考虑震源不确定性的近断层高山峡谷场地地震动变异性分析

孟思博, 魏石涛, 刘中宪, 李文轩, 刘英

孟思博,魏石涛,刘中宪,李文轩,刘英. 2024. 考虑震源不确定性的近断层高山峡谷场地地震动变异性分析. 地震学报,46(6):1034−1050. DOI: 10.11939/jass.20230029
引用本文: 孟思博,魏石涛,刘中宪,李文轩,刘英. 2024. 考虑震源不确定性的近断层高山峡谷场地地震动变异性分析. 地震学报,46(6):1034−1050. DOI: 10.11939/jass.20230029
Meng S B,Wei S T,Liu Z X,Li W X,Liu Y. 2024. Ground motion variability of a mountain-canyon site near a strike-slip fault considering uncertainty of source. Acta Seismologica Sinica46(6):1034−1050. DOI: 10.11939/jass.20230029
Citation: Meng S B,Wei S T,Liu Z X,Li W X,Liu Y. 2024. Ground motion variability of a mountain-canyon site near a strike-slip fault considering uncertainty of source. Acta Seismologica Sinica46(6):1034−1050. DOI: 10.11939/jass.20230029

考虑震源不确定性的近断层高山峡谷场地地震动变异性分析

基金项目: 国家自然科学基金(U2139208,52208497,52278516)和天津市自然科学基金(22JCQNJC00030)联合资助
详细信息
    作者简介:

    孟思博,博士,副教授,主要从事地震工程与桥梁工程方面研究,e-mail:sibomeng@yeah.net

    通讯作者:

    刘中宪,博士,教授,主要从事地震工程与工程波动方面研究,e-mail:zhongxian1212@163.com

  • 中图分类号: TP183, P315.9

Ground motion variability of a mountain-canyon site near a strike-slip fault considering uncertainty of source

  • 摘要:

    由于震源不确定性客观存在且对近地表地震动特性产生显著影响,尝试将乘子降维法应用至考虑震源不确定性的近断层复杂场地地震动变异性求解,将不确定性分析问题转换为有限次确定性分析,获得与蒙特卡洛模拟一致的地震动参数统计矩,其中单次确定性分析采用边界元法模拟断层破裂—传播路径—场地放大的整个物理过程。基于乘子降维法,以近走滑断层高山峡谷场地为例,分析了在近断层效应、场地效应和震源不确定性三者耦合作用下的场地地震动峰值加速度(PGA)、峰值速度(PGV)的空间分布变异性,以及关键地表点谱加速度(SA)的统计值。结果表明:乘子降维法适用于含震源参数不确定性的近断层复杂场地随机地震动求解;高山峡谷地形对地震波的散射效应叠加近断层效应后可引起断层上盘PGA和PGV均值的显著增大,可放大至两倍以上;震源不确定性经由场地传播,导致地表地震动变异性,PGA变异性强于PGV;考虑一倍均方差时,震源不确定性对结构反应的影响可达30%以上,大跨度工程结构还应考虑近断层地震动变异性的空间分布差异。

    Abstract:

    A large number of railways and highways in the western part of China are located in near-fault mountain-canyon sites. The bridges and tunnels account for a large proportion due to the complex topography, and many important projects are faced with severe seismic risk. The ground motions in the near-fault mountain-canyon sites are very complex. On the one hand, velocity pulses and large vertical amplitudes are typical characteristics of the ground motions in near-fault regions; on the other hand, the topography of mountains and canyons leads to amplification and non-uniformity effects on ground motions. For example, the 1992 Hualien earthquake records show that the peak ground acceleration on the sidewalls of the Feitsui canyon in Taiwan is 2.69 times than that of the canyon bottom. In the 2008 Wenchuan earthquake, the peak ground acceleration in the east-west direction at the top of Xishan Mountain in Zigong is 1.77 times than that at the foot of the mountain. Theoretical and numerical analyses reveal that the physical essence of the amplification and non-uniformity effect is the scattering and local focusing of seismic waves by the topography of mountain-canyon sites.

    In addition, the current technologies of geophysical prospecting make it difficult to finely determine the physical parameters of faults, interface slip characteristics, etc. It means that the fault rupture process has uncertainty. Based on the previous studies, the uncertainty of source existed objectively and had a significant impact on the characteristics of near-surface ground motions. In this study, it is an issue of quantifying uncertainty in ground motion parameters at near-fault mountain-canyon sites. Monte Carlo simulations and logic trees are commonly used to quantify the uncertainty in this problem. The main purpose is to construct different seismic scenarios, focusing on comparing the standard deviation of the spatial distribution of ground motions in the actual regional site with the standard deviation in the ground motion prediction model. It is worth pointing out that the Monte Carlo simulation has low efficiency to carry out the multidimensional uncertainty analysis. Besides, the simulation of ground motions in near-fault mountain-canyon sites needs to take into account near-fault and topography effects. Meanwhile, the uncertainty of the seismic source will cause random scattering of the seismic waves in mountain-canyon sites, which will lead to the variability of the ground motion parameters at various surface locations. However, the existing studies have not explored the propagation mechanism in depth.

    In this paper, the multiplicative dimensional reduction method (M-DRM) is applied to solve the ground motion variability of complex sites near-fault considering the uncertainty of the source. The uncertainty analysis problem is converted into a finite deterministic analysis to obtain statistical moments of ground motion parameters consistent with Monte Carlo simulation. The deterministic analysis uses the boundary element method to simulate the entire physical process. Based on this method, the mountain-canyon site near a strike-slip fault was discussed as an example. The spatial distribution variability of the peak acceleration (PGA) and peak velocity (PGV) under the coupling of near-fault effect, site effect and source epistemic uncertainty was analyzed, as well as statistical values of spectral acceleration (SA) at some surface points.

    The results indicated that the M-DRM is applied to the ground motion variability problem of near-fault mountain-canyon sites caused by seismic source uncertainty, which has higher computational efficiency compared with the conventional Monte Carlo simulation. This method can be used for the stochastic ground motion simulation of the complex sites based on the phylsical model and considering the uncertainty of seismic source. When there is a mountain-canyon topography in the near-fault region, the coupling of the near-fault effect and the local site effect causes a significant amplification of the mean values of the PGAs at the sites, which shows significant spatial variations, especially in the canyon. It can be up to 2.69 times that of the result without the local topography. The mean values of the variability of the PGVs at the different surface points are smaller than those of the PGAs. The structural periods corresponding to the maximum values of the surface ground motion acceleration response spectrum are basically the same under the conditions with and without mountain-canyon topography. The seismic source uncertainty is propagated through the site, which is finally manifested in the spatial distribution variability of PGAs and PGVs. Due to the different energy distributions of ground motion acceleration and velocity, there are differences in the variability of PGAs and PGVs. PGAs have larger coefficients of variation. The variability of PGAs and PGVs is different from that of a single parameter under different rupture scenarios when both the asperity intensity and the rupture velocity uncertainty are taken into account. However, the results of the acceleration response spectrum are more complicated. The variability of the structural response at different locations may be lower or higher than the superposition of single-parameter uncertainty variability, and it is affected by the location of the asperity.

  • 图  9   近断层场地PGV空间分布变异性

    (a) 考虑凹凸体强度不确定性;(b) 考虑破裂速度不确定性;(c) 同时考虑凹凸体强度和破裂速度不确定性

    Figure  9.   Spatial distribution variability of PGVs in the near-fault site

    (a) Considering asperity intensity uncertainty ;(b) Considering rupture velocity uncertainty;(c) Considering asperity intensity and rupture velocity uncertainty

    图  1   近走滑断层高山峡谷场地计算模型示意图

    Figure  1.   Calculation model of mountain-canyon site near a strike-slip fault

    图  2   不同断层角度下本文方法与Kara和Trifunac (2014)方法所得地表位移结果对比

    (a) 倾角为π/24;(b) 倾角为π/4;(c) 倾角为π/2

    Figure  2.   Comparison of surface displacement results obtained by the proposed method and the method in reference Kara and Trifunac (2014) under different fault angles

    (a) Dip angle of π/24;(b) Dip angle of π/4;(c) Dip angle of π/2

    图  3   用于验证的计算模型

    (a) 场地计算模型,图中ABCDEF为地表参考点;(b) 断层模型

    Figure  3.   Calculation model for verification

    (a) Calulation model of sites,and ABCDE and F are the surface reference point;(b) Fault model

    图  4   不同入射频率波下高山峡谷场地位移幅值均值(a)及其均方差(b)

    Figure  4.   Mean values of displacement amplitude of mountain-canyon site (a) and mean square deviation of displacement amplitude of mountain-canyon site (b) under different incident frequency waves

    图  5   考虑凹凸体位置不确定性的破裂情景

    Figure  5.   Rupture scenarios considering uncertainty of asperity positions

    图  6   考虑凹凸体强度不确定性时近断层场地PGA空间分布变异性

    (a) 破裂情景1;(b) 破裂情景2;(c) 破裂情景3

    Figure  6.   Spatial distribution variability of PGAs in the near-fault site considering asperity intensity uncertainty

    (a) Rupture scenario 1;(b) Rupture scenario 2; (c) Rupture scenario 3

    图  7   考虑破裂速度不确定性时近断层场地PGA空间分布变异性

    (a) 破裂情景1;(b) 破裂情景2;(c) 破裂情景3

    Figure  7.   Spatial distribution variability of PGAs in the near-fault site considering rupture velocity uncertainty

    (a) Rupture scenario 1;(b) Rupture scenario 2; (c) Rupture scenario 3

    图  8   考虑凹凸体强度和破裂速度不确定性时近断层场地PGA空间分布变异性

    (a) 破裂情景1;(b) 破裂情景2;(c) 破裂情景3

    Figure  8.   Spatial distribution variability of PGAs in the near-fault site considering asperity intensity and rupture velocity uncertainty

    (a) Rupture scenario 1;(b) Rupture scenario 2;(c) Rupture scenario 3

    图  10   考虑凹凸体强度不确定性时近断层场地SA空间分布变异性

    (a) A点;(b) B点;(c) C点;(d) D点;(e) E点;(f) F点。μ1μ2分别代表有、无高山峡谷地形时观测点SA均值,σ为存在高山峡谷地形时观测点SA均方差,阻尼比取为0.05,下同

    Figure  10.   Spatial distribution variability of SAs in the near fault site considering asperity intensity uncertainty

    (a) Point A;(b) Point B;(c) Point C ;(d) Point D;(e) Point E;(f) Point F. μ1 and μ2 represent mean SAs at observed points with and without the mountain-canyon site, σ represents the root mean squares of SAs at observed points with the mountain-canyon site,and the damping ratio is 0.05,the same below

    图  12   同时考虑凹凸体强度和破裂速度不确定性时近断层场地SA空间分布变异性

    (a) A点;(b) B点;(c) C点;(d) D点;(e) E点;(f) F

    Figure  12.   Spatial distribution variability of SAs in the near-fault site considering asperity intensity and rupture velocity uncertainty

    (a) Point A;(b) Point B; (c) Point C ;(d) Point D;(e) Point E;(f) Point F

    表  1   边界元法数值稳定性验证 (η=0.25)

    Table  1   Numerical stability verification of boundary element method (η=0.25)

    x/a 边界元法参数 解析解
    N=600,
    L=561
    N=1 000,
    L=801
    N=1 400,
    L=1 041
    −2.0 0.070 3 0.070 7 0.070 4 0.070 4
    −1.5 0.091 3 0.090 9 0.090 8 0.090 8
    −1.0 0.518 9 0.519 9 0.522 6 0.522 6
    −0.5 0.495 0 0.516 7 0.551 2 0.551 2
    0.5 0.744 8 0.749 8 0.754 7 0.754 7
    1.0 0.494 2 0.547 7 0.551 2 0.551 2
    1.5 0.097 8 0.099 2 0.100 3 0.100 3
    2.0 0.083 3 0.084 0 0.084 6 0.084 6
    下载: 导出CSV
  • 巴振宁,吴孟桃,梁建文,喻志颖. 2020. 高山—峡谷复合地形对入射平面P-SV波的散射[J]. 应用数学和力学,41(7):695–712.

    Ba Z N,Wu M T,Liang J W,Yu Z Y. 2020. Scattering and diffraction by the hill-canyon composite topography for incident plane P- and SV-waves[J]. Applied Mathematics and Mechanics,41(7):695–712 (in Chinese).

    陈畅,吴军,黄炬斌,代劲松. 2019. 新建川藏铁路雅安至林芝段出渣综合利用及处置对策研究[C]//川藏铁路工程建造技术研讨会论文集. 北京:中国铁建股份有限公司:25−28.

    Chen C,Wu J,Huang J B,Dai J S. 2019. Study on comprehensive utilization and disposal countermeasures of slag from Ya'an to Linzhi section of newly constructed Sichuan−Tibet railway[C]//Proceedings of Sichuan-Tibet Railway Engineering Construction Technology Seminar. Beijing:China Railway Construction Corporation:25−28 (in Chinese).

    陈笑宇,王东升,付建宇,国巍. 2021. 近断层地震动脉冲特性研究综述[J]. 工程力学,38(8):1–14.

    Chen X Y,Wang D S,Fu J Y,Guo W. 2021. State-of-the-art review on pulse characteristics of near-fault ground motions[J]. Engineering Mechanics,38(8):1–14 (in Chinese).

    雷涛,李碧雄,曹鹏杰,顺远坤. 2010. 汶川地震近断层附近桥梁震害浅析[J]. 重庆交通大学学报(自然科学版),29(3):358–362.

    Lei T,Li B X,Cao P J,Shun Y K. 2010. Analysis on damage of near-faultage bridges in Wenchuan earthquake[J]. Journal of Chongqing Jiaotong University (Natural Science),29(3):358–362 (in Chinese).

    李宁,刁泽民,李忠献. 2022. 考虑震源和场地特征的近断层地区竖向地震动合成研究[J]. 工程力学,39(6):181–190.

    Li N,Diao Z M,Li Z X. 2022. Study on synthesis method of vertical ground motions for near-fault regions considering the characteristics of source and site condition[J]. Engineering Mechanics,39(6):181–190 (in Chinese).

    李郑梁,李建春,刘波,聂萌萌. 2021. 浅切割的高山峡谷复杂地形的地震动放大效应研究[J]. 工程地质学报,29(1):137–150.

    Li Z L,Li J C,Liu B,Nie M M. 2021. Seismic motion amplification effect of shallow-cutting hill-canyon composite topography[J]. Journal of Engineering Geology,29(1):137–150 (in Chinese).

    罗全波,陈学良,高孟潭,李宗超,李铁飞. 2019. 近断层速度脉冲地震动的三维有限差分模拟[J]. 地震工程学报,41(6):1630–1636.

    Luo Q B,Chen X L,Gao M T,Li Z C,Li T F. 2019. Three-dimensional finite-difference simulation of near-fault velocity pulse-like ground motions[J]. China Earthquake Engineering Journal,41(6):1630–1636 (in Chinese).

    王海云,谢礼立. 2010. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报,53(7):1631–1638.

    Wang H Y,Xie L L. 2010. Effects of topography on ground motion in the Xishan park,Zigong city[J]. Chinese Journal of Geophysics,53(7):1631–1638 (in Chinese).

    王伟,刘必灯,刘欣,杨明亮,周正华. 2015. 基于汶川MS8.0地震强震动记录的山体地形效应分析[J]. 地震学报,37(3):452–462.

    Wang W,Liu B D,Liu X,Yang M L,Zhou Z H. 2015. Analysis on the hill topography effect based on the strong ground motion records of Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica,37(3):452–462 (in Chinese).

    袁飞云,王剑波. 2018. 雅康高速长下坡高桥隧比路段交通安全设施优化设计研究[J]. 交通科技,(5):114–117.

    Yuan F Y,Wang J B. 2018. Research on optimum design of traffic safety facilities for Ya’an-Kangding expressway at long downhill and high ratio of bridge tunnel section[J]. Transportation Science and Technology,(5):114–117 (in Chinese).

    张冬锋. 2019. 随机有限断层法参数不确定性分析及其在近场地震动模拟中的工程应用研究[D]. 北京:中国地震局地球物理研究所:26−29.

    Zhang D F. 2019. Parameter Uncertainty Analysis of Stochastic Finite-Fault Method and Its Application in Near-Field Ground Motion Simulation[D]. Beijing:Institute of Geophysics,China Earthquake Administration:26−29 (in Chinese).

    Ameri G,Gallovic F,Pacor F,Emolo A. 2009. Uncertainties in strong ground-motion prediction with finite-fault synthetic seismograms:An application to the 1984 M5.7 Gubbio,Central Italy,Earthquake[J]. Bull Seismol Soc Am,99(2A):647–663. doi: 10.1785/0120080240

    Bjerrum L W,Sørensen M B,Ottemöller L,Atakan K. 2013. Ground motion simulations for İzmir,Turkey:Parameter uncertainty[J]. J Seismol,17(4):1223–1252. doi: 10.1007/s10950-013-9389-9

    Cao Z L,Tao X X,Tao Z R,Tang A P. 2019. Kinematic source modeling for the synthesis of broadband ground motion using the f-κ approach[J]. Bull Seismol Soc Am,109(5):1738–1757.

    Fortuño C,de la Llera J C,González G,González J,Aguirre P. 2021. Rupture parameter sensitivity of low frequency ground motion response spectra using synthetic scenarios in North Chile[J]. Bull Earthq Eng,19(12):4833–4864. doi: 10.1007/s10518-021-01113-0

    Hartzell S,Frankel A,Liu P C,Zeng Y H,Rahman S. 2011. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion[J]. Bull Seismol Soc Am,101(5):2431–2452. doi: 10.1785/0120110028

    Haskell N A. 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bull Seismol Soc Am,54(6A):1811–1841. doi: 10.1785/BSSA05406A1811

    Huang H C,Chiu H C. 1995. The effect of canyon topography on strong ground motion at Feitsui damsite:Quantitative results[J]. Earthq Engin Struct Dyn,24(7):977–990. doi: 10.1002/eqe.4290240705

    Iwaki A,Morikawa N,Maeda T,Fujiwara H. 2017. Spatial distribution of ground-motion variability in broadband ground-motion simulations[J]. Bull Seismol Soc Am,107(6):2963–2979. doi: 10.1785/0120170150

    Kara H F,Trifunac M D. 2014. Two-dimensional earthquake vibrations in sedimentary basins:SH waves[J]. Soil Dyn Earthq Eng,63:69–82. doi: 10.1016/j.soildyn.2014.03.010

    Liu Z X,Liu Y,Huang L,Li Y R,Zhao R B. 2021. Indirect boundary element method solution to the seismic ground motion of near-fault sedimentary valley[J]. Eng Anal Bound Elem,132:289–308.

    Liu Z X,Zhou T,Meng S B,Jin L G. 2022. 2-D FM-IBEM simulation of broadband ground motions on near-fault mountain-valley coupling site[J]. Eng Anal Bound Elem,145:224–241. doi: 10.1016/j.enganabound.2022.09.020

    Sánchez-Sesma F J,Campillo M. 1991. Diffraction of P,SV,and Rayleigh waves by topographic features:A boundary integral formulation[J]. Bull Seismol Soc Am,81(6):2234–2253.

    Yamada M,Senna S,Fujiwara H. 2011. Statistical analysis of ground motions estimated on the basis of a recipe for strong-motion prediction:Approach to quantitative evaluation of average and standard deviation of ground motion distribution[J]. Pure Appl Geophys,168(1/2):141–153.

    Zhang J,Bi K M,Zheng S X,Jia H Y,Zhang D Y. 2018. Seismic system reliability analysis of bridges using the multiplicative dimensional reduction method[J]. Struct Infrastruct E,14(11):1455–1469. doi: 10.1080/15732479.2018.1450428

    Zhang X F,Pandey M D. 2013. Structural reliability analysis based on the concepts of entropy,fractional moment and dimensional reduction method[J]. Struct Saf,43:28–40. doi: 10.1016/j.strusafe.2013.03.001

  • 期刊类型引用(11)

    1. 梁珍,乔国文,李治财,王涛,赵龙,曾召田. 中天山花岗岩深埋隧道高地应力测试及工程影响分析. 现代隧道技术. 2024(S1): 332-341 . 百度学术
    2. 李艳永,王成虎,朱皓清,乌尼尔. 北天山地区震源机制与构造应力场特征. 地震. 2020(02): 117-129 . 百度学术
    3. 刘兆才,万永革,黄骥超,靳志同,杨帆,李瑶. 2017年精河M_S6.6地震邻区构造应力场特征与发震断层性质的厘定. 地球物理学报. 2019(04): 1336-1348 . 百度学术
    4. 李艳永,王成虎,杨佳佳. 呼图壁地区震源机制解及构造应力场特征分析. 大地测量与地球动力学. 2018(12): 1246-1250 . 百度学术
    5. 万永革. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用. 地球物理学报. 2015(09): 3144-3156 . 百度学术
    6. 孙业君,刘红桂,江昊琳,詹小艳,王俊菲,丁烨,叶碧文. 江苏南部地区现今震源机制和应力场特征. 地震研究. 2015(02): 203-210 . 百度学术
    7. 刘旭东,孙秉成,荣海. 乌东矿区地质断裂构造对冲击地压的影响. 内蒙古煤炭经济. 2015(06): 205-207 . 百度学术
    8. 丁亮,高尔根,孙守才,邓晓果,刘骁. 天山活动地块地震的震源机制. 防灾科技学院学报. 2014(02): 42-48 . 百度学术
    9. 蓝航. 近直立特厚两煤层同采冲击地压机理及防治. 煤炭学报. 2014(S2): 308-315 . 百度学术
    10. 郑建常,王鹏,李冬梅,赵金花,徐长朋. 使用小震震源机制解研究山东地区背景应力场. 地震学报. 2013(06): 773-784 . 本站查看
    11. 黄龙现,杨天鸿,李现光,郑超. 地应力场方向对巷道围岩稳定性的影响. 中国矿业. 2012(04): 105-107+118 . 百度学术

    其他类型引用(6)

图(11)  /  表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  30
  • PDF下载量:  147
  • 被引次数: 17
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-08-21
  • 录用日期:  2023-08-22
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回