2014年云南鲁甸MW6.1地震强地面运动模拟

刘奕君, 李小军, 赵晓芬, 徐超, 温增平

刘奕君,李小军,赵晓芬,徐超,温增平. 2024. 2014年云南鲁甸MW6.1地震强地面运动模拟. 地震学报,46(4):677−694. DOI: 10.11939/jass.20220216
引用本文: 刘奕君,李小军,赵晓芬,徐超,温增平. 2024. 2014年云南鲁甸MW6.1地震强地面运动模拟. 地震学报,46(4):677−694. DOI: 10.11939/jass.20220216
Liu Y J,Li X J,Zhao X F,Xu C,Wen Z P. 2024. Strong ground motion simulation for the 2014 MW6.1 Ludian,Yunnan earthquake. Acta Seismologica Sinica46(4):677−694. DOI: 10.11939/jass.20220216
Citation: Liu Y J,Li X J,Zhao X F,Xu C,Wen Z P. 2024. Strong ground motion simulation for the 2014 MW6.1 Ludian,Yunnan earthquake. Acta Seismologica Sinica46(4):677−694. DOI: 10.11939/jass.20220216

2014年云南鲁甸MW6.1地震强地面运动模拟

基金项目: 国家重点研发项目(2020YFA0710603)和中国地震局地球物理研究所基本业务费(DQJB22B27)共同资助
详细信息
    作者简介:

    刘奕君,在读博士研究生,主要从事宽频带混合地震动模拟研究,e-mail:liuyijun_1991@126.com

    通讯作者:

    温增平,博士,研究员,主要从事近断层地震动特性、地震动模拟方面的研究方面研究, e-mail:wenzp@cea-igp.ac.cn

  • 中图分类号: P315.9

Strong ground motion simulation for the 2014 MW6.1 Ludian,Yunnan earthquake

  • 摘要:

    基于震源运动学模型,采用宽频带混合模拟方法,对2014年鲁甸MW6.1地震开展了考虑复杂震源破裂过程的地震动模拟,将代表性场点的模拟结果与实际观测的强震记录进行对比,分析了不同震源模型对场点强地面运动特征影响的差异。结果表明:就震源尺度有限的中等地震而言,地震矩相近的不同震源破裂模型对震中距稍远场点的地震动影响差异相对较小,而对近震源区场点的地震动特征影响差异则较为明显。此外,不同震源模型模拟的地震动参数空间分布结果显示,不同震源模型对地震动的空间分布形态具有显著影响。

    Abstract:

    Based on the intensity and aftershock distribution, researchers unanimously agree that the rupture of the 2014 MW6.1 Ludian, Yunnan earthquake exhibits a certain degree of complexity. Zhang et al2015) used broadband strong motion records within a 250 km range from the epicenter, along with full waveform data of near-field and far-field broadband body wave data, to invert the rupture process of the Ludian MW6.1 earthquake base on both a single fault model and two intersecting conjugate fault models. Their results indicate that the Ludian MW6.1 earthquake was a complex seismic event, characterized by the successive rupture of two conjugate faults in the northwest and northeast directions. Significant progress has been made in studying the characteristics of strong ground motion related to the Ludian earthquake and associated issues. The existing conclusions about the distribution of seismic parameters in affected region are directly inferred or indirectly synthesized from existing data, yet the seismic characteristics caused by complex seismic source ruptures have not been considered.

    To investigate the influence of different rupture process models on ground motion simulation of the MW6.1 Ludian earthquake, a hybrid broadband ground motion simulation method known as the GP method (Graves, Pitraka, 2010) was applied to synthesize acceleration, velocity waveforms, and acceleration response spectra in the near-field area based on kinematic source models. The source models used for comparison in this study are derived from Zhang et al2015), which includes two single fault rupture models and one intersecting conjugate fault model. The study adopted the crustal velocity structure model of the Yunnan region to calculate the Green’s function.

    The GP method combines a deterministic approach in the low-frequency range ( f<1 Hz) with a semi-stochastic approach in the high-frequency range ( f >1 Hz). For f<1 Hz, this methodology allows for a theoretically rigorous representation of fault rupture and wave propagation effects, to generate ground motion waveforms and amplitudes. In contrast, high-frequency ( f >1 Hz) ground motions are modeled through random source radiation, simplified theoretical wave propagation, and scattering effects.Simulation results for representative sites were compared with observed strong motion recordings, and the impacts of three different source rupture models on strong ground motions were analyzed. The results demonstrate that for moderate earthquakes with limited fault dimensions, differences in strong ground motion characoncernedcteristics among different source rupture models with similar seismic moments are not pronounced in far fields but are distinct in near-fields. Additionally, the distributions of intensity measurements of ground motions are provided, and it is found that the simulation results based on the conjugate fault model are more consistent with the field-surveyed macroseismic intensity of MW6.1 Ludian earthquake, Yunnan in 2014. This indicates that the source rupture model plays a crucial role in the spatial distribution pattern of strong ground motions and their characteristics. Therefore, elaborate source rupture models are of great value for reasonably estimating the peak ground acceleration, peak ground velocity, frequency spectrum, duration, and time history of seismic motion in the near-source area, as well as assessing seismic hazard in area.

    This article reveals the influence of complex focal rupture processes on the characteristics and spatial distribution of strong ground motion.

  • 图  10   三个震源模型模拟的加速度反应谱(PSA)在周期0.5 s (a)和1.5 s (b)时的分布

    Figure  10.   Distributions of simulated pseudo-spectral acceleration (PSA) at period of 0.5 s (a) and 1.5 s (b) that from three source fault models

    图  1   鲁甸地震研究区域内断层面投影及台站位置

    Figure  1.   Fault plane projection and station location of Ludian earthquake in the study region

    图  2   断层Ⅰ(a)、断层Ⅱ(b)及共轭复合断层(c)的震源模型(张勇等,2015

    Figure  2.   Geometry,source time function and final slip distributions of source faultⅠmodel (a),fault Ⅱ model (b) and conjugated fault model (c)(Zhang et al,2015

    图  3   鲁甸地区一维速度结构及介质密度模型

    Figure  3.   One-dimensional velocity structure and medium density model in Ludian region

    图  4   台站53QQC (a)、53LDC (b)和53HYC (c)的加速度记录及基于断层Ⅰ震源模型、断层Ⅱ震源模型和共轭复合震源模型合成的三分量加速度时程(持续时间35 s)

    Figure  4.   Recordings and simulated three component acceleration time-histories of the representative stations 53QQC (a),53LDC (b) and 53HYC (c) from source faultⅠmodel,fault Ⅱ model and conjugated fault model (duration of 35 s)

    图  5   台站53QJX (a)、51HDQ (b)和53HZX (c)的加速度记录及基于断层Ⅰ震源模型、断层Ⅱ震源模型和共轭复合震源模型合成的三分量加速度时程(持续时间35 s)

    Figure  5.   Recordings and simulated three component acceleration time-histories of the representative stations 53QJX (a),51HDQ (b) and 53HZX (c) from source faultⅠmodel,fault Ⅱ model and conjugated fault model (duration of 35 s)

    图  6   台站51PGD (a)、53DTB (b)和51YBH (c)的加速度记录及基于断层Ⅰ震源模型、断层Ⅱ震源模型和共轭复合震源模型合成的三分量加速度时程(持续时间35 s)

    Figure  6.   Recordings and simulated three component acceleration time-histories of the representative stations 51PGD (a),53DTB (b) and 51YBH (c) from source faultⅠmodel,fault Ⅱ model and conjugated fault model (duration of 35 s)

    图  7   9个代表性台站的加速度反应谱与基于单断层Ⅰ震源模型、单断层Ⅱ震源模型及共轭复合断层震源模型模拟的加速度反应谱、加速度反应谱衰减模型的对比

    Figure  7.   Comparison of the recorded acceleration response spectra of 9 representative stations with the simulated acceleration response spectra from source fault Ⅰ model ,fault Ⅱ model and conjugated fault model and NGA-West2 attenuation models

    图  8   台站53QQC (a)、53LDC (b)和53HYC (c)的记录和

    Figure  8.   The recorded three component velocity time-histories of the stations 53QQC,53LDC and 53HYC and the simulated velocity time-histories of different source models (duration of 40 s)

    图  9   三个震源模型产生的水平向PGA (左)和PVG (右)分布

    Figure  9.   Distributions of horizontal PGA (left) and PGV (right) generated from three source fault models

    表  1   两个单断层模型及共轭复合断层震源模型参数(张勇,2015

    Table  1   Parameters of two single fault plane models and conjugated faults model (Zhang,2015

    震源模型走向/°倾向/°长度/km宽度/km子断层尺寸地震矩/(1018 N·m)MW
    断层Ⅰ模型1627021102 km×2 km1.796.13
    断层Ⅱ模型2577721102 km×2 km1.806.14
    共轭断层模型复合复合复合复合2 km×2 km2.056.17
    下载: 导出CSV

    表  2   震中距160 km内部分台站相关信息(顺序依震中距排列)

    Table  2   List of relevant information of part discussed stations within 160 km of the epicenter (arranged according to the epicenter distance)

    台站东经/°北纬/°场地类型震中距/km断层Ⅰ断层距/km断层Ⅱ断层距/km$ {v}_{\mathrm{S}30} $
    53QQC103.2326.9419.0914.7713.24527#
    53LDC103.6027.2232.5428.9913.93424
    53HYC103.5126.8138.3817.2633.52497*
    53QJX103.2435.7539.3724.4433.97527#
    51HDQ102.8226.6767.4760.5749.07747
    53HZX103.3126.4176.7357.6072.24318*
    51PGD102.5427.3780.9269.3165.85688
    53DTB103.0426.3686.2470.2175.09760
    51YBH101.9226.53150.90147.53129.68376
    注:标*数据由Boor (2 004)的速度梯度延拓线性模型外推计算而得,标#数据根据邻近场地插值计算得到。
    下载: 导出CSV
  • 陈鲲,俞言祥,高孟潭,亢川川. 2015. 2014年云南鲁甸MS6.5地震峰值加速度震动图[J]. 地震学报,37(3):429–436. doi: 10.11939/j.issn:0253-3782.2015.03.006

    Chen K,Yu Y X,Gao M T,Kang C C. 2015. Shakemap of peak ground acceleration for 2014 Ludian,Yunnan,MS6.5 earthquake[J]. Acta Seismologica Sinica,37(3):429–436 (in Chinese).

    崔建文,刘琼仙,段建新,杨黎薇,高东,李世成,徐硕,林国良,张潜,包一峰,段洪杰. 2014. 2014年云南鲁甸6.5级地震强震动观测记录及初步分析[J]. 地震研究,37(4):542–548. doi: 10.3969/j.issn.1000-0666.2014.04.009

    Cui J W,Liu Q X,Duan J X,Yang L W,Gao D,Li S C,Xu S,Lin G L,Zhang Q,Bao Y F,Duan H J. 2014. Strong-motion recordings of MS6.5 Ludian earthquake in Yunnan in 2014 and their preliminary analysis[J]. Journal of Seismological Research,37(4):542–548 (in Chinese).

    房立华,吴建平,王未来,吕作勇,王长在,杨婷,钟世军. 2014. 云南鲁甸MS 6.5地震余震重定位及其发震构造[J]. 地震地质,36(4):1173–1185. doi: 10.3969/j.issn.0253-4967.2014.04.019

    Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Zhong S J. 2014. Relocation of the aftershock sequence of the MS6.5 Ludian earthquake and its seismogenic structure[J]. Seismology and Geology,36(4):1173–1185 (in Chinese).

    冀昆,温瑞智,崔建文,王宏伟,任叶飞. 2014. 鲁甸MS6.5 级地震强震动记录及震害分析[J]. 震灾防御技术,9(3):325–339. doi: 10.11899/zzfy20140301

    Ji K,Wen R Z,Cui J W,Wang H W,Ren Y F. 2014. Observation of strong motion and damage investigation for MS6.5 Ludian earthquake[J]. Technology for Earthquake Disaster Prevention,9(3):325–339 (in Chinese).

    刘成利,郑勇,熊熊,付芮,单斌,刁法启. 2014. 利用区域宽频带数据反演鲁甸MS6.5 级地震震源破裂过程[J]. 地球物理学报,57(9):3028–3037. doi: 10.6038/cjg20140927

    Liu C L,Zheng Y,Xiong X,Fu R,Shan B,Diao F Q. 2014. Rupture process of MS6.5 Ludian earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics,57(9):3028–3037 (in Chinese).

    卢永坤,张建国,宋立军,代博洋,和嘉吉,庞卫东. 2014. 2014年云南鲁甸6.5级地震烈度分布与房屋震害特征[J]. 地震研究,37(4):549–557. doi: 10.3969/j.issn.1000-0666.2014.04.010

    Lu Y K,Zhang J G,Song L J,Dai B Y,He J J,Pang W D. 2014. Analysis on intensity distribution and seismic disaster characteristics of building of Yunnan Ludian MS6.5 earthquake in 2014[J]. Journal of Seismological Research,37(4):549–557 (in Chinese).

    王未来,吴建平,房立华,来贵娟. 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报,57(9):3042–3051.

    Wang W L,Wu J P,Fang L H,Lai G J. 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan Province in 2014[J]. Chinese Journal of Geophysics,57(9):3042–3051 (in Chinese).

    魏勇,崔建文,王秋良,沈雨忆. 2018. 基于合成地震动的2014年鲁甸MS6.5地震场地效应分析[J]. 地震研究,41(1):32–37. doi: 10.3969/j.issn.1000-0666.2018.01.004

    Wei Y,Cui J W,Wang Q L,Shen Y Y. 2018. Analysis on site effect of 2014 Yunnan Ludian MS6.5 earthquake based on simulating ground motion[J]. Journal of Seismological Research,41(1):32–37 (in Chinese).

    许力生,张旭,严川,李春来. 2014. 基于勒夫波的鲁甸MS6.5地震震源复杂性分析[J]. 地球物理学报,57(9):3006–3017. doi: 10.6038/cjg20140925

    Xu L S,Zhang X,Yan C,Li C L. 2014. Analysis of the Love waves for the source complexity of the Ludian MS6.5 earthquake[J]. Chinese Journal of Geophysics,57(9):3006–3017 (in Chinese).

    徐涛,张明辉,田小波,郑勇,白志明,武澄泷,张忠杰,滕吉文. 2014. 丽江—清镇剖面上地壳速度结构及其与鲁甸MS6.5级地震孕震环境的关系[J]. 地球物理学报,57(9):3069–3079. doi: 10.6038/cjg20140932

    Xu T,Zhang M H,Tian X B,Zheng Y,Bai Z M,Wu C L,Zhang Z J,Teng J W. 2014. Upper crustal velocity of Lijiang-Qingzhen profile and its relationship with the seismogenic environment of the MS6.5 Ludian earthquake[J]. Chinese Journal of Geophysics,57(9):3069–3079 (in Chinese).

    徐锡伟,江国焰,于贵华,吴熙彦,张建国,李西. 2014. 鲁甸6.5级地震发震断层判定及其构造属性讨论[J]. 地球物理学报,57(9):3060–3068. doi: 10.6038/cjg20140931

    Xu X W,Jiang G Y,Yu G H,Wu X Y,Zhang J G,Li X. 2014. Discussion on seismogenic fault of the Ludian MS6.5 earthquake and its tectonic attribution[J]. Chinese Journal of Geophysics,57(9):3060–3068 (in Chinese).

    张斌,李小军,俞言祥,李娜,朱俊. 2020. 鲁甸地震强震动记录与地震动衰减模型的对比研究[J]. 地球物理学报,63(8):2999–3014. doi: 10.6038/cjg2020O0045

    Zhang B,Li X J,Yu Y X,Li N,Zhu J. 2020. Comparison of strong ground motion records from Ludian,China,earthquake with ground-motion attenuation models[J]. Chinese Journal of Geophysics,63(8):2999–3014 (in Chinese).

    张广伟,雷建设,梁姗姗,孙长青. 2014. 2014年8月3日云南鲁甸MS6.5级地震序列重定位与震源机制研究[J]. 地球物理学报,57(9):3018–3027. doi: 10.6038/cjg20140926

    Zhang G W,Lei J S,Liang S S,Sun C Q. 2014. Relocations and focal mechanism solutions of the 3 August 2014 Ludian,Yunnan MS6.5 earthquake sequence[J]. Chinese Journal of Geophysics,57(9):3018–3027 (in Chinese).

    张勇,陈运泰,许力生,魏星,金明培,张森. 2015. 2014 年云南鲁甸 MW6.1地震:一次共轭破裂地震[J]. 地球物理学报,58(1):153–162. doi: 10.6038/cjg20150113

    Zhang Y,Chen Y T,Xu L S,Wei X,Jin M P,Zhang S. 2015. The 2014 MW6.1 Ludian,Yunnan,earthquake:A complex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics,58(1):153–162 (in Chinese).

    张振国,孙耀充,徐建宽,张伟,陈晓非. 2014. 2014年8月3日云南鲁甸地震强地面运动初步模拟及烈度预测[J]. 地球物理学报,57(9):3038–3041. doi: 10.6038/cjg20140928

    Zhang Z G,Sun Y C,Xu J K,Zhang W,Chen X F. 2014. Preliminary simulation of strong ground motion for Ludian,Yunnan earthquake of 3 August 2014,and hazard implication[J]. Chinese Journal of Geophysics,57(9):3038–3041 (in Chinese).

    Abrahamson N A,Silva W J,Kamai R. 2014. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthq Spectra,30(3):1025–1055. doi: 10.1193/070913EQS198M

    Anderson J G,Hough S E. 1984. A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am,74(5):1969–1993.

    Boore D M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am,73(6A):1865–1894.

    Boore D M,Joyner W B. 1997. Site amplifications for generic rock sites[J]. Bull Seismol Soc Am,87(2):327–341. doi: 10.1785/BSSA0870020327

    Boore D M. 2003. Simulation of ground motion using the stochastic method[J]. Pure Appl Geophys,160(3/4):635–676.

    Boore D M. 2004. Estimating S(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105

    Boore D M,Stewart J P,Seyhan E,Atkinson G M. 2014. NGA-West2 equations for predicting PGA,PGV,and 5% damped PSA for shallow crustal earthquakes[J]. Earthq Spectra,30(3):1057–1085. doi: 10.1193/070113EQS184M

    Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res,75(26):4997–5009. doi: 10.1029/JB075i026p04997

    Campbell K W,Bozorgnia Y. 2014. NGA-West2 ground motion model for the average horizontal components of PGA,PGV,and 5% damped linear acceleration response spectra[J]. Earthq Spectra,30(3):1087–1115. doi: 10.1193/062913EQS175M

    Chiou B S J,Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra,30(3):1117–1153. doi: 10.1193/072813EQS219M

    Frankel A. 1998. Simulating strong motions of large earthquakes using recordings of small earthquakes:The Loma Prieta mainshock as a test case[J]. Bull Seismol Soc Am,85(4):1144–1160.

    Graves R W. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bull Seismol Soc Am,86(4):1091–1106.

    Graves R W,Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach[J]. Bull Seismol Soc Am,100(5A):2095–2123. doi: 10.1785/0120100057

    Hu J J,Zhang Q,Jiang Z J,Xie L L,Zhou B F. 2016. Characteristics of strong ground motions in the 2014 MS6.5 Ludian earthquake,Yunnan,China[J]. J Seismol,20(1):361–373. doi: 10.1007/s10950-015-9532-x

    Ou G B,Herrmann R B. 1990. A statistical model for ground motion produced by earthquakes at local and regional distances[J]. Bull Seismol Soc Am,80(6A):1397–1417. doi: 10.1785/BSSA08006A1397

    Walling M,Silva W,Abrahamson N. 2008. Nonlinear site amplification factors for constraining the NGA models[J]. Earthq Spectra,24(1):243–255. doi: 10.1193/1.2934350

    Wang H W,Wen R Z. 2019. Ground-motion simulation for the MW6.1 Ludian earthquake on 3 August 2014 using the stochastic finite-fault method[J]. Earthquake Science,32(3/4):101–114.

    Yu Y, Silva W J, Darragh B, Li X J. 2016. vS30 estimate for Southwest China[J]. Int J Geophys: 9305095.

图(10)  /  表(2)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  99
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-05-14
  • 网络出版日期:  2023-05-10
  • 刊出日期:  2024-07-14

目录

    /

    返回文章
    返回