Anisotropic structure and dynamic implications of the upper mantle in the South China Sea
-
摘要: 南海处于欧亚板块、太平洋板块和印度—澳大利亚板块的交会区,是西北太平洋一系列边缘海中最大的边缘海。关于南海的打开以往研究提出了如印度板块与欧亚板块碰撞驱动挤出以及古南海俯冲拖拽等诸多模型。本文力图通过南海海盆及周边各向异性结构来约束南海演化机制。基于同济大学2012和2014年在南海中央海盆进行的两次被动源宽频带海底地震观测试验回收的10台OBS记录仪近1年的地震数据,本文采用三种不同的横波分裂方法,获取了中央海盆针对两次远震的XKS分裂结果以及南海周边20次区域地震提供的S震相分裂结果。SKS分裂结果显示,南海中央海盆下方存在快轴方向为NE-SW向的各向异性,其成因可能与海底扩张时期沿洋脊方向的地幔流以及南海海洋板块俯冲拖拽的地幔流有关。南海及其周边上地幔存在强各向异性,且不同方位观测到的各向异性不同,快轴方向与前人SKS横波分裂结果、GPS和板块运动一致,较好地对应了区域构造运动或者地幔对流模型。各向异性结果与印度—欧亚板块碰撞驱动挤出模型以及古南海俯冲板块拖拽模型预期结果一致,与理想的地幔柱上涌驱动模型不一致。由于海盆各向异性观测特别有限,各向异性结果不能证实亦不能证伪“大西洋型”海底扩张模型、弧后扩张模型和板缘破裂模型,后续还需要更多的观测结果来证实或证伪上述模型。Abstract: The South China Sea (SCS) is located at the intersection of the Eurasian, Pacific, and India-Australia plates. It is the largest marginal sea in a series of marginal seas in the Northwest Pacific Ocean. Many models have been proposed for the opening of the SCS, such as the extrusion model driven by the collision of the Indian plate and the Eurasian plate, and the slab pull model related to the subduction of the proto-SCS. This study aims to constrain the models of opening the SCS through the anisotropic structure of the central basin of the SCS and its surroundings. Based on the seismic data recorded by ten ocean bottom seismometers recovered from two passive seismic experiments conducted by Tongji University in the central basin of the SCS in 2012 and 2014, three different shear wave splitting methods are used to obtain the XKS splitting results of the central basin for two global earthquakes and the S phase splitting results provided by 20 regional earthquakes surrounding the SCS. The SKS splitting results demonstrate the presence of strong anisotropy with the NE fast direction in the central basin of the SCS, which may be related to mantle flow along the ocean ridge during seafloor expansion and the mantle flow dragged by the subduction of the proto-SCS plate. Strong anisotropy is also observed in the upper mantle surrounding SCS, and the anisotropy observed in different azimuths is different. The fast directions obtained are consistent with previous SKS-splitting results, GPS, and plate motions, and importantly correspond well to the regional tectonics or mantle convection models. The anisotropic results are consistent with the expected results of the extrusion model driven by the collision of the Indian-Eurasian plate and the slab pull of proto-SCS. The anisotropy results are inconsistent with the ideal upwelling driven model of the mantle plume. Unfortunately, due to the limited splitting observations in the central basin, the anisotropic results cannot confirm or falsify the “Atlantic-type” seafloor spreading model, the backarc spreading model, or the plate-edge rifting model. To verify the above models, further observations are needed.
-
-
图 2 (a) 布设的海底地震仪及提供了有用的区域S波震相分裂解的20次区域地震的分布;(b) 中央海盆的地震仪分布;(c) 提供了有用的SKS震相分裂解的两次远震的分布
Figure 2. (a) The deployed ocean bottom seismometers and the distribution of regional earthquakes which provide useful regional S-wave splitting results;(b) The enlarged version of the distribution of OBSs in central basin;(c) The distribution of the two global earthquakes which provids useful SKS splitting results
图 1 南海区域构造地质、地震台站及历史地震分布图
南海的海陆过渡带位置参考Li和Song(2012),马尼拉海沟位置来自Jiang和Wang(2021);其中中南断裂和残留洋中脊的位置来自Zhao 等(2019),红河断裂带来自Yang 等 (2015)。箭头表示板块的绝对运动方向(Gripp,Gordon,2002)
Figure 1. Tectonics of South China Sea and the distributions of seismic stations as well as history seismic events
Continental Ocean Boundaryof South China Sea refers to Li and Song (2012),and the location of Manila trench is from Jiang and Wang (2021). The locations of Zhongnan fault and the remnant mid-ocean ridges are from Zhao et al (2019) and the location of Red River Fault is from Yang et al (2015). Black arrows indicate the absolute plate motions (Gripp,Gordon,2002)
图 3 (a) 利用Taup软件并采用IASP91速度模型得到的SKS,S,pS,sS和PS震相射线路径示意图;(b)文中提供有用横波分裂解的S震相的入射角度统计图
Figure 3. (a) Schematic raypaths of SKS,S,pS,sS,and PS phases obtained using the Taup package and the IASP91 velocity model (Kennett,Engdahl,1991;Crotwell et al,1999);(b) Statistical histogram of the incident angles of the S phases used in shear-wave splitting
图 4 采用切向能量最小化(左)和最小特征值最小化(右)方法对HY16台站记录的2012年11月7日危地马拉沿海地震激发的PKS震相进行横波分裂分析
(a)—(c)横波分裂校正前后PKS震相滤波后的地震波形、投影到快/慢轴的波形及质点振动图(由原始的椭圆状线性化)
Figure 4. Shear wave splitting analysis on the PKS phase excited by the Guatemalan coastal earthquake on November 7,2012 recorded at station HY16 using the tangential energy minimization (left) and the minimum eigenvalue minimization (right) methods
(a)−(c) The filtered seismic waveforms,waveforms projected onto the fast /slow axis and the particle motions which arelinearized from the original elliptical shape of the PKS phase before and after correcting anisotropy
图 4 采用切向能量最小化(左)和最小特征值最小化(右)方法对HY16台站记录的2012年11月7日危地马拉沿海地震激发的PKS震相进行横波分裂分析
(d)能量等值线图,能量被校正到最小的那个点即为最优解(星号)
Figure 4. Shear wave splitting analysis on the PKS phase excited by the Guatemalan coastal earthquake on November 7,2012 recorded at station HY16 using the tangential energy minimization (left) and the minimum eigenvalue minimization (right) methods
(d) Contours of energy and the point where the energy corrected to the minimum is the optimal solution (asterisk)
图 6 采用最小特征值最小化(左)和波形旋转互相关(右)方法分析HY08台站记录的2012年8月14日日本本州东部区域M7.7地震激发的区域S震相的横波分裂结果
(a)—(c)为横波分裂校正前后PKS震相的地震波形、投影到快慢轴的波形及质点振动图(原始的椭圆状线性化),其中右侧图采用的是质点的位移而非质点的振动速度,下同
Figure 6. The S-phases are triggered by the M7.7 earthquake in the eastern region of Honshu,Japan on August 14,2012 recorded at station HY08,and a comparison is also made between the shear wave splitting methods of the minimum eigenvalue minimization (left) and the cross-correlation (right)
(a)−(c) The filtered seismic waveforms,waveforms projected onto the fast /slow axis and the particle motions which are linearized from the original elliptical shape of the PKS phase before and after correcting anisotropy,figures in the right column use displacements rather than vibration velocities of the ground,the same below
图 6 采用最小特征值最小化(左)和波形旋转互相关(右)方法分析HY08台站记录的2012年8月14日日本本州东部区域M7.7地震激发的区域S震相的横波分裂结果
(d) 等值线图,能量和相关系数分别被校正到最小和最大的那个点即为最优解
Figure 6. The S-phases are triggered by the M7.7 earthquake in the eastern region of Honshu,Japan on August 14,2012 recorded at station HY08,and a comparison is also made between the shear wave splitting methods of the minimum eigenvalue minimization (left) and the cross-correlation (right)
(d) Contour maps. The point where the energy and correlation coefficient are corrected to the minimum and maximum,respectively,is the optimal solution (asterisk)
图 5 采用最小特征值最小化(a-b)和互相关横波分裂(c-e)方法分析HY17台站记录到的2012年11月7日危地马拉沿海地震激发的SKS震相得到的空解特征
(a)表示SKS震相投影到最大及最小特征值方向的波形图;(b)为最小特征值方向能量的等值线图;(c)代表N-S和E-W向地震波位移记录;(d)表示质点运动图;(e)表示互相关方法得到的快慢波相关系数等值线图,两种方法的空解特征均为等值线图沿两个候选的快轴方向呈条带状分布
Figure 5. Examples of null results obtained through shear wave splitting analysis of the SKS phase excited by the November 7,2012 Guatemalan coastal earthquake recorded at HY17 station,and a comparison of the null results,obtained using two shear wave splitting methods of the minimum eigenvalue minimization (a-b) and the cross-correlation methods (c-e)
(a) The SKS phases projected onto the directions of the maximum and minimum eigenvector;(b) The contours of the energy in the direction of the minimum eigenvector;(c) Seismic wave displacements in the N-S and E-W directions;(d) The particle motion diagram;(e) The contours of the cross-correlation coefficients between candidate fast and slow waves. Note that the common features of both methods for null results are that the contours are distributed in strips along the two candidate fast directions
图 7 HY08地震−台站对采用最小特征值最小化方法的横波分裂结果进行聚类分析实例
(a-b)为图6所示的在0.05—0.1 Hz滤波频段针对不同横波分裂时窗得到的快轴方向和分裂时间;(c-d)为针对不同滤波频段获得的最优快轴方向和分裂时间;(e-f)为0.05-0.1 Hz和不同滤波频段的聚类分析结果,其中相同颜色的解表示通过聚类分析后划分为同一类的解
Figure 7. An example of clustering analysis on shear wave splitting results obtained using the minimum eigenvalue minimization method for the earthquake-station HY08 pair
(a-b) The fast directions and splitting times obtained at different splitting windows for the frequency band of 0.05−0.1 Hz in fig. 6;(c-d) The optimum fast directions and splitting times obtained at different filtering frequency bands;(e-f) The corresponding clustering analysis results for the frequency band of 0.05−0.1 Hz and for different frequency bands,where solutions with the same color represent solutions that are classified into the same class after clustering analysis
图 10 南海海盆及周边横波分裂及P波各向异性结果比较
黄色双箭头表示本研究得到的SKS分裂解;蓝色和蓝绿色双箭头分别为采用互相关方法和最小特征值最小化方法针对区域地震激发的S震相得到的横波分裂解;针对SKS震相在不同台站获得单个分裂解以及台站叠加解来自文献(Bai et al,2009; Hammond et al,2010;Huang et al,2011;Xue et al,2013;Yu et al,2018;Song et al,2021);P波各向异性结果来自Huang等(2015),其走向和长短分别代表快波的极化方向和各向异性的强度。台站东南方位马鲁古海区域根据横波分裂结果预期的该区域的地幔对流模型:黑色渐变粗实线代表Singihe板块下方与海沟平行的地幔流,板块两侧则是与板缘有关的偏转流,红色渐变粗实线则代表地幔楔里的角流,箭头指向流动方向
Figure 10. Comparisons of shear wave splitting results from this study with previous ones as well as the P-wave anisotropy results in the South China Sea Basin and its surrounding areas
The yellow double arrows represent the SKS splits obtained in this study;the blue and blue-green double arrows represent the splits obtained using the cross correlation method and the minimum eigenvalue minimization method for the S-phase excited by regional earthquakes,respectively;the individual SKS splits and stacked SKS splits are from previous studies (Bai et al,2009;Hammond et al,2010;Huang et al,2011;Xue et al,2013;Yu et al,2018;Song et al,2021);the P-wave anisotropy at different depths are from Huang et al (2015),and the direction and length of the short solid lines represent fast directions and anisotropic intensities respectively. The mantle convection model of the Molucca Sea region in the southeast of the OBSs consistent with most shear wave splitting results obtained in this study: the black gradient thick solid lines represent the trench-parallel flow under the Sangihe plate and the deflection flow related to the plate edge is on both sides of the plate,and the red gradient thick solid line represents the corner flow in the mantle wedge,and the arrows indicate the flow directions
图 9 南海周边区域地震的S震相分裂结果
蓝色短实线和蓝绿色短实线分别代表采用互相关方法和最小特征值最小化方法得到的横波分裂解
Figure 9. The S-wave splitting results for regional earthquakes surrounding the South China Sea
Blue solid lines and light blue solid lines represent splitting results obtained by the cross-correlation method and the smallest eigenvalue minimization method,respectively. The lengths of the lines are proportional to their splitting time,as shown in the lower left corner of the figure
表 1 提供有用数据的OBS信息
Table 1 The information of OBSs used
台站 东经/° 北纬/° 水深/m 记录起止日期 钟漂/s 水平分量方位角/° 倾斜/° 倾斜方向/° (年-月-日—年-月-日) HY02 116.306 1 16.203 3 3 750 2012-04-21—2012-12-03 86.53 20 3.5 160 HY08 117.796 5 13.800 4 4 104 2012-04-22—2012-08-19 0 218 0.7 285 HY10 116.998 3 14.598 9 4 276 2012-04-23—2012-12-09 193.2 166 0.8 215 HY15 117.537 0 16.503 3 3 753 2012-04-25—2012-12-19 0.74 154 16.3 5 HY16 118.213 4 16.451 3 3 920 2012-04-25—2012-12-13 −0.51 26 0.3 91 HY17 118.803 7 16.201 0 3 870 2012-04-25—2012-12-10 −10.54 330 2.0 131 B04 117.011 0 14.024 3 4 246 2014-07-11—2014-11-23 0 185 6.5 280 B19 116.499 0 14.500 6 4 301 2014-07-11—2014-11-23 0 350 6.5 110 B32 117.999 0 14.396 5 3 859 2014-07-13—2014-11-24 0 110 0 N/A 注:台站钟漂的误差在2—3 s之间,水平分量方位角误差约为8°;倾斜指OBS的垂直分量偏离垂向的角度(刘晨光等,2014; Le et al,2018 ;Hung et al,2021 )表 2 挑选后可用于横波分裂的地震事件信息
Table 2 The information of selected events used for shear wave splitting
事件序号 年-月-日 儒略日 发震时刻 纬度 经度 震源深度/km MW 注释 1 2012-08-27 240 043719.43 12.139°N 88.590°W 28.0 7.3 远震 2 2012-11-07 312 163546.69 13.963°N 91.854°W 24.0 7.4 远震 3 2012-04-29 120 015751.90 3.059°S 136.109°E 18.4 5.2 区域震 4 2012-05-23 144 150225.31 41.335°N 142.082°E 46.0 5.9 区域震 5 2012-06-01 153 065620.24 0.720°S 133.269°E 25.0 5.8 区域震 6 2012-06-29 181 210733.86 43.433°N 84.700°E 18.0 6.3 区域震 7 2012-07-16 198 163310.08 1.296°S 137.053°E 13.1 5.6 区域震 8 2012-07-25 207 002745.26 2.707°N 96.045°E 22.0 6.4 区域震 9 2012-08-12 225 104706.45 35.661°N 82.518°E 13.0 6.2 区域震 10 2012-08-14 227 025938.46 49.800°N 145.064°E 583.2 7.7 区域震 11 2012-09-03 247 182305.23 10.708°S 113.931°E 14.0 6.1 区域震 12 2012-09-07 251 031942.53 27.575°N 103.983°E 10.0 5.5 区域震 13 2012-10-08 282 114331.42 4.472°S 129.129°E 10.0 6.1 区域震 14 2012-10-17 291 044230.40 4.232°N 124.520°E 32.6 6.0 区域震 15 2012-11-27 332 025906.52 2.952°S 129.219°E 11.2 5.7 区域震 16 2014-07-11 192 192200.82 37.005°N 142.452°E 20.0 6.5 区域震 17 2014-07-20 201 183247.79 44.642°N 148.784°E 61.0 6.2 区域震 18 2014-08-03 215 083013.57 27.189°N 103.409°E 12.0 6.2 区域震 19 2014-08-06 218 114522.68 7.274°S 128.036°E 10.0 6.2 区域震 20 2014-09-10 253 051653.21 18.400°N 125.125°E 30.0 5.9 区域震 21 2014-09-17 260 061445.41 13.764°N 144.429°E 130.0 6.7 区域震 22 2014-11-18 322 044716.63 1.869°N 126.475°E 30.0 5.8 区域震 表 3 远震的横波分裂结果
Table 3 The shear-wave splitting results for teleseismic earthquakes
台站 事件 后方位角/° 震中距/° 震相 ϕ/° δt/s 方法 HY02 1 46.2 142.6 SKKS 46.2;−43.8 空解 切向能量 46.2;−43.8 空解 最小特征值 46.2;−43.8 空解 互相关 HY10 2 46.5 139.7 PKS 46.5;−43.5 空解 切向能量 46.5;−43.5 空解 最小特征值 46.5;−43.5 空解 互相关 HY15 2 45.5 138.1 SKKS 45.5;−44.5 空解 切向能量 45.5;−44.5 空解 最小特征值 45.5;−44.5 空解 互相关 PKS 45.5;−44.5 空解 切向能量 45.5;−44.5 空解 最小特征值 45.5;−44.5 空解 互相关 HY16 2 46.2 137.6 PKS 35±1.5 2.6±0.35 切向能量 33±6.5 2.25±0.55 最小特征值 46.2;−43.8 空解 互相关 SKKS 46.2;−43.8 空解 切向能量 46.2;−43.8 空解 最小特征值 46.2;−43.8 空解 互相关 HY17 2 47.1 137.3 SKS 47.1;−42.9 空解 切向能量 空解 最小特征值 空解 互相关 空解 切向能量 PKS 47.1;−42.9 空解 最小特征值 空解 互相关 表 4 区域性地震的横波分裂结果
Table 4 The shear-wave splitting results obtained for regional earthquakes
台站 事件 后方位角/° 震中距/° 震相 (φ±σφ)/° (δt±σδt)/s 方法 HY02 6 321.9 38.2 S,pS,sS −42±17.0 9.75±0.96 互相关 9 309.2 35.8 S,pS,sS,PS 28±4.5 2.8±0.4 最小特征值 11 185.2 26.8 S,pS,sS −47±13.0 0.75±0.23 最小特征值 −48±24.0 0.75±0.60 互相关 12 316.8 16.1 S,sS,Sn,SS −1±8.5 1.8±0.375 最小特征值 −36±25.0 0.75±0.42 互相关 HY08 3 131.4 24.7 S,pS,sS,PS −47±5 2.72±0.5 最小特征值 −11±21 1.2±0.50 互相关 4 33.0 34.6 S 50±7 2.8±0.575 最小特征值 11±22 1.15±0.39 互相关 5 132.0 21.1 S,pS,sS −34±7 1.0±0.23 最小特征值 −48;42 空解 互相关 6 322.6 41.0 S,pS,sS,PS −46±5.0 9.6±0.375 最小特征值 −49±8.0 9.85 ±0.45 互相关 7 126.7 24.3 S,pS,sS,PS 27±15.5 2.65±0.83 最小特征值 59±24.0 1.5±0.55 互相关 10 26.2 42.3 S 4±6.5 2.6±0.2 最小特征值 8±7 2.35±0.17 互相关 HY15 6 320.8 38.7 S,pS,sS,PS −38±4.5 9.6±0.28 最小特征值 −46±7.0 9.75 ±0.41 互相关 8 239.3 25.2 S,pS,sS,PS 69±9.5 6.6±1.35 最小特征值 58±6.0 7.4±0.56s 互相关 10 27.8 40.0 S 36±4.0 7.65±0.35 最小特征值 −42;48 空解 互相关 HY16 6 320.4 39.1 S,pS,sS −64±4.0 8.85±0.25 最小特征值 −63±3.0 9.0 ±0.14 互相关 11 189.2 27.3 S,pS,sS,PS −79±4.5 2.85±0.7 最小特征值 −69±2 4.65±0.24 互相关 13 151.6 23.4 S,pS,sS,PS 20±9.5 1.9±0.275 最小特征值 17±18 1.75±0.27 互相关 14 152.3 13.6 S,Sn 14±1.5 2.2±0.2 最小特征值 −67;23 空解 互相关 15 149.6 22.1 S,pS,sS,PS 42±5.0 3.25±0.85 最小特征值 54±3.0 4.9±0.43 互相关 HY17 6 320.2 39.8 S,pS,sS,PS −44±5.0 8.80±0.23 最小特征值 −45±5.0 8.95 ±0.22 互相关 B04 16 40.2 32.2 S,pS,sS,PS −67±9.0 3.55±0.775 最小特征值 −80±11 4.25±0.65 互相关 22 141.4 15.3 S,Sn,sS −79±20 2.05±0.61 互相关 B19 17 35.8 40.6 S,pS,sS,PS −34±5.5 3.1±0.15 最小特征值 18 318.0 17.6 S,Sn,sS,SS −7±2.0 3.65±0.3 最小特征值 19 151.4 24.5 S,pS,sS,PS −41±1.5 8.95±0.25 最小特征值 −41±2 9.1±0.18 互相关 20 148.9 16.9 S,Sn,sS,SS −36±3 8.05±1.0 最小特征值 −41;49 空解 互相关 21 88.1 27.1 S,sS 5±3.5 4.1±0.325 最小特征值 −12±9.0 4.85±0.35 互相关 B32 17 34.7 39.9 S,sS −26±2.0 3.65±0.2 最小特征值 19 154.5 23.7 S,pS,sS,PS −75±2.5 3.7±0.4 最小特征值 −75;15 空解 21 88.1 25.6 S,sS 7±5 2.95±0.2 最小特征值 2±10 2.95±0.4 -
陈立,薛梅,Phon L K,杨挺. 2012. 南海瑞雷面波群速度层析成像及其地球动力学意义[J]. 地震学报,34(6):754–772. doi: 10.3969/j.issn.0253-3782.2012.06.003 Chen L,Xue M,Phon L K,Yang T. 2012. Group velocity tomography of Rayleigh waves in South China Sea and its geodynamic implications[J]. Acta Seismologica Sinica,34(6):754–772 (in Chinese).
李家彪,金翔龙,高金耀. 2002. 南海东部海盆晚期扩张的构造地貌研究[J]. 中国科学:D辑,32(3):239–249. Li J B,Jin X L,Gao J Y. 2002. A study on the tectonic geomorphology of the late expansion of the Eastern sub-basin of South China Sea[J]. Science in China:Series D,32(3):239–249 (in Chinese).
李家彪,金翔龙,阮爱国,吴世敏,吴自银,刘建华. 2004. 马尼拉海沟增生楔中段的挤入构造[J]. 科学通报,49(10):1000–1008. Li J B,Jin X L,Ruan A G,Wu S M,Wu Z Y,Liu J H. 2004. Intrusion structures in the middle of the accretionary wedge of the Manila Trench[J]. Chinese Science Bulletin,49(10):1000–1008 (in Chinese).
李琳. 2016. 利用OBS数据反演南海海盆的各向异性结构[D]. 上海: 同济大学: 68. Li L. 2016. The Anisotropic Structure of South China Sea Constrained by OBS Data Geophysics[D]. Shanghai: Tongji University: 68 (in Chinese).
李思田,林畅松,张启明,杨士恭,吴培康. 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J]. 科学通报,43(8):797–810. Li S T,Lin C S,Zhang Q M,Yang S G,Wu P K. 1998. Dynamic process of episodic rifting in the northern continental margin basin of the South China Sea and tectonic events since 10 Ma[J]. Science Bulletin,43(8):797–810 (in Chinese).
刘晨光,华清峰,裴彦良,杨挺,夏少红,薛梅,黎伯孟,霍达,刘芳,黄海波. 2014. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报,59(16):1542–1552. Liu C G,Hua Q F,Pei Y L,Yang T,Xia S H,Xue M,Le B M,Huo D,Liu F,Huang H B. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bull,59(16):1542–1552 (in Chinese).
任建业,李思田. 2000. 西太平洋边缘海盆地的扩张过程和动力学背景[J]. 地学前缘,7(3):203–213. Ren J Y,Li S T. 2000. Spreading and dynamic setting of marginal basins of the western Pacific[J]. Earth Science Frontiers,7(3):203–213 (in Chinese).
谢建华,夏斌,张宴华,王喜臣. 2005. 南海形成演化探究[J]. 海洋科学进展,23(2):212–218. Xie J H,Xia B,Zhang Y H,Wang X C. 2005. Study on formation and evolution of the South China Sea[J]. Advances in Marine Science,23(2):212–218 (in Chinese).
胥颐,李志伟,郝天珧,刘建华,刘劲松. 2007. 南海东北部及其邻近地区的Pn波速度结构与各向异性[J]. 地球物理学报,50(5):1473–1479. Xu Y,Li Z W,Hao T Y,Liu J H,Liu J S. 2007. Pn wave velocity and anisotropy in the northeastern South China Sea and adjacent region[J]. Chinese Journal of Geophysics,50(5):1473–1479 (in Chinese).
薛梅. 2008. 横波分裂方法研究[C]//中国地球物理学会第二十四届年会. 北京: 中国大地出版社: 390. Xue M. 2008. Study on shear-wave splitting [C]//The 24th Annual Meeting of the Chinese Geophysical Society. Beijing: China Land Press: 390 (in Chinese).
鄢全树,石学法. 2007. 海南地幔柱与南海形成演化[J]. 高校地质学报,13(2):311–322. Yan Q S,Shi X F. 2007. Hainan mantle plume and the formation and evolution of the South China Sea[J]. Geological Journal of China Universities,13(2):311–322 (in Chinese).
张健,熊亮萍,汪集旸. 2001. 南海深部地球动力学特征及其演化机制[J]. 地球物理学报,44(5):602–610. Zhang J,Xiong L P,Wang J Y. 2001. Characteristics and mechanism of geodynamic evolution of the South China Sea[J]. Chinese Journal of Geophysics,44(5):602–610 (in Chinese).
张亮. 2012. 南海构造演化模式及其数值模拟[D]. 青岛: 中国科学院研究生院(海洋研究所):1−185. Zhang L. 2012. Tectonic Evolution of South China Sea and A Numerical Modeling[D].Qingdao: Graduate University of Chinese Academy of Sciences (Institute of Oceanography):1−185 (in Chinese).
钟广见,林珍,高红芳,金华峰. 2006. 南海南北缘的构造特征对比[J]. 南海地质研究,(1):30–40. Zhong G J,Lin Z,Gao H F,Jin H F. 2006. Comparison of the tectonic characteristic between north margin and south margin of the South China Sea[J]. Geological Research of South China Sea,(1):30–40 (in Chinese).
周蒂,陈汉宗,吴世敏,俞何兴. 2002. 南海的右行陆缘裂解成因[J]. 地质学报,76(2):180–190. Zhou D,Chen H Z,Wu S M,Yu H X. 2002. Opening of the South China Sea by dextral splitting of the East Asian continental margin[J]. Acta Geologica Sinica,76(2):180–190 (in Chinese).
Bai L,Iidaka T,Kawakatsu H,Morita Y,Dzung N Q. 2009. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data[J]. Phys Earth Planet Inter,176(1/2):33–43.
Bell S W,Forsyth D W,Ruan Y Y. 2015. Removing noise from the vertical component records of ocean-bottom seismometers:Results from year one of the cascadia initiative[J]. Bull Seismol Soc Am,105(1):300–313. doi: 10.1785/0120140054
Ben-Avraham Z,Uyeda S. 1973. The evolution of the China Basin and the mesozoic paleogeography of Borneo[J]. Earth Planet Sci Lett,18(2):365–376. doi: 10.1016/0012-821X(73)90077-0
Bowman J R,Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone[J]. Geophys J Roy Astron Soc,88(1):25–41. doi: 10.1111/j.1365-246X.1987.tb01367.x
Briais A,Patriat P,Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:Implications for the tertiary tectonics of Southeast Asia[J]. J Geophys Res:Solid Earth,98(B4):6299–6328. doi: 10.1029/92JB02280
Cao L M,He X B,Zhao L,Lü C C,Hao T Y,Zhao M H,Qiu X L. 2021. Mantle flow patterns beneath the junction of multiple subduction systems between the Pacific and Tethys Domains,SE Asia:Constraints from SKS-wave splitting measurements[J]. Geochem Geophys Geosyst,22(9):e2021GC009700.
Chevrot S. 2000. Multichannel analysis of shear wave splitting[J]. J Geophys Res:Solid Earth,105(B9):21579–21590. doi: 10.1029/2000JB900199
Clift P,Lee G H,Anh Duc N,Barckhausen U,Van Long H,Zhen S. 2008. Seismic reflection evidence for a Dangerous Grounds miniplate:No extrusion origin for the South China Sea[J]. Tectonics,27(3):TC3008.
Crampin S,Gao Y. 2006. A review of techniques for measuring shear-wave splitting above small earthquakes[J]. Phys Earth Planet Inter,159(1/2):1–14.
Crotwell H P,Owens T J,Ritsema J. 1999. The Taup ToolKit:Flexible seismic travel-time and ray-path utilities[J]. Seismo Res Lett,70(2):154–160. doi: 10.1785/gssrl.70.2.154
Di Leo J F,Wookey J,Hammond J O S,Kendall J M,Kaneshima S,Inoue H,Yamashina T,Harjadi P. 2012a. Mantle flow in regions of complex tectonics:Insights from Indonesia[J]. Geochem Geophys Geosyst,13(12):Q12008.
Di Leo J F,Wookey J,Hammond J O S,Kendall J M,Kaneshima S,Inoue H,Yamashina T,Harjadi P. 2012b. Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy[J]. Phys Earth Planet Inter,194-195:38–54. doi: 10.1016/j.pepi.2012.01.008
Dziewonski A M,Chou T A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research:Solid Earth,86(B4):2825–2852. doi: 10.1029/JB086iB04p02825
Eakin C M,Long M D,Scire A,Beck S L,Wagner L S,Zandt G,Tavera H. 2016. Internal deformation of the subducted Nazca slab inferred from seismic anisotropy[J]. Nat Geosci,9(1):56–59. doi: 10.1038/ngeo2592
England P,Houseman G. 1986. Finite strain calculations of continental deformation 2:Comparison with the India-Asia collision zone[J]. J Geophys Res:Solid Earth,91(B3):3664–3676. doi: 10.1029/JB091iB03p03664
England P,Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet[J]. Nature,344(6262):140–142. doi: 10.1038/344140a0
Gripp A E,Gordon R G. 2002. Young tracks of hotspots and current plate velocities[J]. Geophys J Int,150(2):321–361. doi: 10.1046/j.1365-246X.2002.01627.x
Hall R,Spakman W. 2015. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics,658:14–45. doi: 10.1016/j.tecto.2015.07.003
Hammond J O S,Wookey J,Kaneshima S,Inoue H,Yamashina T,Harjadi P. 2010. Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear-wave splitting[J]. Phys Earth Planet Inter,178(3/4):189–201.
Holtzman B K,Kohlstedt D L,Zimmerman M E,Heidelbach F,Hiraga T,Hustoft J. 2003. Melt segregation and strain partitioning:Implications for seismic anisotropy and mantle flow[J]. Science,301(5637):1227–1230. doi: 10.1126/science.1087132
Huang Z C,Wang L S,Zhao D P,Mi N,Xu M J. 2011. Seismic anisotropy and mantle dynamics beneath China[J]. Earth Planet Sci Lett,306(1/2):105–117.
Huang Z C,Zhao D P,Wang L S. 2015. P wave tomography and anisotropy beneath Southeast Asia:Insight into mantle dynamics[J]. J Geophys Res:Solid Earth,120(7):5154–5174. doi: 10.1002/2015JB012098
Huang C Y,Wang P X,Yu M M,You C F,Liu C S,Zhao X X,Shao L,Zhong G F,Yumul G P Jr. 2019. Potential role of strike-slip faults in opening up the South China Sea[J]. Natl Sci Rev,6(5):891–901. doi: 10.1093/nsr/nwz119
Hung T D,Yang T,Le B M,Yu Y Q. 2019. Effects of failure of the ocean-bottom seismograph leveling system on receiver function analysis[J]. Seismol Res Lett,90(3):1191–1199. doi: 10.1785/0220180276
Hung T D,Yang T,Le B M,Yu Y Q,Xue M,Liu B H,Liu C G,Wang J,Pan M H,Huong P T,Liu F,Morgan J P. 2021. Crustal structure across the extinct mid-ocean ridge in South China Sea from OBS receiver functions:Insights into the spreading rate and magma supply prior to the ridge cessation[J]. Geophys Res Lett,48(3):e2020GL089755.
Jiang X,Wang Z C. 2021. A critical review of existing models for the origin of the South China Sea and a new proposed model[J]. J Asian Earth Sci:X,6:100065.
Karig D E. 1971. Origin and development of marginal basins in the Western Pacific[J]. J Geophys Res,76(11):2542–2561. doi: 10.1029/JB076i011p02542
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
Kuo B Y,Chen C C,Shin T C. 1994. Split S waveforms observed in northern Taiwan:Implications for crustal anisotropy[J]. Geophys Res Lett,21(14):1491–1494. doi: 10.1029/94GL01254
Le B M,Yang T,Chen Y J,Yao H J. 2018. Correction of OBS clock errors using Scholte waves retrieved from cross-correlating hydrophone recordings[J]. Geophys J Int,212(2):891–899. doi: 10.1093/gji/ggx449
Li C F,Song T R. 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. China Science Bulletin,57(24):3165–3181. doi: 10.1007/s11434-012-5063-9
Li L, Xue M, Yang T, Liu C, Hua Q, Le B M, Xia S, Huang H, Pan M, Huo D. 2016. A comparison of various methods of determining the horizontal orientation of Ocean Bottom Seismometers (OBS): Applying to South China Sea OBS data[C]//AGU Fall Meeting. San Francisco: American Geophysical Union: 2016AGUFMOS51C2090L
Long M D,Silver P G. 2008. The subduction zone flow field from seismic anisotropy:A global view[J]. Science,319(5861):315–318. doi: 10.1126/science.1150809
Long M D,Becker T W. 2010. Mantle dynamics and seismic anisotropy[J]. Earth Planet Sci Lett,297(3-4):341–354. doi: 10.1016/j.jpgl.2010.06.036
Mainprice D,Tommasi A,Couvy H,Cordier P,Frost D J. 2005. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle[J]. Nature,433(7027):731–733. doi: 10.1038/nature03266
Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific[J]. Tectonophysics,122(3/4):195–216.
Morley C K. 2002. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics,347(4):189–215. doi: 10.1016/S0040-1951(02)00061-6
Rangin C,Klein M,Roques D,Le Pichon X,Van Trong L. 1995. The Red River fault system in the Tonkin Gulf,Vietnam[J]. Tectonophysics,243(3/4):209–222.
Savage M K. 1999. Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?[J]. Rev Geophys,37(1):65–106. doi: 10.1029/98RG02075
Shen Z K,Zhao C K,Yin A,Li Y X,Jackson D D,Fang P,Dong D N. 2000. Contemporary crustal deformation in East Asia constrained by global positioning system measurements[J]. J Geophys Res:Solid Earth,105(B3):5721–5734. doi: 10.1029/1999JB900391
Silver P G,Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy[J]. Nature,335(6185):34–39. doi: 10.1038/335034a0
Silver P G,Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. J Geophys Res:Solid Earth,96(B10):16429–16454. doi: 10.1029/91JB00899
Silver P G. 1996. Seismic anisotropy beneath the continents:Probing the depths of geology[J]. Annu Rev Earth Planet Sci,24:385–432. doi: 10.1146/annurev.earth.24.1.385
Song W K,Yu Y Q,Gao S S,Liu K H,Fu Y F. 2021. Seismic anisotropy and mantle deformation beneath the central Sunda Plate[J]. J Geophys Res:Solid Earth,126(3):e2020JB021259.
Sun Z,Lin J,Qiu N,Jian Z M,Wang P X,Pang X,Zheng J Y,Zhu B D. 2019. The role of magmatism in the thinning and breakup of the South China Sea continental margin[J]. Natl Sci Rev,6(5):871–876. doi: 10.1093/nsr/nwz116
Tapponnier P,Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature,264(5584):319–324. doi: 10.1038/264319a0
Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia[C]//Collision Tectonics. London: Geological Society, Special Publications, 19: 113–157.
Tapponnier P,Lacassin R,Leloup P H,Schärer U,Zhong D L,Wu H W,Liu X H,Ji S H,Zhang L S,Zhong J Y. 1990. The Ailao Shan/Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China[J]. Nature,343(6257):431–437. doi: 10.1038/343431a0
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin[C]//The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington D C: AGU: 27: 23–56.
Teanby N A,Kendall J M,van der Baan M. 2004. Automation of shear-wave splitting measurements using cluster analysis[J]. Bull Seismol Soc Am,94(2):453–463. doi: 10.1785/0120030123
Wang C Y,Yang J M,Zhu W L,Zheng M L. 1995. Some problems in understanding basin evolution[J]. Earth Sci Front,2(3/4):29–44.
Wang L L,He X B. 2020. Seismic anisotropy in the Java-Banda and philippine subduction zones and its implications for the mantle flow system beneath the Sunda Plate[J]. Geochem Geophys Geosyst,21(4):e2019GC008658.
Wang P X,Huang C Y,Lin J,Jian Z M,Sun Z,Zhao M H. 2019. The South China Sea is not a mini-Atlantic:Plate-edge rifting vs intra-plate rifting[J]. Natl Sci Rev,6(5):902–913. doi: 10.1093/nsr/nwz135
Wu J,Suppe J. 2018. Proto-South China Sea plate tectonics using subducted slab constraints from tomography[J]. J Earth Sci,29(6):1304–1318. doi: 10.1007/s12583-017-0813-x
Xue M,Allen R. 2005. Asthenospheric channeling of the Icelandic upwelling:Evidence from seismic anisotropy[J]. Earth Planet Sci Lett,235(1/2):167–182.
Xue M,Le K P,Yang T. 2013. Seismic anisotropy surrounding South China Sea and its geodynamic implications[J]. Mar Geophys Res,34(3/4):407–429.
Yang T,Liu F,Harmon N,Le K P,Gu S Y,Xue M. 2015. Lithospheric structure beneath Indochina block from Rayleigh wave phase velocity tomography[J]. Geophys J Int,200(3):1582–1595. doi: 10.1093/gji/ggu488
Yu Y Q,Gao S S,Liu K H,Yang T,Xue M,Le K P,Gao J Y. 2018. Characteristics of the mantle flow system beneath the Indochina Peninsula revealed by teleseismic shear wave splitting analysis[J]. Geochem Geophys Geosyst,19(5):1519–1532. doi: 10.1029/2018GC007474
Zhao M H,Sibuet J C,Wu J. 2019. Intermingled fates of the South China Sea and Philippine Sea plate[J]. Natl Sci Rev,6(5):886–890. doi: 10.1093/nsr/nwz107