钻孔应变数据的环境响应去除与震前异常提取

朱凯光, 温佳咪, 樊蒙璇, 于紫凝, 王婷, DedaloMarchetti, 张逸群, 陈文琪

朱凯光,温佳咪,樊蒙璇,于紫凝,王婷,Marchetti D,张逸群,陈文琪. 2024. 钻孔应变数据的环境响应去除与震前异常提取. 地震学报,46(4):620−632. DOI: 10.11939/jass.20220210
引用本文: 朱凯光,温佳咪,樊蒙璇,于紫凝,王婷,Marchetti D,张逸群,陈文琪. 2024. 钻孔应变数据的环境响应去除与震前异常提取. 地震学报,46(4):620−632. DOI: 10.11939/jass.20220210
Zhu K G,Wen J M,Fan M X,Yu Z N,Wang T,Marchetti D,Zhang Y Q,Chen W Q. 2024. Environmental response removal and pre-earthquake anomaly extraction of borehole strain data. Acta Seismologica Sinica46(4):620−632. DOI: 10.11939/jass.20220210
Citation: Zhu K G,Wen J M,Fan M X,Yu Z N,Wang T,Marchetti D,Zhang Y Q,Chen W Q. 2024. Environmental response removal and pre-earthquake anomaly extraction of borehole strain data. Acta Seismologica Sinica46(4):620−632. DOI: 10.11939/jass.20220210

钻孔应变数据的环境响应去除与震前异常提取

基金项目: 吉林省自然科学基金(20230101091JC)和国家自然科学基金(42374087)联合资助
详细信息
    通讯作者:

    朱凯光,博士,教授,主要从事航空电磁探测技术及信号处理与地震前兆监测数据以及电磁卫星数据处理方面的研究,e-mail:zhukaiguang@jlu.edu.cn

  • 中图分类号: P315.727

Environmental response removal and pre-earthquake anomaly extraction of borehole strain data

  • 摘要:

    基于四川省姑咱台的钻孔应变观测数据,研究了2013年4月芦山MS7.0地震的应变异常。首先通过时间序列分解法去除芦山地震前后(2011年1月至2014年1月)观测数据的长期背景趋势和周期趋势,其次采用多通道奇异谱分析法分解数据,去除水位和气压引起的应变响应,最后提取应变数据中的震前负熵异常。结果表明:水位与水位应变响应的相关系数为−0.97;有96.1%天的日气压与其应变响应的相关系数的绝对值大于0.9,验证了本文环境响应去除算法的有效性;负熵异常累积与贝尼奥夫应变累积的一致性表明,震前4—6个月出现的负熵异常可能是地震前兆异常。以上结论充分表明本文试验的方法对于钻孔应变数据环境响应的去除及地震前兆异常的提取是有效的。

    Abstract:

    China is one of the most affected countries by the earthquake disaster in the world. The earthquake not only damaged people’s lives and property safety, but also triggered a series of secondary disasters such as landslides, mud-rock flows and collapses. Earthquake prediction is one of the difficult scientific problems in the world which needs to be explored for a long time. Earthquake precursor research is the key to earthquake prediction.

    Earthquake is the result of instability rupture after the strain on fault accumulates to the limit under the action of tectonic stress. The borehole strain gauge can detect the small stress load change before rock fracture, so borehole strain observation can not only record long period strain change, but also provide high frequency strain information, which is the basis of earthquake precursor research. In the borehole strain observation, the strain response caused by solid tide, air pressure, water level and other environmental factors will drown out the pre-earthquake strain anomaly. Therefore, it is of great significance to study the environmental response and anomaly extraction method of borehole strain data, and obtain the earthquake related strain anomaly accurately and reliably from the strain observation data.

    At present, many scholars have conducted researches on environmental response removal and pre-earthquake anomaly extraction. This paper based on the environmental observation data, the strain response caused by solid tide, air pressure and water level was solved andremoved to obtain the crustal strain. solid tide is the periodic deformation of the earth under the gravitational force of the sun and the moon, which is the main reason for the periodic variation of diurnal wave and semi-diurnal wave in the borehole strain observation data. Air pressure and water level have immediate negative correlation to strain data. Time Series Decomposition is to decompose the time series with complex changes into several sub-components. The long-term background trend and periodic trend of the observed data before and after the Lushan earthquake (January 2011 to January 2014) were removed by Time Series Decomposition.Multi-channel Singular Spectrum Analysis can use the correlation between signals of different channels to decompose the data. In this paper, the trace matrix is constructed of borehole strainresidual, air pressure and water level three-channel measurement signal for Multi-channel Singular Spectrum Analysis, and obtain the strain response of air pressure and water level. The results show that Time Series Decomposition can effectively remove the periodic changes dominated by solid tides. The correlation coefficient of the water level and its strain response is −0.97, and in 96.1% of the days the absolute value of the correlation coefficient of the daily air pressure and its strain response is greater than 0.9, which verify removal of the environmental response the proposed method effectively.

    Normal crustal strain, which is not affected by strong earthquakes and environment, is a short-period random signal. According to its characteristic of Gauss, this paper extracts the crustal strain data by day and accumulates the number of anomalies. It is found that the accumulation of negentropy anomalies of the Lushan earthquake showed a linear increase−acceleration increase−a small amount of anomalies−acceleration increase. Then the negentropy anomalies accumulation is compared with the Benioff strain accumulation. It is found that the negentropy anomaly accumulation trend is consistent with the Benioff strain accumulation trend. Combined with the fracture evolution process of rock stress loading (initial micro-fracture−extensional fracture−stress lock−earthquake eruption), it was guessed that the abnormal acceleration increase of the Lushan earthquake 4 to 6 months before the earthquake may be an earthquake precursor and related to the extensional fracture.

    In order to further analyze the advantages of environmental response removal and negentropy anomaly extraction methods, this paper compared the method in this paper and difference processing. A large amount of precursor anomaly information is contained in the high-frequency components of the observed data, and the crustal strain is also dominated by high-frequency information. The difference process can remove the low-frequency information in the observed data, and one-dimensional difference processing is carried out on the standardized strain observation data to make a comparison with the crustal strain after removing the influence of environmental factors in this paper. The negentropy anomaly accumulation and non-Gaussiandistribution days accumulation showed the environmental response removal method can effectively remove the disturbance caused by air pressure, and the crustal strain data after the removalof environmental response can more effectively extract the earthquake precursor anomaly.

    The above conclusions sufficiently indicate that the methods in this paper are effective for removing the environmental response of borehole strain observation data and extracting earthquake precursor anomalies.

  • 地震是一种危害性极强的自然灾害,是在构造应力作用下断层上的应变不断积累达到极限后失稳破裂的结果。钻孔应变仪能够探测到岩石破裂前的微小应力载荷变化(邱泽华等,2021),因此钻孔应变观测既能记录长周期应变变化,又能提供高频的应变信息,是地震前兆研究的基础(邱泽华,2017)。钻孔应变仪的安装位置决定了其在应变观测过程中会受到固体潮、气压和水位等环境因素的影响(池成全,2020于紫凝,2021吉林大学,2022)。固体潮是地球在日月引力的作用下产生的周期形变,是钻孔应变观测数据中含有日波、半日波等周期变化的主要原因;气压对应变的影响主要是相对短周期内的简单弹性变化,是即时负相关的,可以分为周期性干扰和无周期规律的高频干扰;受地下水、降雨量等影响,钻孔水位变化会引起孔隙水压力变化,对应变数据产生即时负相关的影响。固体潮引起的应变在10−8—10−9量级,气压引起的应变量级为10−9,水位引起的应变量级有时可以达到10−5杨少华等,2016邱泽华,2017池成全,2020于紫凝,2021吉林大学,2022娄家墅,田家勇,2022)。因此,从钻孔应变观测数据中去除环境引起的应变响应对于提取地震前兆异常有重要意义。

    目前已经有很多学者对环境响应去除和震前异常提取展开过研究,例如:刘琦和张晶(2011)、邱泽华等(2009),周龙寿等(2009)采用高通滤波去除低频信号后,使用超限率分析法分析震前异常;Chi等(2019)采用变分模态分解将应变信号分解为五个本征模态函数,通过对比分析确定第三个为地壳短周期变化的应变分量;Yu等(2021)用卡尔曼滤波求解状态空间模型,得到了地壳应变和多个环境参数。这些研究使用分解滤波或状态空间模型方法去除环境响应,通过时、频域的幅度异常进行震前异常提取。然而,卡尔曼滤波求解环境响应时引入太多参数,计算过程复杂且很难保证结果的准确性;滤波法和分解法去除环境响应缺少对环境监测数据的充分利用;用幅度异常提取震前异常时,幅度易受到突发性干扰或噪声等偶然因素的影响。

    本文拟采用时间序列分解法去除长期趋势和以固体潮为主的周期趋势,通过多通道奇异谱分析法去除气压和水位的应变响应。去除环境响应后,利用负熵进行地震异常提取,并与贝尼奥夫(Benioff)应变累积以及应变差分法进行对比,总结本文算法的优势。

    本文的应变数据来自YRY-4型分量式钻孔应变仪,分辨率高达10−10,有四个水平放置的传感器,在圆柱形外壳内以45°间隔排列,用于测量钻孔直径的变化。YRY-4型钻孔应变仪的自洽方程为

    $$ {S_{ 1}} + {S_{ 3}}= {S_{ 2}} + {S_{ 4}} \text{,} $$ (1)

    可体现四个传感器的测量值S1S2S3S4之间的简单关系(邱泽华,2017),可以用来估计数据的可信度。考虑到平面应变状态只有三个独立分量,通常用三个间接观测量代替四个直接观测量(邱泽华,2017):

    $$ \left\{ \begin{array}{l} {S_{ 13}} = {S_{ 1}} - {S_{ 3}} \text{,} \\ {S_{ 24}} = {S_{ 2}} - {S_{ 4}} \text{,} \\ {S_{\mathrm{ a}}} = \dfrac { ( {S_{ 1}} + {S_{ 2}} + {S_{ 3}} + {S_{ 4}} ) }{2}\text{,} \end{array} \right. $$ (2)

    式中,S13S24为两个独立的剪切应变,Sa为面应变。

    时间序列分解法是将变化复杂的时间序列分解为若干个变化规律的子成分。受长期趋势、周期和季节变动等因素的影响,钻孔应变数据出现了极大的波动,从中可以清晰地观测到固体潮的波形,因此将钻孔应变时间序列分解为长期趋势、周期趋势和余项(柳建菲,2020赵然杭等,2021吉林大学,2022),即

    $$ Y ( t ) = T ( t ) + S ( t ) + R ( t ) \text{,} $$ (3)

    式中:Yt)为Sa面应变观测数据;Tt)为长期趋势项;St)为周期趋势项,是以固体潮为主的周期性应变响应;Rt)为余项,是下一步的待分解数据。分解的步骤为:

    1) 局部加权回归法求解长期趋势Tt)。以时间点x为中心,总数据长度的60%为窗宽,作tricube函数加权线性回归,其回归线的中心值即为单点的长期趋势,计算整个钻孔应变时间序列,就得到钻孔应变的长期趋势项Tt)。

    2) 周期平均法计算周期趋势St)。① 计算去除趋势后的数据

    $$ D ( t ) = Y ( t ) - T ( t ) . $$ (4)

    ② 对$D ( t ) $进行周期分割,相同采样点求平均值,得到周期项$S' ( t ) $:

    $$ S' ( t ) ={\displaystyle \sum _{i=0}^{n}{\frac {D ( t + if ) }{n} }}\text{,} $$ (5)

    式中:f为数据的周期长度,本文使用的数据周期为1天;n为该段数据的周期数;t为一个周期内的采样点数,本文为1440。③ 计算中心化的周期项St),即

    $$ S ( t ) = S' ( t ) - \mu [ S' ( t ) ] \text{,} $$ (6)

    式中$\mu [ S' ( t ) ] $为$ S' ( t ) $的均值。

    3) Yt)去除趋势项Tt)和周期项St)得到余项Rt)。

    奇异谱分析的基本思想是将一维观测数据Yt)=(y1,···,yT)转化为轨迹矩阵${\boldsymbol{X}} $,即

    $${\boldsymbol{ X}} =\left({x_{ij}}\right)_{i\text{,} j = 1}^{L\text{,} K} = \left( {\begin{array}{*{20}{c}} {{y_1}}&{{y_2}}& \cdots &{{y_K}} \\ {{y_2}}&{{y_3}}& \cdots &{{y_{K + 1}}} \\ \vdots & \vdots & \cdots & \vdots \\ {{y_L}}&{{y_{L + 1}}}& \cdots &{{y_T}} \end{array}} \right)\text{,} $$ (7)

    其中,L为窗口长度(一般不超过观测数据长度的1/3),KTL+1。计算XXT并对其进行奇异值分解,从而得到L个特征值及其相应的特征向量,将每一个特征值所代表的信号进行分析组合,重构出新的时间序列。

    多通道奇异谱分析不仅分析信号组本身的特性,而且考虑根据不同测量信号之间的相关性(王雪园,2017),可以利用不同通道信号之间的相关性对数据进行分解(Kojima et al,2020Yu et al,2020),其步骤与单通道奇异谱分析类似(Groth,Ghil,20112015于紫凝,2021吉林大学,2022)。本文通过构造钻孔面应变余项Rt)=(r1, ···, rT)、气压Pt)=(p1, ···, pT)和水位Wt)=(w1, ···, wT)三通道测量信号的轨迹矩阵${\boldsymbol{Z}} $,进行多通道奇异谱分析。轨迹矩阵$ {\boldsymbol{Z}}$为

    $$ {\boldsymbol{Z}} = \left( \begin{gathered} \begin{array}{*{20}{c}} {{r_1}}&{{r_2}}& \cdots &{{r_K}} \\ {{r_2}}&{{r_3}}& \cdots &{{r_{K + 1}}} \\ \vdots & \vdots & \vdots & \vdots \\ {{r_L}}&{{r_{L + 1}}}& \cdots &{{r_T}} \end{array} \\ \begin{array}{*{20}{c}} {{p_1}}&{{p_2}}& \cdots &{{p_K}} \\ {{p_2}}&{{p_3}}& \cdots &{{p_{K + 1}}} \\ \vdots & \vdots & \vdots & \vdots \\ {{w_L}}&{{w_{L + 1}}}& \cdots &{{w_T}} \end{array} \\ \end{gathered} \right) . $$ (8)

    对轨迹矩阵${\boldsymbol{Z}} $进行奇异值分解并重构,得到余项、气压和水位三组分解分量,根据气压、水位与二者自身引起的应变响应具有实时负相关的特征,去除应变余项分解分量中与气压、水位分解分量相关系数小于−0.8的分量,得到重构的去除环境响应后的应变数据。

    不受强震和环境影响的正常地壳应变是短周期随机信号,服从高斯分布,其分布的负熵为零。当地壳应变信号偏离高斯分布时,负熵增大,数据出现有序、有组织的变化;反之,地壳应变越接近高斯分布,信号越混乱无序,负熵越小(Yu et al,2021)。本文采用通过偏度和峰度近似计算负熵的方法,利用负熵异常分析进行芦山地震的异常提取,式(9)—(11)给出了偏度、峰度、负熵的计算方法:

    $$ s_{{\mathrm{k}}} = \dfrac{{\dfrac{1}{N}\displaystyle\sum\limits_{t = 1}^N {{{ ( {x_t} - \overline x ) }^3}} }}{\sqrt{{{\left[ {\dfrac{1}{N}\displaystyle\sum\limits_{t = 1}^N {{{ ( {x_t} - \overline x ) }^2}} } \right]}^{3}}}} \text{,} $$ (9)
    $$ k_{{\mathrm{u}}} = \dfrac{{\dfrac{1}{N}\displaystyle \sum\limits_{t = 1}^N {{{ ( {x_t} - \overline x ) }^4}} }}{{{{\left[ {\dfrac{1}{N}\displaystyle \sum\limits_{t = 1}^N {{{ ( {x_t} - \overline x ) }^2}} } \right]}^2}}} - 3 \text{,} $$ (10)
    $$ \begin{split}\\ A_{{\mathrm{Ne}}} ( X ) {\text{≈}} \frac{1}{{12}} {s_{{\mathrm{k}}}^2} ( X ) + \frac{1}{{48}}{k_\mathrm{u}^2} ( X ) \text{,} \end{split} $$ (11)

    式中,xt为一天的应变数据,$t=1\text{,} \cdots \text{,} N$,$\overline x $为$x-t $的均值,$A_{{\mathrm{Ne}}} $为负熵。计算每天的负熵值,以2.5倍标准差提取出现负熵异常的天数并累积,观察震前的负熵异常结果。

    2013年4月20日8时2分,四川雅安芦山县发生MS7.0地震,震中位于(30.277°N,102.937°E),震源深度约为13 km。四川省姑咱台位于北西向的鲜水河断裂带、北东向的龙门山断裂带和北南向的安宁河断裂带交会的靠北地区,距芦山地震震中仅75 km,姑咱台钻孔应变数据能够充分地反映芦山地震前后地壳应力的变化。图1给出了姑咱台和芦山地震的地理位置。

    图  1  姑咱台和芦山地震位置示意图
    Figure  1.  The location of Guzan station and Lushan earthquake

    四川省姑咱台的钻孔应变仪探头安装深度为40.69 m,采样周期为1 min。本文选取姑咱台2011年1月至2014年1月的钻孔面应变数据Sa进行环境响应去除和震前异常提取,原始观测数据如图2所示。

    图  2  姑咱台钻孔面应变观测数据 (2011年1月—2014年1月)
    Figure  2.  Borehole strain data Sa of Guzan station (from January 2011 to January 2014)

    钻孔面应变数据的时间序列分解结果如图3所示。从图中可以看出,趋势项体现了应变数据的整体趋势,周期项的频点为1.157×10−5 Hz和2.315×10−5 Hz,刚好对应日波和半日波的频点,体现了固体潮为主的周期变化。余项是去除趋势项和周期项后的待处理数据。

    图  3  钻孔面应变数据的时间序列分解结果
    (a) 趋势项Tt);(b) 周期项St);(c) 余项Rt
    Figure  3.  Time series decomposition results of borehole strain data
    (a) Trend Tt);(b) Seasonal St);(c) Residual Rt

    由于水位、气压和应变余项的数据量级差异较大,对数据标准化后,用多通道奇异谱分析法分解数据,得到了水位和气压引起的应变响应。

    姑咱台站位于大渡河附近,水位对应变数据的影响表现在长时间尺度上,钻孔应变仪记录到了应变随水位的明显变化(任天翔等,2018),图4为姑咱台站的水位数据及水位应变响应。从图中可以看出,水位数据及水位应变响应表现为高度的负相关,相关系数为−0.97。

    图  4  姑咱台水位数据 (a) 及水位应变响应 (b)
    Figure  4.  Water level data (a) and its strain response (b) of Guzan station

    气压对应变数据的影响表现在短周期上,图5为2011年1月姑咱台站的气压数据及气压应变响应。从图中可以看出,气压与气压应变响应表现为高度的负相关,2011年1月气压与气压引起的应变响应的相关系数为−0.96。

    图  5  姑咱台2011年1月气压数据 (a) 及气压应变响应 (b)
    Figure  5.  Air pressure data (a) and its strain response (b) of Guzan station in January 2011

    为了进一步验证气压应变响应的可靠性,研究更短周期,计算了日气压与其引起的应变响应之间的相关系数。表1为两者相关系数占比,从表中可以看出,−0.9—−1.0的天数占到了96.1%。

    表  1  姑咱台日气压与其引起的应变响应之间的相关系数占比
    Table  1.  Proportion of the correlation coefficients of daily air pressure and its strain responses at Guzan station
    相关系数范围天数比重
    0— −0.93.9%
    −0.9— −1.096.1%
    下载: 导出CSV 
    | 显示表格

    水位及水位应变响应的相关系数为−0.97,日气压及其应变响应的相关系数绝对值大于0.9的天数达到了96.1%,都体现出高相关性,证实了本文多通道奇异谱分析法提取气压和水位应变响应的有效性。

    去除固体潮、气压、水位的环境响应后,得到的地壳应变数据如图6所示,可以看出,去除环境响应后的地壳应变数据已经没有了周期趋势,表现为短周期信号,可以清晰地看到波动信号。

    图  6  姑咱台地壳应变数据
    Figure  6.  Crustal strain data at Guzan station

    采用2.3节负熵异常提取方法对地壳应变数据按天进行异常提取并对异常个数进行累积,结果如图7所示。从图中可以看出,2011年7月异常累积曲线线性增长到2012年10月19日,2012年10月19日至2012年12月8日(芦山地震前4—6个月)异常累积曲线出现了加速增长,此后至芦山地震震前则又变为缓慢的线性增长,地震当天开始异常累积曲线加速增长。

    图  7  芦山地震前姑咱台的负熵异常累积曲线
    Figure  7.  The negentropy anomaly accumulation curveat Guzan station before the Lushan earthquake

    本文认为2012年10月19日至2012年12月8日异常累积曲线出现的加速增长可能为芦山地震的前兆异常。并推测,在孕震初期,异常累积表现为线性,整个断层因受构造应力影响而稳定滑动;震前4—6个月出现的震前负熵异常累积加速是随着构造应力的不断累积,出现了不同规模的局部小裂缝和滑移;当沿断层的摩擦阻力大于断层的剪应力时,就会形成闭锁区,闭锁区弹性能量不断积累,几何尺寸变化不大,此阶段负熵异常呈缓慢的线性增长;当应力越来越集中的闭锁区达到所能承受的强剪应力极限时,整个闭锁区瞬间失稳,促使了芦山地震的发生(徐克科,李伟,2017)。

    贝尼奥夫应变研究应变积累释放的特征,是对地震活动定量的描述,在研究震前加速现象方面得到了广泛应用(Benioff,1949陈学忠等,2021贺小丹,2022牛安福等,2022)。本文算法的负熵异常累积与贝尼奥夫应变累积的对比结果如图8所示。从图中可以看出,在芦山地震前,负熵异常加速出现的时间与贝尼奥夫应变骤增的时间大致相同,结合芦山地震的孕震过程猜测,负熵异常累积加速可能与地震前兆有关。

    图  8  本文的负熵异常累积与贝尼奥夫应变累积对比
    Figure  8.  Comparison of negentropy anomaly accumulation and Benioff strain accumulation

    为了进一步验证多通道奇异谱分析去除环境响应的优势,将本文算法与应变差分法进行对比,得到的时域曲线和负熵异常累积结果如图9所示。从图9a可以看出,本文算法与应变差分法的幅度波动时间大致相同,只数值大小有所区别;图9b的负熵异常累积对比显示,趋势相同,都是先线性增长,之后在震前4—6个月出现加速阶段,然后又恢复线性变化,地震发生后再次加速。但本文算法与应变差分法提取到的异常个数有所差别,如2012年6月13日本文算法未提取到异常,而应变差分法提取到了异常,3.4节会对此展开更深入的讨论。

    图  9  姑咱台面应变原始数据与两种算法的时域曲线 (a) 及本文算法与应变差分法的负熵异常累积对比 (b)
    Figure  9.  The strain observation data at Guzan station and time domain curves of two algorithms (a) and comparison on the negentropy anomaly accumulation between the proposed method and strain difference method (b)

    不受强震影响的正常地壳应变的短周期信号服从高斯分布(Yu et al,2021),本文使用Kolmogorov-Smirnov检验法分析应变数据的高斯分布情况,对比了本文算法与应变差分法的非高斯分布天数累积(图10)。从图10可以看出,应变差分的非高斯分布的天数累积呈线性,而本文地壳应变数据的非高斯分布天数在震前4—6个月出现加速,与负熵异常加速出现的时间相对应。虽然两种算法的负熵异常累积结果相似,但是本文算法的非高斯分布天数在震前也出现加速,说明去除环境响应后的地壳应变数据可以更有效地提取地震前兆异常。

    图  10  钻孔应变差分和地壳应变的非高斯分布天数累积
    Figure  10.  Accumulated days of non-Gaussian distribution of borehole strain difference and crustal strain

    如3.2节所述,本文算法未提取到2012年6月13日应变差分法提取出的异常(图9b),观察2012年6月13日的观测数据可以发现,气压数据在采样点800至1 000处均出现了一个波动,这个波动在面应变数据上表现明显,如图11a所示。本文依据气压数据求解得到的气压应变响应真实地反应了这个波动,因而在气压响应去除时能将这个波动去除,这是应变差分法无法做到的(图11b)。

    图  11  2012年6月13日气压数据及气压的应变响应 (a) 及本文算法与应变差分法所得的地壳应变 (b)
    Figure  11.  Air pressure data and its strain response (a) and crustal strain received by the proposed method and strain difference method (b)on June 13,2012

    针对提取钻孔应变异常时受到环境影响干扰的问题,利用时间序列分解法和多通道奇异谱分析法,可有效地去除固体潮、气压和水位引起的应变响应,验证了本文算法在环境响应去除方面的优势,且负熵异常累积与贝尼奥夫应变累积相符。

    据本文算法所得的芦山地震负熵异常累积表现为线性增加—加速增加—线性增加—加速增加的趋势,与贝尼奥夫应变累积趋势相符。认为地震前4—6个月出现的负熵异常累积加速可能为地震前兆。结合岩石应力加载的破裂演化过程(初始微破裂—扩张破裂—应力闭锁—地震爆发)猜测,震前4—6个月的异常可能与扩张破裂有关。

    本文仅使用姑咱台站钻孔应变数据对2013年芦山地震进行了分析,为获取更加令人信服的结果,需要进一步对更多台站和更多震例进行分析,未来也会进一步研究震前应变异常与孕震过程的关系。

    感谢国家地震前兆台网中心(http://qzweb.seis.ac.cn/twzx)提供钻孔应变数据。

  • 图  1   姑咱台和芦山地震位置示意图

    Figure  1.   The location of Guzan station and Lushan earthquake

    图  2   姑咱台钻孔面应变观测数据 (2011年1月—2014年1月)

    Figure  2.   Borehole strain data Sa of Guzan station (from January 2011 to January 2014)

    图  3   钻孔面应变数据的时间序列分解结果

    (a) 趋势项Tt);(b) 周期项St);(c) 余项Rt

    Figure  3.   Time series decomposition results of borehole strain data

    (a) Trend Tt);(b) Seasonal St);(c) Residual Rt

    图  4   姑咱台水位数据 (a) 及水位应变响应 (b)

    Figure  4.   Water level data (a) and its strain response (b) of Guzan station

    图  5   姑咱台2011年1月气压数据 (a) 及气压应变响应 (b)

    Figure  5.   Air pressure data (a) and its strain response (b) of Guzan station in January 2011

    图  6   姑咱台地壳应变数据

    Figure  6.   Crustal strain data at Guzan station

    图  7   芦山地震前姑咱台的负熵异常累积曲线

    Figure  7.   The negentropy anomaly accumulation curveat Guzan station before the Lushan earthquake

    图  8   本文的负熵异常累积与贝尼奥夫应变累积对比

    Figure  8.   Comparison of negentropy anomaly accumulation and Benioff strain accumulation

    图  9   姑咱台面应变原始数据与两种算法的时域曲线 (a) 及本文算法与应变差分法的负熵异常累积对比 (b)

    Figure  9.   The strain observation data at Guzan station and time domain curves of two algorithms (a) and comparison on the negentropy anomaly accumulation between the proposed method and strain difference method (b)

    图  10   钻孔应变差分和地壳应变的非高斯分布天数累积

    Figure  10.   Accumulated days of non-Gaussian distribution of borehole strain difference and crustal strain

    图  11   2012年6月13日气压数据及气压的应变响应 (a) 及本文算法与应变差分法所得的地壳应变 (b)

    Figure  11.   Air pressure data and its strain response (a) and crustal strain received by the proposed method and strain difference method (b)on June 13,2012

    表  1   姑咱台日气压与其引起的应变响应之间的相关系数占比

    Table  1   Proportion of the correlation coefficients of daily air pressure and its strain responses at Guzan station

    相关系数范围天数比重
    0— −0.93.9%
    −0.9— −1.096.1%
    下载: 导出CSV
  • 陈学忠,李艳娥,陈丽娟. 2021. 鲁甸MS6.5地震前巧家台阵观测到的中小地震应变释放加速现象[J]. 地震,41(3):32–41. doi: 10.12196/j.issn.1000-3274.2021.03.003

    Chen X Z,Li Y E,Chen L J. 2021. The accelerating seismic strain release observed by the Qiaojia seismic array prior to the Ludian M S6.5 mainshock[J]. Earthquake,41(3):32–41 (in Chinese).

    池成全. 2020. 钻孔应变前兆观测数据分析与异常提取研究[D]. 长春:吉林大学:13−39,81−89.

    Chi C Q. 2020. Analysis of Borehole Strain Precursory Observation Data and Research on Anomaly Extraction[D]. Changchun:Jilin University:13−39,81−89 (in Chinese).

    贺小丹. 2022. 基于时变背景场的Swarm卫星磁场震前异常提取与统计分析[D]. 长春:吉林大学:48−50.

    He X D. 2022. Pre-Earthquake Anomaly Detection and Statistical Analysis of Swarm Satellite Magnetic Field Based on Time-Varying Background Field[D]. Changchun:Jilin University:48−50 (in Chinese).

    柳建菲. 2020. 基于时间序列分解的PM2.5浓度预测[D]. 兰州:兰州大学:7−8.

    Liu J F. 2020. PM2.5 Concentration Prediction Based on Time Series Decomposition[D]. Lanzhou:Lanzhou University:7−8 (in Chinese).

    刘琦,张晶. 2011. S变换在汶川地震前后应变变化分析中的应用[J]. 大地测量与地球动力学,31(4):6–9. doi: 10.3969/j.issn.1671-5942.2011.04.002

    Liu Q,Zhang J. 2011. Application of S transform in analysis of strain changes before and after Wenchuan earthquake[J]. Jour nal of Geodesy and Geodynamics,31(4):6–9 (in Chinese).

    娄家墅,田家勇. 2022. 基于高分辨率钻孔应变仪的地震应变波观测研究进展[J]. 地球物理学进展,37(1):51–58. doi: 10.6038/pg2022FF0050

    Lou J S,Tian J Y. 2022. Review on seismic strain-wave observation based on high-resolution borehole strainmeters[J]. Progress in Geophysics,37(1):51–58 (in Chinese).

    牛安福,赵静,苑争一,吉平. 2022. 汶川地震孕育过程中变形场变化特征研究[J]. 武汉大学学报·信息科学版,47(6):839–848.

    Niu A F,Zhao J,Yuan Z Y,Ji P. 2022. Pre-seismic deformation related to the Wenchuan earthquake[J]. Geomatics and Infor mation Science of Wuhan University,47(6):839–848 (in Chinese).

    邱泽华,周龙寿,池顺良. 2009. 用超限率分析法研究汶川地震的前兆应变变化[J]. 大地测量与地球动力学,29(4):1–4. doi: 10.3969/j.issn.1671-5942.2009.04.001

    Qiu Z H,Zhou L S,Chi S L. 2009. Study on precursory strain changes of Wenchuan earthquake with ORA method[J]. Journal of Geodesy and Geodynamics,29(4):1–4 (in Chinese).

    邱泽华. 2017. 钻孔应变观测理论和应用[M]. 北京:地震出版社:52−67,199−214.

    Qiu Z H. 2017. Theory and Application of Borehole Strain Observation[M]. Beijing:Seismological Press:52−67,199−214 (in Chinese).

    邱泽华,唐磊,赵树贤. 2021. 地震的确定性前兆及观测方法[J]. 地震地磁观测与研究,42(2):104–105. doi: 10.3969/j.issn.1003-3246.2021.02.016

    Qiu Z H,Tang L,Zhao S X. 2021. Definite earthquake precursors and means to observe them[J]. Seismological and Geomagne tic Observation and Research,42(2):104–105 (in Chinese).

    任天翔,杨少华,董培育,程惠红,石耀霖. 2018. 大渡河水位变化对四川姑咱台钻孔应变观测影响的数值分析[J]. 中国科学院大学学报,35(5):674–680. doi: 10.7523/j.issn.2095-6134.2018.05.014

    Ren T X,Yang S H,Dong P Y,Cheng H H,Shi Y L. 2018. Numerical analysis of influence of water level fluctuation of Dadu River on Guzan borehole strain meter[J]. Journal of University of Chinese Academy of Sciences,35(5):674–680 (in Chinese).

    王雪园. 2017. 基于多通道奇异谱分析的结构时域损伤识别方法[D]. 哈尔滨:哈尔滨工业大学:7−8.

    Wang X Y. 2017. Time Domain Structural Damage Detection Based on Multichannel Singular Spectrum Analysis[D]. Harbin:Harbin Institute of Technology:7−8 (in Chinese).

    徐克科,李伟. 2017. 利用GNSS基线分析芦山MS7.0级地震前后应变演变特征[J]. 武汉大学学报·信息科学版,42(8):1054–1060.

    Xu K K,Li W. 2017. Strain evolution characteristics before and after Lushan MS7.0 earthquake using GNSS baseline[J]. Geomatics and Information Science of Wuhan University,42(8):1054–1060 (in Chinese).

    杨少华,任天翔,董培育,石耀霖. 2016. 姑咱台钻孔应变观测值年变化的数值模拟解释[J]. 地震地质,38(4):1137–1147. doi: 10.3969/j.issn.0253-4967.2016.04.026

    Yang S H,Ren T X,Dong P Y,Shi Y L. 2016. Interpretation of borehole strain annual change at Guzan station by numerical simulation[J]. Seismology and Geology,38(4):1137–1147 (in Chinese).

    于紫凝. 2021. 钻孔应变观测数据的震前异常提取与评价方法研究[D]. 长春:吉林大学:1−2,21−65.

    Yu Z N. 2021. Pre-earthquake Anomaly Extraction and Evaluation of Borehole Strain Observations[D]. Changchun:Jilin University:1−2,21−65 (in Chinese).

    赵然杭,甘甜,逄晓腾,王兴菊,苟伟娜,齐真. 2021. 基于时间序列分解的降雨数据挖掘与预测[J]. 中国农村水利水电,(11):116–122. doi: 10.3969/j.issn.1007-2284.2021.11.019

    Zhao R H,Gan T,Pang X T,Wang X J,Gou W N,Qi Z. 2021. Rainfall data mining and forecasting based on time series decomposition[J]. China Rural Water and Hydropower,(11):116–122 (in Chinese).

    周龙寿,邱泽华,唐磊,阚宝祥. 2009. 用小波方法系统检验强震“前驱波”[J]. 地震学报,31(1):1–12. doi: 10.3321/j.issn:0253-3782.2009.01.001

    Zhou L S,Qiu Z H,Tang L,Kan B X. 2009. Systemically checking-up strong earthquake precursory waves with wavelet analysis[J]. Acta Seismologica Sinica,31(1):1–12 (in Chinese).

    吉林大学. 一种去除钻孔应变数据环境影响因素的方法:中国,202111637566.1[P]. 2022−04−19.

    Jilin University. A method for removing environmental factors of borehole strain data:China,202111637566.1[P]. 2022−04−19. (in Chinese).

    Benioff H. 1949. Seismic evidence for the fault origin of oceanic deeps[J]. GSA Bull,60(12):1837–1856.

    Chi C Q,Zhu K G,Yu Z N,Fan M X,Li K Y,Sun H H. 2019. Detecting earthquake-related borehole strain data anomalies with variational mode decomposition and principal component analysis:A case study of the Wenchuan earthquake[J]. IEEE Access,7:157997–158006.

    Groth A,Ghil M. 2011. Multivariate singular spectrum analysis and the road to phase synchronization[J]. Phys Rev E,84(3):036206.

    Groth A,Ghil M. 2015. Monte Carlo singular spectrum analysis (SSA) revisited:Detecting oscillator clusters in multivariate datasets[J]. J Climate,28(19):7873–7893.

    Kojima H,Yoshino C,Nemoto K,Hattori K,Konishi T,Furuya R. 2020. Multi-channel singular spectrum analysis of underground Rn concentration at Asahi station,Boso Peninsula,Japan:Preliminary report on relation between the variation of underground Rn flux and the local seismic activity[J]. J Atmos Electr,39(1):46–51.

    Yu Z N,Hattori K,Zhu K G,Chi C Q,Fan M X,He X D. 2020. Detecting earthquake-related anomalies of a borehole strain network based on multi-channel singular spectrum analysis[J]. Entropy,22(10):1086.

    Yu Z N,Zhu K G,Hattori K,Chi C Q,Fan M X,He X D. 2021. Borehole strain observations based on a state-space model and ApNe analysis associated with the 2013 Lushan earthquake[J]. IEEE Access,9:12167–12179.

图(11)  /  表(1)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  34
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2023-03-05
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回