中国大陆强震发生前地震活动增强统计特征分析

呼楠, 石富强, 季灵运, 刘洁, 祁玉萍, 王光明, 张丽峰, 郭蕾

呼楠,石富强,季灵运,刘洁,祁玉萍,王光明,张丽峰,郭蕾. 2024. 中国大陆强震发生前地震活动增强统计特征分析. 地震学报,46(2):226−241. DOI: 10.11939/jass.20230021
引用本文: 呼楠,石富强,季灵运,刘洁,祁玉萍,王光明,张丽峰,郭蕾. 2024. 中国大陆强震发生前地震活动增强统计特征分析. 地震学报,46(2):226−241. DOI: 10.11939/jass.20230021
Hu N,Ji L Y,Shi F Q,Liu J,Qi Y P,Wang G M,Zhang L F,Guo L. 2024. Statistical characteristics of enhanced seismicity before strong earthquakes based on earthquake cases in Chinese mainland. Acta Seismologica Sinica46(2):226−241. DOI: 10.11939/jass.20230021
Citation: Hu N,Ji L Y,Shi F Q,Liu J,Qi Y P,Wang G M,Zhang L F,Guo L. 2024. Statistical characteristics of enhanced seismicity before strong earthquakes based on earthquake cases in Chinese mainland. Acta Seismologica Sinica46(2):226−241. DOI: 10.11939/jass.20230021

中国大陆强震发生前地震活动增强统计特征分析

基金项目: 地震科技星火计划(XH20055Y)和陕西省自然科学基础研究计划(2023-JC-QN-0331)共同资助
详细信息
    作者简介:

    呼楠,高级工程师,主要从事地震活动性与地震预测方面的研究,e-mail:yanan_77@163.com

    通讯作者:

    石富强,博士,高级工程师,主要从事断层应力模拟和地震综合预测研究,e-mail: shifuqiang121@163.com

  • 中图分类号: P315.72

Statistical characteristics of enhanced seismicity before strong earthquakes based on earthquake cases in Chinese mainland

  • 摘要:

    依据 《中国震例》 (1966—2017年)对1966年以来中国大陆东部MS>6.0、西部MS>7.0强震前地震活动增强的异常现象特征进行了系统的梳理,并试图总结不同活动构造地块周缘强震前地震活动增强的异常时空演化特征。结果显示:① 我国大陆大震前普遍存在地震活动增强现象,33个震例中有21个震例存在震前地震活动增强异常,占比达64%;② 西部地区大多数震例的地震活动增强空间范围表现为中间尺度或构造尺度,且主震震级越大,越有可能出现大范围的地震活动增强;③ 西部地区出现中强地震活动增强的概率高于东部地区,前兆地震活动增强的平均震级较大,发生大震(M>7.0)的概率增大;④ 西部地区地震活动增强的时间尺度与震级成正比,而东部地区随着震级增大,更可能出现中期到中短期的地震活动增强异常;⑤ 多数西部地区震例在震前出现不同时间尺度的地震活动增强叠加的现象;⑥ 川滇菱形地块的强震前均出现了中长期尺度的地震条带交会现象、不同空间尺度的地震空区以及中短期尺度的中小震活动增强现象,并且对大震地点有较好的指示意义。巴颜喀拉东边界与北、西及南边界大震前存在显著的不同地震活动增强特征,震前未出现中强地震围空的现象。

    Abstract:

    Before strong earthquakes, enhanced seismicity manifested by increased magnitude, frequency, or accelerated strain release generally appears within a specific temporal and spatial range of the source area. This significant enhanced seismicity is often observed before moderate-strong earthquakes occurred in Chinese mainland or abroad. The seismogenic processes of large earthquakes are multiscale and diverse, involving localization of deformation, fault heterogeneities, and variable local loading rate effects. Enhanced seismicity prior to moderate-strong earthquakes is closely related to such processes and exhibits different characteristics. An in-depth study of enhanced seismicity will help us to understand the seismogenic process of strong-large shocks, which may bring positive effect on predicting strong shocks based on them.

    Many studies have been performed to analyze the characteristics of enhanced seismicity. A more thoughtful and systematic study is needed due to rapidly increased strong earthquake data in Chinese mainland and the urgent requirement for statistical predictive indicators. In this study, we intend to summarize the statistical characteristics of the prominent enhanced seismicities before moderate-strong earthquakes and attempt to seek the proper mechanism. Based on Earthquake Cases in China (1966−2017), the spatio-temporal characteristics of the seismicity before strong earthquakes with magnitude MS≥6.0 in the eastern Chinese mainland and MS≥7.0 in the western Chinese mainland are summarized statistically. In the meantime, the regional features of enhanced seismicity before the strong earthquakes within the SichuanYunnan rhombic block, Bayan Har block, and North China block are also studied. The main contents and conclusions are as follows:

    Among the 33 earthquake cases studied in this paper, 21 showed enhanced seismicity before the main shock, accounting for 64%, including five earthquakes of MS6.0−6.9, 14 earthquakes of MS7.0−7.9, and two earthquakes of MS8.0 or above. The percentage of enhanced seismicity is 42% for sub-grade class from MS6.0 to MS6.9, 74% for for sub-grade class from MS7.0 to MS7.9 and 100% for sub-grade class from MS8.0 or above. The possibility of the occurrence of enhanced seismic activity will increase with the magnitude of the main shock. The enhancement of seismicity appeared in 13 out of 18 cases in western Chinese mainland, accounting for 72%; 8 out of 15 cases in eastern Chinese mainland, accounts for 53%.

    Secondly, in most cases for western Chinese mainland, the spatial extent of enhanced seismicities was observed within the intermediate or tectonic scale, and the probability of enhanced seismicity with a significant spatial scale increases with the magnitude of the main shock. Furthermore, the likelihood of enhanced seismicity with a large magnitude in western Chinese mainland is higher than in eastern Chinese mainland. The larger the average magnitude of enhanced premonitory seismicity, the more likely strong earthquakes with MS>7.0 occur. The duration of seismic activity enhancement in the western Chinese mainland is directly proportional to magnitude of the main shock, while in the eastern Chinese mainland, the relatively more significant events tend to be associated with a mid-short-term enhanced seismicity.

    Thirdly, the strong earthquakes in Sichuan-Yunnan rhombic block were preceded by the medium-long term intersected seismic strips, the various spatial-scale seismic gaps, and the enhancement of small-moderate earthquakes at medium-short-term scales. These features significantly indicate the location of further quakes, which deserves more attention. Different from the eastern border of the Bayan Har block, at the other three boundaries of the Bayan Har block, strong earthquakes are often attacked with seismic gaps encircled by premonitory medium-strong earthquakes. The seismic gap generally arises in medium-long-term time scales, and the mid-short-term scale enhanced seismicity is notable before strong earthquakes in the northern margin of North China block. In particular, the magnitude of the Haicheng earthquake is comparable to that of the Tangshan earthquake. Still, the Haicheng earthquake was not preceded by a significant and long seismicity enhancement, which suggests that the secondary blocks or adjacent tectonic influences may also control the enhancement of seismicity before earthquake.

    Fourthly, enhanced seismicity prior to large earthquakes drives damage to the surrounding rocks. These enhanced seismicities are not limited to the faults that generate large earthquakes. Still, they drive distributed rupture and local rock mass deformation, ultimately resulting in major slip zones and large earthquakes. Laboratory studies of rocks and similar samples have shown that a relatively long period of distributed deformation precedes the onset of large ruptures. The enhanced seismicity manifested in foreshocks is the most significant signal for the subsequent occurrence of a larger seismic event at a similar time and space. However, the enhanced seismicity does not appear as a foreshock in every case related to the seismogenic mechanism. The cascade-up framework and pre-slip model are generally used to account for the occurrence of a foreshock, whereas the progressive localization framework is suitable for explaining the enhancement of seismicity without significant foreshocks.

  • 图  1   本文研究涉及的活动构造地块和震例时空分布图

    图中地块边界据张培震等(2003),红色虚线圈代表震前存在地震活动显著增强现象的震例

    Figure  1.   Active tectonic blocks and the spatio-temporal distributions of earthquake cases used in this study

    (The block boundaries refer to Zhang et al2003),red dashed circles represents earthquake cases with enhanced seismicity prior to large earthquakes

    图  2   中国大陆西部(a)和东部(b)不同震级档和空间尺度的地震前存在地震活动增强现象的震例个数

    Figure  2.   The number of earthquake cases with premonitory enhanced seismicity at different spatial scaleand magnitude class in western (a) and eastern (b) Chinese mainland,respectively

    图  3   不同震级档和空间尺度的地震前存在地震活动增强现象的个数

    Figure  3.   The number of earthquake cases with premonitory enhanced seismicity at different spatial scale and magnitude

    图  4   中国大陆西部(a)和东部(b)前兆地震活动增强的震级统计特征

    Figure  4.   Magnitude statistical characteristics of premonitory enhanced seismicity in western (a) and eastern (b) Chinese mainland respectively

    图  5   中国大陆西部和东部的前兆地震活动增强时间尺度统计特征

    Figure  5.   Temporal statistical characteristics of premonitory enhanced seismicity in western and eastern Chinese mainland respectively

    图  6   中国大陆西部和东部地震活动增强的时间尺度随震级的变化

    Figure  6.   Temporal scales variation of premonitory enhanced seismicity with magnitude in western and eastern Chinese mainland respectively

    图  7   川滇菱形地块内震前地震活动增强的时空特征演化示意图

    Figure  7.   Schematic illustration of spatio-temporal evolution characteristics of premonitory enhanced seismicity in the Sichuan-Yunnan rhombic block

    图  8   巴颜喀拉地块地震活动增强特征的时空演化示意图

    Figure  8.   Schematic illustration of the spatio-temporal evolution of the premonitory enhanced seismicity of the Bayan Har block

    图  9   地震活动增强与大震孕育相互关系模式示意图(修改自Kato,Ben-Zion,2021

    (a) 地震活动增强引发较大范围的分布式岩石损伤;(b) 前震序列发生在大震时空紧邻区地区,岩石集中损伤;(c) 地震活动增强、前震组合形式的大震触发模型

    Figure  9.   Schematic illustrations of the relationship between enhanced seismicity and generation processes of strong earthquakes (modified from Kato and Ben-Zion,2021

    (a) Rock damage caused by enhanced seismicity in large scale;(b) Localization of deformation around the eventual rupture zone caused by foreshocks;(c) An integrated model including enhanced seismicity and foreshocks for the initiation of strong earthquake

    表  1   本文所用具有前兆地震活动增强的震例基本信息

    Table  1   Basic information of earthquake cases with premonitory enhanced seismicity used in this study

    序号 发震时间
    年-月-日
    北纬/° 东经/° MS 深度/km 地点 是否存在震前
    地震活动增强
    1 1 966−03−22 31.50 115.00 7.2 9 邢台
    2 1 967−03−27 38.50 116.50 6.3 30 河间
    3 1 969−07−26 21.75 111.75 6.4 5 阳江
    4 1 970−01−05 24.10 102.60 7.8 13 通海
    5 1 973−02−06 31.50 100.40 7.6 17 炉霍
    6 1 974−05−11 28.10 104.00 7.1 14 大关
    7 1 975−02−04 40.70 122.80 7.3 16 海城
    8 1 976−04−06 40.20 112.10 6.3 18 和林格尔
    9 1 976−05−29 24.55 98.75 7.4 21 龙陵
    10 1 976−07−28 39.60 118.20 7.8 11 唐山
    11 1 976−08−16 32.70 104.08 7.2 15 松潘
    12 1 976−09−23 40.00 106.35 6.2 35 巴音木仁
    13 1 977−05−12 39.20 117.70 6.2 1 9 宁河
    14 1 979−07−09 31.50 119.30 6.0 12 溧阳
    15 1 979−08−25 41.23 108.11 6.0 30 五原
    16 1 984−05−21 32.70 121.60 6.2 17 南黄海
    17 1 985−08−23 39.58 75.60 7.4 7 乌恰
    18 1 988−11−06 22.83 99.72 7.5 13 澜沧-耿马
    1 9 1 990−04−26 36.12 100.13 7.0 32 共和
    20 1 994−12−31 20.52 109.32 6.1 7 北部湾
    21 1 995−07−12 21.98 99.07 7.3 10 孟连西
    22 1 996−02−03 27.30 100.22 7.0 10 丽江
    23 1 996−11−19 35.43 78.35 7.1 16 和田
    24 1 998−01−10 41.10 114.30 6.2 10 尚义
    25 2 001−11−14 35.93 90.53 8.1 10 昆仑山西口
    26 2 008−03−21 35.80 81.43 7.3 33 于田
    27 2 008−05−12 31.00 103.40 8.0 14 汶川
    28 2 010−04−14 33.10 96.70 7.1 33 玉树
    29 2 013−04−20 30.30 103.00 7.0 13 芦山
    30 2 014−02−12 36.10 82.50 7.3 12 于田
    31 2 017−08−08 33.20 103.82 7.0 20 九寨沟
    32 1 989−10−19 39.94 113.84 6.1 14 大同-阳高
    33 1 996−05−03 40.83 109.62 6.4 20 包头
    下载: 导出CSV
  • 陈棋福. 2002a. 中国震例(1992—1994)[M]. 北京:地震出版社:1−428.

    Chen Q F. 2002a. Earthquake Cases in China (1992−1994)[M]. Beijing:Seismological Press:1−428 (in Chinese).

    陈棋福. 2002b. 中国震例(1995—1996)[M]. 北京:地震出版社:1−488.

    Chen Q F. 2002b. Earthquake Cases in China (1995−1996)[M]. Beijing:Seismological Press:1−488 (in Chinese).

    陈棋福. 2003. 中国震例(1997—1999)[M]. 北京:地震出版社:1−468.

    Chen Q F. 2003. Earthquake Cases in China (1997−1999)[M]. Beijing:Seismological Press:1−468 (in Chinese).

    陈棋福. 2008. 中国震例(2000—2002)[M]. 北京:地震出版社:1−570.

    Chen Q F. 2008. Earthquake Cases in China (2000−2002)[M]. Beijing:Seismological Press:1−570 (in Chinese).

    邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学(D辑),32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372. doi: 10.1360/03yd9032

    国家地震局 《一九七六年唐山地震》 编辑组. 1982. 一九七六年唐山地震[M]. 北京:地震出版社:171−180.

    Editorial Group of 1976 Tangshan Earthquake,State Seismological Bureau. 1982. 1976 Tangshan Earthquake[M]. Beijing:Seismological Press:171−180 (in Chinese).

    蒋海昆. 2014. 中国震例(2003—2006)[M]. 北京:地震出版社:1−775.

    Jiang H K. 2014. Earthquake Cases in China (2003−2006)[M]. Beijing:Seismological Press:1−775 (in Chinese).

    蒋海昆. 2018a. 中国震例(2007—2010)[M]. 北京:地震出版社:1−513.

    Jiang H K. 2018a. Earthquake Cases in China (2000−2002)[M]. Beijing:Seismological Press:1−513 (in Chinese).

    蒋海昆. 2018b. 中国震例(2011—2012)[M]. 北京:地震出版社:1−437.

    Jiang H K. 2018b. Earthquake Cases in China (2011−2012)[M]. Beijing:Seismological Press:1−437 (in Chinese).

    梅世蓉. 1960. 中国的地震活动性[J]. 地球物理学报,9(1):1–19.

    Mei S R. 1960. Seismicity in China[J]. Acta Geophysica Sinica, 9 (1):1−19 (in Chinese).

    梅世蓉. 1995. 地震前兆场物理模式与前兆时空分布机制研究(一):固体孕震模式的由来与证据[J]. 地震学报,17(3):273–282.

    Mei S R. 1995. On the physical model of earthquake precursor fields and the mechanism of precursors’ time and space distribution ( Ⅰ ):Origin and evidences of the strong body earthquake-generating model[J]. Acta Seismologica Sinica, 8 (3):337−349.

    梅世蓉. 1996. 地震前兆场物理模式与前兆时空分布机制研究(二) :强震孕育时应力、应变场的演化与地震活动、地震前兆的关系[J]. 地震学报, 18 (1):1−10.

    Mei S R. 1996. Physical models of earthquake precursor fields and spatial-temporal distribution mechanisms of precursors distribution mechanism study ( Ⅱ ):Evolution of stress and strain fields in relation to seismic activity and earthquake precursors[J]. Acta Seismologica Sinica,9(1):1–12.

    宋治平,梅世蓉,尹祥础. 1999. 强大地震前地震活动增强区及其力学研究[J]. 地震学报,21(3):271–277.

    Song Z P,Mei S R,Yin X C. 1999. On seismic strengthening area before strong and great shocks and its mechanism[J]. Acta Seismologica Sinica, 12 (3):298−305.

    王筱荣. 2005. 新疆强震前地震活动增强研究[J]. 华南地震,25(1):17–23. doi: 10.3969/j.issn.1001-8662.2005.01.003

    Wang X R. 2005. Research on seismicity increasing before strong earthquake in Xinjiang[J]. South China Journal of Seismology,25(1):17–23 (in Chinese).

    闻学泽,杜方,张培震,龙锋. 2011. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J]. 地球物理学报,54(3):706–716. doi: 10.3969/j.issn.0001-5733.2011.03.010

    Wen X Z,Du F,Zhang P Z,Long F. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block,and its relation to the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(3):706–716 (in Chinese).

    薛丁. 2003. 包头西6.4级地震前显著中等地震活动增强和丛集异常[J]. 地震,23(4):71–76. doi: 10.3969/j.issn.1000-3274.2003.04.011

    Xue D. 2003. Obvious intensifying and swarming anomaly of moderate seismic activity before west Baotou earthquake with M=6.4[J]. Earthquake,23(4):71–76 (in Chinese).

    薛艳,刘杰,宋治平,黎明晓. 2018. 汶川地震前地震活动特征的普遍性及其机理探讨[J]. 地球物理学报,61(5):1891–1906.

    Xue Y,Liu J,Song Z P,Li M X. 2018. On the universality and mechanism interpretation of the seismicity characteristics before the 2008 Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,61(5):1891–1906 (in Chinese).

    晏锐,田雷,王广才,钟骏,刘杰,周志华. 2018. 2008年汶川8.0级地震前地下流体异常回顾与统计特征分析[J]. 地球物理学报,61(5):1907–1921.

    Yan R,Tian L,Wang G C,Zhong J,Liu J,Zhou Z H. 2018. Review and statistically characteristic analysis of underground fluid anomalies prior to the 2008 Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,61(5):1907–1921 (in Chinese).

    张国民,马宏生,王辉,王新岭. 2005. 中国大陆活动地块边界带与强震活动[J]. 地球物理学报,48(3):602–610. doi: 10.3321/j.issn:0001-5733.2005.03.018

    Zhang G M,Ma H S,Wang H,Wang X L. 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland[J]. Chinese Journal of Geophysics,48(3):602–610 (in Chinese). doi: 10.1002/cjg2.693

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑),33(增刊1):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24. doi: 10.1360/03dz0002

    张培震,闻学泽,徐锡伟,甘卫军,王敏,沈正康,王庆良,黄媛,郑勇,李小军,张竹琪,马胜利,冉勇康,刘启元,丁志峰,吴建平. 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报,54(7):944–953.

    Zhang P Z,Wen X Z,Xu X W,Gan W J,Wang M,Shen Z K,Wang Q L,Huang Y,Zheng Y,Li X J,Zhang Z Q,Ma S L,Ran Y K,Liu Q Y,Ding Z F,Wu J P. 2009. Tectonic model of the great Wenchuan earthquake of May 12,2008,Sichuan,China[J]. Chinese Science Bulletin,54(7):944–953 (in Chinese). doi: 10.1360/csb2009-54-7-944

    张肇诚. 1988. 中国震例(1966—1975)[M]. 北京:地震出版社:1−222.

    Zhang Z C. 1988. Earthquake Cases in China (1966−1975)[M]. Beijing:Seismological Press:1−222 (in Chinese).

    张肇诚. 1990a. 中国震例(1976—1980)[M]. 北京:地震出版社:1−294.

    Zhang Z C. 1990a. Earthquake Cases in China (1976−1980)[M]. Beijing:Seismological Press:1−294 (in Chinese).

    张肇诚. 1990b. 中国震例(1981—1985)[M]. 北京:地震出版社:1−222.

    Zhang Z C. 1990b. Earthquake Cases in China (1981−1985)[M]. Beijing:Seismological Press:1−222 (in Chinese).

    张肇诚. 1999. 中国震例(1986—1988)[M]. 北京:地震出版社:1−394.

    Zhang Z C. 1999. Earthquake Cases in China (1986−1988)[M]. Beijing:Seismological Press:1−394 (in Chinese).

    张肇诚. 2000. 中国震例(1989—1991)[M]. 北京:地震出版社:1−453.

    Zhang Z C. 2000. Earthquake Cases in China (1989−1991)[M]. Beijing:Seismological Press:1−453 (in Chinese).

    中国地震局. 2005. GB/T 18207.2—2005 防震减灾术语 第2部分:专业术语[S]. 北京:中国标准出版社:13−14.

    China Earthquake Administration. 2005. GB/T 18207.2−2005 Terminology of Protecting Against and Mitigating Earthquake Disasters:Part 2:Special Technical Terms[S]. Beijing:Standards Press of China:13−14 (in Chinese).

    中国地震局. 2007. DB/T 24-2007 震例总结规范[S]. 北京:地震出版社:4.

    China Earthquake Administration. 2007. DB/T 24−2007 Specification for Earthquake Case Summarization[S]. Beijing:Seismological Press:4 (in Chinese).

    Abercrombie R E. 2019. Small and large earthquakes can have similar starts[J]. Nature,573(7772):42–43. doi: 10.1038/d41586-019-02613-5

    Ben-Zion Y. 2008. Collective behavior of earthquakes and faults:Continuum-discrete transitions,progressive evolutionary changes,and different dynamic regimes[J]. Rev Geophys,46(4):RG4006.

    Ben-Zion Y,Zaliapin I. 2020. Localization and coalescence of seismicity before large earthquakes[J]. Geophys J Int,223(1):561–583. doi: 10.1093/gji/ggaa315

    Burchfiel B C,Royden L H,van der Hilst R D,Hager B H,Chen Z,King R W,Li C,Lü J,Yao H,Kirby E. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008,Sichuan,People’s Republic of China[J]. GSA Today,18(7):4–11. doi: 10.1130/GSATG18A.1

    Fukao Y,Furumoto M. 1985. Hierarchy in earthquake size distribution[J]. Phys Earth Planet Inter,37(2/3):149–168.

    Gomberg J. 2018. Unsettled earthquake nucleation[J]. Nat Geosci,11(7):463–464. doi: 10.1038/s41561-018-0149-x

    Kato A,Ben-Zion Y. 2021. The generation of large earthquakes[J]. Nat Rev Earth Environ,2(1):26–39.

    Lockner D A,Byerlee J D,Kuksenko V,Ponomarev A,Sidorin A. 1991. Quasi-static fault growth and shear fracture energy in granite[J]. Nature,350(6313):39–42. doi: 10.1038/350039a0

    Lyakhovsky V,Ben-Zion Y. 2009. Evolving geometrical and material properties of fault zones in a damage rheology model[J]. Geochem Geophys Geosyst,10(11):Q11011.

    Lyakhovsky V,Ben-Zion Y,Agnon A. 2001. Earthquake cycle,fault zones,and seismicity patterns in a rheologically layered lithosphere[J]. J Geophys Res:Solid Earth,106(B3):4103–4120.

    Mogi K. 1969. Some features of recent seismic activity in and near Japan (2):Activity before and after great earthquakes[J]. Bull Earthq Res Inst,Univ Tokyo, 47 (3):395−417.

    Reches Z,Lockner D A. 1994. Nucleation and growth of faults in brittle rocks[J]. J Geophys Res:Solid Earth,99(B9):18159–18173. doi: 10.1029/94JB00115

    Renard F,Mcbeck J,Kandula N,Cordonnier B,Meakin P,Ben-Zion Y. 2019. Volumetric and shear processes in crystalline rock approaching faulting[J]. Proc Natl Acad Sci USA,116(33):16234–16239. doi: 10.1073/pnas.1902994116

    Ritter M C,Santimano T,Rosenau M,Leever K,Oncken O. 2018. Sandbox rheometry:Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments[J]. Tectonophysics,722:400–409. doi: 10.1016/j.tecto.2017.11.018

    Sadovsky M A,Nersesov I L,Nigmatullaev S K,Latynina L A,Lukk A A,Semenov A N,Simbireva I G,Ulomov V I. 1972. The processes preceding strong earthquakes in some regions of Middle Asia[J]. Tectonophysics,14(3/4):295–307.

    Schrank C E,Boutelier D A,Cruden A R. 2008. The analogue shear zone:From rheology to associated geometry[J]. J Struct Geol,30(2):177–193. doi: 10.1016/j.jsg.2007.11.002

    Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    Wan Y G,Shen Z K. 2010. Static Coulomb stress changes on faults caused by the 2008 MW7.9 Wenchuan,China earthquake[J]. Tectonophysics,491(1/2/3/4):105–118.

    Wen X Z,Yi G X,Xu X W. 2007. Background and precursory seismicities along and surrounding the Kunlun fault before the MS8.1,2001,Kokoxili earthquake,China[J]. J Asian Earth Sci,30(1):63–72. doi: 10.1016/j.jseaes.2006.07.008

    Добровольский ПП. 1991. Теорпя Поцотовп Тегтоппчесго нылдаов фыовлдыо[M]. Мосиова:П3в AH CCCP:1−30.

图(9)  /  表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  54
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 修回日期:  2023-07-20
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回