:A quick report[J]. Seismology and Geology,43(3):722–737 (in Chinese).
刘博研,解孟雨,史保平. 2022. 青海玛多MS7.4地震对周边活动断裂的库仑应力加载及发震概率增量的计算[J]. 地球物理学报,65(2):563–579. doi: 10.6038/cjg2022P0703 Liu B Y,Xie M Y,Shi B P. 2022. Effect of Qinghai Madoi MS7.4 earthquake on Coulomb stress and earthquake probability increment of adjacent faults[J]. Chinese Journal of Geophysics,65(2):563–579 (in Chinese).
孟国杰,苏小宁,徐婉桢,任金卫,杨永林,Shestakov N V. 2016. 基于GPS观测研究2010年青海玉树MS7.1地震震后地壳形变特征及其机制[J]. 地球物理学报,59(12):4570–4583. doi: 10.6038/cjg20161219 Meng G J,Su X N,Xu W Z,Ren J W,Yang Y L,Shestakov N V. 2016. Postseismic deformation associated with the 2010 Yushu,Qinghai MS7.1 earthquake by GPS observations[J]. Chinese Journal of Geophysics,59(12):4570–4583 (in Chinese).
潘家伟,白明坤,李超,刘富财,李海兵,刘栋梁,Chevalier M L,吴坤罡,王平,卢海建,陈鹏,李春锐. 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报,95(6):1655–1670. doi: 10.3969/j.issn.0001-5717.2021.06.001 Pan J W,Bai M K,Li C,Liu F C,Li H B,Liu D L,Chevalier M L,Wu K G,Wang P,Lu H J,Chen P,Li C R. 2021. Coseismic surface rupture and seismogenic structure of the 2021−05−22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica,95(6):1655–1670 (in Chinese).
单新建,屈春燕,龚文瑜,赵德政,张迎峰,张国宏,宋小刚,刘云华,张桂芳. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报,60(12):4527–4536. doi: 10.6038/cjg20171201 Shan X J,Qu C Y,Gong W Y,Zhao D Z,Zhang Y F,Zhang G H,Song X G,Liu Y H,Zhang G F. 2017. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics,60(12):4527–4536 (in Chinese).
石耀霖,曹建玲. 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论[J]. 地学前缘,15(3):82–95. doi: 10.3321/j.issn:1005-2321.2008.03.006 Shi Y L,Cao J L. 2008. Lithosphere effective viscosity of continental China[J]. Earth Science Frontiers,15(3):82–95 (in Chinese). doi: 10.1016/S1872-5791(08)60064-0
王迪晋,王东振,赵斌,李瑜,赵利江,王阅兵,聂兆生,乔学军,王琪. 2022. 2021年青海玛多MW7.4地震GNSS同震形变场及其断层滑动分布[J]. 地球物理学报,65(2):537–551. doi: 10.6038/cjg2022P0568 Wang D J,Wang D Z,Zhao B,Li Y,Zhao L J,Wang Y B,Nie Z S,Qiao X J,Wang Q. 2022. 2021 Qinghai Madoi MW7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations[J]. Chinese Journal of Geophysics,65(2):537–551 (in Chinese).
王乐洋,赵雄. 2018. 地震同震滑动分布反演平滑因子的确定[J]. 测绘学报,47(12):1571–1580. doi: 10.11947/j.AGCS.2018.20170724 Wang L Y,Zhao X. 2018. Determination of smoothing factor for the co-seismic slip distribution inversion[J]. Acta Geodaetica et Cartographica Sinica,47(12):1571–1580 (in Chinese).
王未来,房立华,吴建平,屠泓为,陈立艺,来贵娟,张龙. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学:地球科学,51(7):1193–1202. Wang W L,Fang L H,Wu J P,Tu H W,Chen L Y,Lai G J,Zhang L. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake,Qinghai,China[J]. Science China Earth Sciences,64(8):1371–1380. doi: 10.1007/s11430-021-9803-3
王阅兵,李瑜,蔡毅,蒋连江,师宏波,江在森,甘卫军. 2022. GNSS观测的2021年5月22日玛多MS7.4地震同震位移及其约束反演的滑动破裂分布[J]. 地球物理学报,65(2):523–536. doi: 10.6038/cjg2022P0436 Wang Y B,Li Y,Cai Y,Jiang L J,Shi H B,Jiang Z S,Gan W J. 2022. Coseismic displacement and slip distribution of the 2021 May 22,MS7.4 Madoi earthquake derived from GNSS observations[J]. Chinese Journal of Geophysics,65(2):523–536 (in Chinese).
杨光远,李一帆,王斌,屈淼,罗松. 2021. 青海玛多7.4级地震静态库仑应力分析[J]. 四川地震,(3):1–4. doi: 10.13716/j.cnki.1001-8115.2021.03.001 Yang G Y,Li Y F,Wang B,Qu M,Luo S. 2021. The analysis of static Coulomb stress of the Qinghai Maduo MS7.4 earthquake[J]. Earthquake Research in Sichuan,(3):1–4 (in Chinese).
余鹏飞,熊维,陈威,乔学军,王迪晋,刘刚,赵斌,聂兆生,李瑜,赵利江,张怀. 2022. 基于GNSS和InSAR约束的2021年玛多MS7.4地震同震滑动分布及应用[J]. 地球物理学报,65(2):509–522. doi: 10.6038/cjg2022P0540 Yu P F,Xiong W,Chen W,Qiao X J,Wang D J,Liu G,Zhao B,Nie Z S,Li Y,Zhao L J,Zhang H. 2022. Slip model of the 2021 MS7.4 Madoi earthquake constrained by GNSS and InSAR coseismic deformation[J]. Chinese Journal of Geophysics,65(2):509–522 (in Chinese).
岳冲,屈春燕,牛安福,赵德政,赵静,余怀忠,王亚丽. 2021. 玛多MS7.4地震对周边断层的应力影响分析[J]. 地震地质,43(5):1041–1059. Yue C,Qu C Y,Niu A F,Zhao D Z,Zhao J,Yu H Z,Wang Y L. 2021. Analysis of stress influence of Qinghai Maduo MS7.4 earthquake on surrounding faults[J]. Seismology and Geology,43(5):1041–1059 (in Chinese).
周春景. 2014. 巴颜喀拉块体边界应力场变化及其对强震发生的影响[D]. 北京: 中国地质科学院: 1–131. Zhou C J. 2014. The Stress Field Changes Near the Boundary Fault Zones in the Bayan Har Block and Their Effect on the Large Earthquake[D]. Beijing: Chinese Academy of Geological Science: 1–131 (in Chinese).
Freed A M. 2005. Earthquake triggering by static,dynamic,and postseismic stress transfer[J]. Annu Rev Earth Planet Sci,33(1):335–367. doi: 10.1146/annurev.earth.33.092203.122505
Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
Harris R A. 2000. Earthquake stress triggers,stress shadows,and seismic hazard[J]. Current Science,79(9):1215–1225.
Hong S Y,Liu M,Liu T,Dong Y F,Chen L Z,Meng G J,Xu Y R. 2022. Fault source model and stress changes of the 2021 MW7.4 Maduo earthquake,China,constrained by InSAR and GPS measurements[J]. Bull Seismol Soc Am,112(3):1284–1296. doi: 10.1785/0120210250
Jiang Z S,Wang M,Wang Y Z,Wu Y Q,Che S,Shen Z K,Bürgmann R,Sun J B,Yang Y L,Liao H,Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 MW6.6 Lushan,China,earthquake and its tectonic implications[J]. Geophys Res Lett,41(2):407–413. doi: 10.1002/2013GL058812
King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.
Li Y J,Huang L Y,Ding R,Yang S X,Liu L,Zhang S M,Liu H Q. 2021. Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards[J]. Nat Hazards Res,1(2):95–101. doi: 10.1016/j.nhres.2021.06.003
Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res:Solid Earth,109(B2):B02303.
Liu C,Zhang H,Chen J Q,Shi Y L. 2022a. Stress evolution before and after the 2021 MW7.3 Maduo earthquake in northeastern Tibet and its influence on seismic hazards[J]. Earth Space Sci,9(6):e2022EA002325. doi: 10.1029/2022EA002325
Liu J H,Hu J,Li Z W,Ma Z F,Wu L X,Jiang W P,Feng G C,Zhu J J. 2022b. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province,China from Sentinel-1 and ALOS-2 SAR images[J]. Science China Earth Sciences,65(4):687–697. doi: 10.1007/s11430-021-9868-9
USGS. 2008. M8.0: 58 km W of Tianpeng, China[EB/OL]. [2008-05-12]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650/executive.
USGS. 2021. M7.3: Southern Qinghai, China[EB/OL]. [2021-05-21]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e54r/executive.
Wang M,Wang F,Jiang X,Tian J B,Li Y,Sun J B,Shen Z K. 2021. GPS determined coseismic slip of the 2021 MW7.4 Maduo,China,earthquake and its tectonic implication[J]. Geophys J Int,228(3):2048–2055. doi: 10.1093/gji/ggab460
Wang R, Diao F, Hoechner A. 2013. SDM: A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//EGU General Assembly Conference Abstracts. Vienna, Austria: EGU: 2411.
Wang R J,Lorenzo-Martín F,Roth F. 2006. PSGRN/PSCMP:A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci,32(4):527–541. doi: 10.1016/j.cageo.2005.08.006
Xiong X,Shan B,Zheng Y,Wang R J. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun fault,Tibet[J]. Tectonophysics,482(1/2/3/4):216–225.
Zhu Y G,Diao F Q,Fu Y C,Liu C L,Xiong X. 2021. Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations[J]. Science China Earth Science,64(8):1363–1370. doi: 10.1007/s11430-021-9808-0
-
期刊类型引用(1)
1. 杨天春,朱德兵,付国红,杨追,黄睿. 天然电场选频法在高压线干扰环境下的浅层地下水勘探. 中国科技论文. 2024(10): 1065-1072 . 百度学术
其他类型引用(1)