Ambient noise and data quality analysis of strong motion stations in Inner Mongolia region
-
摘要:
计算了内蒙古地区193个强震动台站2022年连续观测数据的加速度功率谱密度,通过绘制不同时空、不同加速度计、不同频段的功率谱密度和功率谱概率密度函数图及背景噪声速度均方根值分布图,评估了该区强震动台站的背景噪声变化特征,对出现的功率谱密度异常进行了具体分析,并针对强震动台站数据异常检测及处理提出了相应的建议。研究结果显示:不同加速度计、不同时空强震动台站的背景噪声功率谱密度昼夜差异主要体现在1 Hz以上频段,且不同区域的昼夜差异变化较大;QA-2g型、JS-A2型和TDA-33M型三种加速度计在2 s频点的背景噪声功率谱密度随区域和三分向变化较小;从强震动台站2 s频点背景噪声的监控能得到可靠的观测数据异常,数据异常主要由加速度计零点漂移大、加速度计故障、脉冲干扰、系统参数有误造成,建议优化站点观测环境,进一步规范仪器安装、调试及JOPENS系统的参数配置和审核。
-
关键词:
- 强震动台站 /
- 功率谱密度(PSD)值 /
- 速度均方根 /
- 数据质量 /
- 加速度计
Abstract:Along with the construction of the project of National Earthquake Intensity Rapid Reporting and Early Warning, Inner Mongolia has established 193 strong motion stations and a data center. This paper calculated the acceleration power spectral density (PSD) of countinous waveform records of the 193 stations in 2022 by using the power spectral probability density function (PDF). By drawing the distribution maps of PSD, power spectral PDF and RMS value of ambient noise in different frequency bands in different time-space with different-type accelerometers, the variation characteristics of ambient noise at the strong motion stations in our studied region is evaluated, and then the PSD anomalies are analyzed. Accordingly, the constructive suggestions are put forward for the anomaly detection and strong ground motion data processing. The results show that the diurnal difference in PSD of ambient noise at different stations with different seismometers mainly appears in the frequency band above 1 Hz, and the diurnal PSD difference in different regions differs largely. The ambient noise values in the data recorded by seismometers QA-2g, JS-A2 and TDA-33M at frequency 2 s show little change with space and direction, so we can get reliable anomalies from the observation data by monitoring the ambient noise at frequency 2 s. The change of ambient noise with high frequency band at strong ground stations mainly comes from the change in environmental noise, but the influence of instrument self-noise cannot be completely ignored. Anomalous strong ground data is mainly resulted from large zero point shift of accelerometers, accelerometer failure, pulse interference and incorrect system parameters. Therefore it is recommended to optimize the observation environment of the stations, further standardize the instrument installation and debugging, and to configure and review the JOPENS system parameter.
-
-
图 2 白天(实线)和夜间(虚线)加速度功率谱密度(PSD)平均值分布图
(a) GE001站点,TDA-33M加速度计与TDE-324CI数采组合;(b) GT001站点,TDA-33M加速度计与TDE-324CI数采组合;(c) DE001站点,JS-A2加速度计与TDE-324CI数采组合;(d) DY001站点,JS-A2加速度计与TDE-324CI数采组合;(e) JE001站点,QA-2g加速度计与TDE-324CI数采仪组合;(f) JW001站点,QA-2g加速度计与TDE-324CI数采仪组合
Figure 2. Distribution of average acceleration PSDs in day (dashed lines) and at night (solid lines)
(a) GE001 station,where TDA-33M accelerometer and TDE-324CI seismic data logger are used;(b) GT001 station,where TDA-33M accelerometer and TDE-324CI seismic data logger are used;(c) DE001 station,where JS-A2 accelerometer and TDE-324CI seismic data logger are used;(d) DY001 station,where JS-A2 accelerometer and TDE-324CI seismic data logger are used;(e) JE001 station,where QA-2g accelerometer and TDE-324CI seismic data logger are used;(f) JW001 station,where QA-2g accelerometer and TDE-324CI seismic data logger are used
表 1 内蒙古地区强震动台站的仪器基本信息
Table 1 Parameters of instruments deployed at the strong ground motion stations in Inner Mongolia region
数采型号 加速度仪
型号数采量程
/V数采转换因子
/(μV·counts−1)加速度仪灵敏度
/(V·s2·m−1)系统灵敏度
/(counts·s2·m−1)强震动台站
数量HG-D3/6 QA-2g 20 2.384 0.255 107 006.00 39 EDAS-24GN JS-A2 10 0.074 5 0.255 3 422 818.00 39 TDE-324CI/FI TDA-33M 20 0.745 1 1.02 1 368 943.00 59 TDE-324CI QA-2g 20 0.745 1 0.255 342 372.00 5 TDE-324CI JS-A2 10 0.372 5 0.255 684 564.00 19 HG-D3/6 JS-A2 10 1.192 0.255 213 926.00 28 EDAS-24GN6 QA-2g 20 0.149 0.255 1 712 094.234 2 EDAS-24GN6 TDA-33M 20 0.149 1.02 6 848 376.935 2 -
陈先兰. 2013. 汶川地震泉州台强震仪与地震仪的记录分析[J]. 大地测量与地球动力学,33(增刊):172–175. Chen X L. 2013. Records analysis of strong-motion seismograph and seismograph of Wenchuan earthquake by Quanzhou seismostation[J]. Journal of Geodesy and Geodynamics,33(S1):172–175 (in Chinese).
丁莉莎,马洁美,齐军伟,谢剑波,廖一帆,卢子晋,叶世山,劳谦,吕仲杭. 2021. 利用背景噪声的分形方法监控台站观测系统运行状态[J]. 大地测量与地球动力学,41(4):436–440. Ding L S,Ma J M,Qi J W,Xie J B,Liao Y F,Lu Z J,Ye S S,Lao Q,Lü Z H. 2021. Discussion on monitoring the operating state of seismic station observation system by using fractal method of background noise[J]. Journal of Geodesy and Geodynamics,41(4):436–440 (in Chinese).
葛洪魁,陈海潮,欧阳飚,杨微,张梅,袁松湧,王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,56(3):857–868. doi: 10.6038/cjg20130315 Ge H K,Chen H C,Ouyang B,Yang W,Zhang M,Yuan S Y,Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics,56(3):857–868 (in Chinese).
黄玲珠,林彬华,王士成. 2017. 测震台网实时波形数据质量自动监控[J]. 华南地震,37(4):20–25. Huang L Z,Lin B H,Wang S C. 2017. Automatic monitoring of real-time waveform data quality of seismic network[J]. South China Journal of Seismology,37(4):20–25 (in Chinese).
蒋长胜,刘瑞丰. 2016. 国家地震烈度速报与预警工程:测震台网的机遇与挑战[J]. 工程研究:跨学科视野中的工程,8(3):250–257. Jiang C S,Liu R F. 2016. National Seismic Intensity Rapid Reporting and Early Warning Project:Opportunity and challenge of seismic network[J]. Journal of Engineering Studies,8(3):250–257 (in Chinese). doi: 10.3724/SP.J.1224.2016.00250
廖诗荣,陈绯雯. 2008. 应用概率密度函数方法自动处理地震台站勘选测试数据[J]. 华南地震,28(4):82–92. doi: 10.3969/j.issn.1001-8662.2008.04.010 Liao S R,Chen F W. 2008. Automated seismic noise processing for seismic site selection using probability density functions method[J]. South China Journal of Seismology,28(4):82–92 (in Chinese).
林彬华,金星,廖诗荣,李军,黄玲珠,朱耿青. 2015. 地震噪声异常实时监测[J]. 中国地震,31(2):281–289. doi: 10.3969/j.issn.1001-4683.2015.02.012 Lin B H,Jin X,Liao S R,Li J,Huang L Z,Zhu G Q. 2015. Real-time monitoring of abnormal seismic noise[J]. Earthquake Research in China,31(2):281–289 (in Chinese).
马小军,马禾青,李军,许晓庆,曾宪伟,罗国富. 2014. 青藏高原东北缘背景噪声特征分析[J]. 地震研究,37(4):607–613. doi: 10.3969/j.issn.1000-0666.2014.04.018 Ma X J,Ma H Q,Li J,Xu X Q,Zeng X W,Luo G F. 2014. Characteristic of ambient seismic noise of the northeastern margin of Tibetan Plateau[J]. Journal of Seismological Research,37(4):607–613 (in Chinese).
田原,瞿辰,王伟涛,于常青,李丽. 2020. 四川盐源盆地短周期密集台阵背景噪声分布特征分析[J]. 地球物理学报,63(6):2248–2261. doi: 10.6038/cjg2020N0063 Tian Y,Qu C,Wang W T,Yu C Q,Li L. 2020. Characteristics of the ambient noise distribution recorded by the dense seismic array in the Yanyuan Basin,Sichuan Province[J]. Chinese Journal of Geophysics,63(6):2248–2261 (in Chinese).
王奡,罗银河,吴树成,沈超,姜小欢,徐义贤. 2017. 西准噶尔地区地震背景噪声源分析[J]. 地球物理学报,60(4):1376–1388. doi: 10.6038/cjg20170412 Wang A,Luo Y H,Wu S C,Shen C,Jiang X H,Xu Y X. 2017. Source analysis of seismic ambient noise in the western Junggar area[J]. Chinese Journal of Geophysics,60(4):1376–1388 (in Chinese).
王鑫,张皓明,安全. 2018. 内蒙古地震烈度速报与预警工程基本站勘选仪器测试分析[J]. 防灾减灾学报,34(1):20–25. Wang X,Zhang H M,An Q. 2018. Basic station selection and instrument analysis of Inner Mongolia Seismic Intensity Rapid Reporting and Early Warning Project[J]. Journal of Disaster Prevention and Reduction,34(1):20–25 (in Chinese).
谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析[J]. 地震学报,43(5):533–550. doi: 10.11939/jass.20200148 Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region[J]. Acta Seismologica Sinica,43(5):533–550 (in Chinese).
谢晓峰,杨微,李俊,林建民,王伟涛,姚琳,吕俊强. 2014. 宁夏及其邻区背景噪声能量来源方位及强度的季节性变化分析[J]. 地震地质,36(1):82–91. Xie X F,Yang W,Li J,Lin J M,Wang W T,Yao L,Lü J Q. 2014. Analysis on the seasonal variation of the azimuth and strength of ambient noise energy in Ningxia and its adjacent region[J]. Seismology and Geology,36(1):80–89 (in Chinese).
杨千里,郝春月,田鑫. 2019. 新疆和田台阵PSD与PDF分析[J]. 地球物理学报,62(7):2591–2606. doi: 10.6038/cjg2019M0108 Yang Q L,Hao C Y,Tian X. 2019. Ambient noise analysis by the technology of PSD and PDF in Hotan seismic array[J]. Chinese Journal of Geophysics,62(7):2591–2606 (in Chinese).
于海英,周宝峰,王家行,马新生,张同宇,徐旋,胡振荣. 2017. 强震动观测仪器面临的机遇和挑战[J]. 震灾防御技术,12(1):68–77. doi: 10.11899/zzfy20170107 Yu H Y,Zhou B F,Wang J H,Ma X S,Zhang T Y,Xu X,Hu Z R. 2017. Opportunities and challenges of strong motion observation instruments[J]. Technology for Earthquake Disaster Prevention,12(1):68–77 (in Chinese).
张红才,金星,王士成,李军. 2017. 烈度仪记录与强震及测震记录的对比分析:以2015年河北昌黎ML4.5地震为例[J]. 地震学报,39(2):273–285. doi: 10.11939/jass.2017.02.010 Zhang H C,Jin X,Wang S C,Li J. 2017. Comparative analyses of records by seismic intensity instrument with strong ground motion records and seismograph stations records:Taking the ML4.5 Changli earthquake of Hebei Province for an example[J]. Acta Seismologica Sinica,39(2):273–285 (in Chinese).
赵国峰,高楠,杨大克. 2022. 国家地震烈度速报与预警工程建设进展[J]. 地震地磁观测与研究,43(3):165–171. doi: 10.3969/j.issn.1003-3246.2022.03.023 Zhao G F,Gao N,Yang D K. 2022. Construction progress of the National Seismic Intensity Rapid Reporting and Early Warning Project[J]. Seismological and Geomagnetic Observation and Research,43(3):165–171 (in Chinese).
Green D N,Bastow I D,Dashwood B,Nippress S E J. 2017. Characterizing broadband seismic noise in Central London[J]. Seismol Res Lett,88(1):113–124. doi: 10.1785/0220160128
McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
Peng C Y,Jiang P,Ma Q,Su J R,Cai Y C,Zheng Y. 2022. Chinese nationwide earthquake early warning system and its performance in the 2022 Lushan M6.1 earthquake[J]. Remote Sens,14(17):4269. doi: 10.3390/rs14174269
Peterson J. 1993. Observations and Modeling of Seismic Background Noise:USGS Open File Report[R]. Albuquerque,New Mexico:U.S. Department of Interior Geological Survey:93–322.
Rastin S J,Unsworth C P,Gledhill K R,Mcnamara D E. 2012. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bull Seismol Soc Am,102(1):98–113. doi: 10.1785/0120110064
-
期刊类型引用(1)
1. 陈宝魁,王博为,王东升. 海底强震观测记录与地震动特性研究进展. 世界地震工程. 2023(01): 200-208 . 百度学术
其他类型引用(5)