Seismicity of the Antarctic Great Wall Station area during 2015−2017
-
摘要:
基于交错网格搜索的单台定位方法对长城站地震台2015—2017年期间记录的宽频带三分量波形数据进行了单台地震定位研究,定位了112个高信噪比的近震,获得了此期间南设得兰群岛及其周边地区的地震分布图。结果显示,地震主要沿NE向展布于南设得兰群岛及邻区,最大震级为ML4.8,最小震级为ML1.3,震源深度范围为2—134 km。相对于稳定的南极大陆内部,长城站地区的地震活动性较强,在靠近南设得兰海沟的弧前区域和布兰斯菲尔德海峡弧后区域发现了可能与俯冲和岩浆活动有关的地震事件,弧前中源深度的地震事件说明该区域可能存在俯冲作用,这直接给出了菲尼克斯板块的俯冲活动仍在继续的地震学证据。
Abstract:The South Shetland Islands are located at the northern part of the Antarctic Peninsula in the West Antarctica. The region is subject to the direct or indirect influences from the Pacific Plate, the Antarctic Plate, the South American Plate, the Scotia Plate and the Phoenix Plate, which has resulted in significant tectonic activities, including subduction, rifting and volcanic magmatism. The global earthquake catalog shows that this region exhibits a higher level of seismicity in comparison to the stable Antarctic continent interior. The extreme climatic conditions of the Antarctic continent present significant challenges to seismic observation, and the level of seismological research conducted on the continent is limited. The distribution of seismic stations in the South Shetland Islands region is relatively sparse, which limits the seismic monitoring capacity of the region and consequently affects our understanding of the seismicity in the region. The Chinese Antarctic Great Wall Seismic Station (CCZ) is located on King George Island in the South Shetland Islands. Following the reconstruction and resumption of observation in 2010, the quality of seismic observation has been remarkably enhanced, thereby considerably improving the monitoring capability of small earthquakes in the Great Wall Station area and providing data support for a comprehensive understanding of the seismicity in the South Shetland Islands region.
We used the single station location method of interlaced grid search to obtain earthquake catalog based on the broadband three-component waveform data recorded at CCZ during 2015−2017. Firstly, the P wave and S wave arrivals of the local seismic events are identified through visual analysis, and the events with clear Pg and Sg waves are selected for amplitude measurements. The arrival time difference, incidence angle and back azimuth of the events can be calculated. The interlaced grid search method initially establishes a set of grids for searching and location, and searching for three elements of arrival time difference, incidence angle, and back azimuth, respectively. Then subsequently spatially translates the grids to obtain the location results of searching different grids. Finally, it evaluates the location results by calculating the standard deviation of the results obtained by the same set of data in the search of different grids. This method effectively overcomes the limitations of single set grid searching and location by a spatial intersection of multiple sets of grids. It has the potential to enhance the spatial sampling rate of earthquake location while simultaneously ensure the reliability and precision of the outcomes through the integration of multiple grid systems in space.
In this study, 1 452 local seismic events were identified, and 112 events with high signal-to-noise ratios were located, of which 87% of the events have an epicentral distance standard deviation and a depth standard deviation smaller than the grid division size of 1.0 km, indicating that the differences of grid models have less influence on the results in the location method of interlaced grid search, and the location results are stable and reliable. In this study, the earthquake catalog of CCZ and the events distribution in South Shetland Islands and its surrounding areas are obtained. During this period, the comparison between the CCZ catalog and the ANSS catalog in terms of magnitude, focal depth, and the number of located events suggests that CCZ effectively improves the seismic monitoring capability of the area, and that the use of direct P wave initial amplitude for calculating the angle of incidence better constrains the focal depth of local seismic events. The distribution of events shows that the events mainly spread along the NE direction in the South Shetland Islands region, with the maximum magnitude of ML4.8, the minimum magnitude of ML1.3, and the focal depth ranging from 2 to 134 km. The seismicity in the Antarctic Great Wall Station area is stronger than that of the stable interior of the Antarctic continent. The spreading of the Bransfield Strait was accompanied by extensive volcanism, and this study identifies clusters of earthquakes on Deception Island and its eastern flanks, as well as in the southern part of Greenwich Island, that may be related to the volcanic magmatism caused by subduction. Eleven events with focal depths exceeding 100 km, which have occurred beneath the lithosphere, were detected in the forearc region close to the South Shetland Trench. The locations of these events suggest that the subduction may have occurred in this region, which provides direct seismological evidence that the subduction of the Phoenix Plate is still continuing.
-
-
图 1 研究区构造背景
图中绿色三角形是中国南极长城站(CCZ)地震台的位置,地震数据来自美国国家地质调查局地震信息中心提供的1990—2017年的美国国家地震监测台网系统(Advanced National Seismic System,缩写为ANSS)综合地震目录(USGS,Earthquake Hazards Program,2017),震源机制解来自全球质心矩张量项目提供的1990—2017年的全球质心矩张量(Centroid-moment tensors,缩写为CMT)目录(Erik et al,2013),断层数据来自德克萨斯大学地球物理研究所的UTIG数据库(Institute of Geophysics,University of Texas,2015)和Dziak等(2010)。右上角插图为斯科舍板块及其周边的地震与台站分布,其中蓝色三角形是全球地震台网(GSN)的台站,蓝色方框代表主图的位置
Figure 1. Tectonic setting of studied area
The green triangle is the location of Chinese Great Wall Seismic Station (CCZ),Antarctic. The seismic data is from the ANSS Comprehensive Earthquake Catalog between 1990 and 2017,provided by USGS National Earthquake Information Center (USGS,Earthquake Hazards Program,2017). The focal mechanism solution is from CMT catalog between 1990 and 2017 provided by the Global Centroid-Moment-Tensor Project (Erik et al,2013). The fault data is from the University of Texas Institute for Geophysics database (Institute of Geophysics,University of Texas,2015) and Dziak et al (2010). The insert in the upper right is the distribution of earthquakes and seismic stations in and around the Scotia Plate,the blue triangles are Global Seismographic Network Stations,and the blue rectangle represents the location of the main figure
图 2 中国南极长城站地震台的近震波形记录
(a) 可定位地震事件的三分量波形记录;(b) 可定位地震事件的P波初动信号三分量记录;(c) 不可定位地震事件的三分量波形记录;(d) 不可定位地震事件的P波初动信号三分量记录
Figure 2. Near earthquake waveforms recorded at CCZ Station
(a) Three-component waveform recordings of a locatable seismic event;(b) Three-component recordings of P wave initial motion signal of a locatable seismic event;(c) Three-component waveform recordings of an unlocatable seismic event; (d) Three-component recordings of P wave initial motion signal of an unlocatable seismic event
图 3 交错网格的构建
(a) 经度-纬度网格的平移过程;(b) 震中距-深度网格的平移过程黑色网格表示起始网格位置,红色、蓝色和绿色网格分别表示每一次移动后的网格位置,三角形表示台站。此示意图按小格尺寸的1/2为步长进行平移
Figure 3. The construction of interlaced gird
(a) The translation process of the longitude-latitude grid;(b) The translation process of the epicentral distance-depth grid The black grid represents initial grid position,the red,blue and green grids represent the grid position after each move respectively. The triangle represents seismic station. This diagram is translated by 1/2 of the small lattice size per step
图 4 长城站地区2015—2017年地震分布情况
左上角插图给出了2015—2017年ANSS目录中在CCZ台500 km范围内的地震分布,蓝色方框为主图区域
Figure 4. Earthquake distribution in the Great Wall Station area from 2015 to 2017
The insert at the upper left corner shows the distribution of earthquakes within 500 km from the Great Wall Seismic Station in the ANSS catalog from 2015 to 2017. The blue rectangle is the area of the main figure
图 8 测线AA′ (a)和BB′ (b)的震源深度分布剖面图
图a,b上部为AA′和BB’测线纵截面测线位置的地形高程变化,剖面上投影了AA′测线南北20 km范围内地震和BB′测线所有可定位地震,横轴表示地震到测线的垂线与CCZ台的距离,以台站为原点,向西(北)为负,向东(南)为正
Figure 8. Focal depths distribution along profile of survey lines AA′ (a) and BB′ (b)
The upper part of the figure is the topographic elevation change along the longitudinal section of the survey lines. The earthquakes within 20 km from the north to the south of AA′ survey line and all locatable earthquakes of BB′ survey line are projected on the profile. The horizontal axis represents the distance between the vertical line of the earthquake to the survey line and the CCZ Station,with the station as the origin,negative to the west (north) and positive to the east (south)
表 1 中国南极长城站地区速度模型
Table 1 The velocity model of the Chinese Antarctic Great Wall Station area
深度/km vP/(km·s−1) vS/(km·s−1) 0 4.10 2.20 2 5.70 3.10 9 6.65 3.59 20 7.28 3.94 30 8.05 4.43 50 8.30 4.52 表 2 ANSS目录震级和本方法计算结果的对比
Table 2 The magnitude comparison of ANSS catalog and calculation result of this method
发震时刻(UTC) 南纬/° 西经/° 深度/km Mb ML (本文震级) 年−月−日 时:分:秒 2 016−05−30 15:35:09.080 61.65 54.70 10.0 4.6 4.9 2 016−07−02 20:02:00.060 61.35 53.93 10.0 4.6 4.9 2 016−07−16 17:30:40.090 60.36 57.56 16.5 4.3 4.7 2 016−10−17 00:13:56.420 63.29 61.91 10.0 4.9 4.9 表 3 2015—2017年CCZ台单台定位结果
Table 3 Single station location results of CCZ Station during 2015−2017
发震时刻(UTC) 南纬/° 西经/° 深度/km ML 震中距标准差/km 深度标准差/km 年−月−日 时:分:秒 2 015−01−09 02:52:57.142 62.32 58.33 47.0 2.1 0.6 0.8 2 015−01−11 18:55:35.171 62.65 59.49 46.6 3.2 0.3 0.5 2 015−01−13 02:26:02.496 62.41 58.36 44.3 2.3 0.4 0.6 2 015−01−17 15:08:20.536 62.69 59.48 44.9 3.0 0.4 0.5 2 015−01−19 18:21:52.508 62.25 59.30 43.6 2.0 1.0 0.3 2 015−01−26 23:24:17.910 62.67 59.56 36.9 3.4 0.3 0.6 2 015−02−01 19:15:40.762 62.69 59.29 2.1 3.5 0.9 1.4 2 015−02−01 21:56:40.560 62.67 59.54 15.7 3.6 0.4 2.2 2 015−02−06 00:16:49.919 62.33 58.98 14.8 2.1 2.4 1.1 2 015−02−22 05:07:40.639 62.33 59.64 45.0 3.6 0.3 0.5 2 015−02−12 01:23:56.584 62.67 59.66 27.3 3.9 0.3 1.4 2 015−02−14 01:52:26.810 62.35 59.29 42.7 1.7 0.7 0.4 2 015−02−16 04:36:05.947 62.61 59.45 54.1 2.7 0.4 0.5 2 015−02−16 09:37:06.332 62.67 59.40 47.1 2.9 0.4 0.5 2 015−03−01 19:38:22.289 62.26 59.44 70.4 3.4 0.8 0.3 2 015−03−08 21:29:07.408 62.64 59.40 48.4 4.5 0.4 0.5 2 015−03−09 17:03:42.891 62.64 59.42 49.1 4.2 0.4 0.5 2 015−03−10 12:17:11.868 62.69 59.53 31.5 3.1 0.3 1.1 2 015−03−27 08:49:32.449 62.67 59.38 41.6 3.7 0.4 0.5 2 015−03−27 11:50:30.010 62.30 59.50 77.1 1.9 0.6 0.3 2 015−04−05 10:38:31.014 62.60 59.61 48.1 3.0 0.4 0.5 2 015−04−07 15:01:46.761 62.69 59.41 43.9 3.6 0.4 0.6 2 015−04−11 07:13:53.799 62.05 59.10 62.9 1.6 0.8 0.3 2 015−04−14 17:24:41.493 62.35 59.41 49.9 2.8 0.6 0.3 2 015−05−09 05:12:09.465 62.45 59.30 48.9 3.0 1.0 0.8 2 015−05−31 11:24:33.141 62.68 59.55 21.4 3.8 0.4 1.5 2 015−07−04 09:14:21.220 62.87 60.16 75.9 3.4 0.3 0.5 2 015−07−05 04:30:40.211 62.83 59.92 91.6 3.6 0.4 0.5 2 015−07−12 08:00:12.972 62.33 60.07 134.1 3.7 0.6 0.3 2 015−07−12 23:11:11.567 62.51 59.98 70.2 3.0 0.4 0.6 2 015−07−20 03:05:51.509 62.64 59.54 43.4 3.8 0.4 0.5 2 015−07−20 05:59:45.273 62.64 59.43 48.4 4.8 0.4 0.5 2 015−07−20 07:04:04.974 62.04 58.50 47.6 2.5 0.9 0.6 2 015−07−20 11:23:14.377 62.68 59.32 48.1 3.5 0.4 0.5 2 015−07−22 11:32:19.363 62.00 59.36 105.8 1.7 0.6 0.3 2 015−07−24 22:09:27.906 62.42 59.51 58.6 2.7 0.6 0.4 2 015−07−27 18:10:25.901 62.28 59.19 26.7 2.2 0.9 0.4 2 015−07−31 18:27:09.665 62.90 60.08 98.9 4.0 0.4 0.5 2 015−08−02 05:54:17.571 61.98 59.22 117.9 1.3 0.7 0.3 2 015−08−02 17:53:21.228 62.12 59.65 76.8 4.5 0.5 0.3 2 015−08−13 17 07:03.185 61.74 58.54 69.3 3.5 0.4 0.5 2 015−08−23 18:01:25.544 62.65 59.51 43.6 3.3 0.4 0.5 2 015−08−24 05:33:26.643 62.66 59.60 34.9 3.1 0.3 0.8 2 015−08−26 07:21:16.635 61.47 58.73 121.4 3.5 0.9 0.6 2 015−08−29 21:02:32.865 62.01 58.98 58.3 1.9 2.0 0.3 2 015−09−04 01:00:05.695 61.72 58.99 100.9 2.7 0.6 0.4 2 015−09−06 03:22:49.571 62.28 59.33 37.1 2.3 0.7 0.3 2 015−09−09 15:43:45.491 61.86 58.37 78.6 3.6 0.5 0.3 2 015−09−12 08:08:14.483 62.28 59.29 59.2 2.7 0.8 0.3 2 015−09−15 21:15:24.730 62.32 58.89 14.0 1.8 1.0 0.7 2 015−09−19 17:37:15.264 62.59 59.69 55.8 3.7 0.3 0.5 2 015−09−26 21:19:39.555 61.99 58.86 59.0 2.8 0.7 0.3 2 015−09−27 00:13:48.033 62.13 59.42 85.1 2.1 0.7 0.3 2 015−10−01 07:15:24.196 62.63 59.59 67.7 4.0 0.4 0.6 2 015−10−06 07:04:50.301 61.75 58.16 83.8 3.1 0.6 0.8 2 015−10−11 00:24:17.187 62.23 59.15 56.2 2.2 1.8 0.3 2 015−10−12 00:09:00.274 61.94 58.25 62.3 2.7 0.7 0.9 2 015−10−30 09:02:58.971 61.93 59.40 117.7 2.6 0.6 0.3 2 015−11−05 10:50:09.692 62.56 59.61 76.2 3.9 0.8 0.5 2 015−12−17 20:10:02.746 62.67 59.86 69.4 3.3 0.3 0.5 2 016−03−05 17:48:06.327 62.28 59.53 55.9 2.5 0.6 0.3 2 016−04−10 21:07:44.857 62.57 59.55 65.9 3.8 0.4 0.5 2 016−05−16 15:46:42.359 62.28 59.41 59.9 3.4 0.7 0.3 2 016−06−07 09:39:09.115 61.77 58.37 51.6 3.6 0.3 0.5 2 016−06−08 16:44:36.534 62.09 59.82 80.8 2.8 0.6 0.4 2 016−06−19 00:34:16.557 62.47 59.57 62.1 2.8 0.4 0.3 2 016−06−21 00:53:16.317 62.65 59.81 71.7 4.3 0.5 0.6 2 016−07−08 06:59:53.855 62.56 59.53 61.6 2.7 0.4 0.4 2 016−07−15 12:52:28.546 62.56 58.33 40.1 4.4 0.3 0.8 2 016−08−11 22:37:06.427 62.27 59.30 57.6 2.2 0.9 0.3 2 016−08−19 13:08:28.771 62.41 59.17 19.6 1.3 0.6 0.6 2 016−08−20 04:48:49.164 62.31 59.61 61.1 2.1 0.6 0.4 2 016−08−22 10:08:51.241 62.00 58.29 61.3 2.4 0.4 0.3 2 016−08−26 16:11:27.861 62.27 59.76 50.9 1.9 0.5 0.5 2 016−09−07 11:30:14.309 61.94 59.75 121.3 2.8 0.6 0.3 2 016−09−16 18:31:24.635 62.51 59.60 43.6 2.9 0.4 0.5 2 016−11−01 23:20:23.770 62.34 59.85 88.4 3.7 0.6 0.4 2 016−11−03 09:46:21.038 62.67 59.84 84.5 4.0 0.3 0.4 2 016−11−11 04:42:38.088 62.36 59.22 33.5 1.8 0.8 0.4 2 016−11−11 20:06:48.364 62.40 59.61 58.8 2.8 0.5 0.3 2 017−01−16 00:38:56.890 62.60 59.48 54.1 4.0 0.4 0.5 2 017−01−16 01:18:34.637 62.62 59.63 44.6 4.0 0.4 0.6 2 017−01−16 01:19:41.900 62.58 59.55 53.9 3.7 0.4 0.5 2 017−01−24 16:03:04.799 62.13 59.37 47.6 1.8 0.8 0.3 2 017−01−25 17:45:15.526 62.25 59.25 32.4 2.2 1.0 0.3 2 017−02−15 04:07:15.207 62.13 59.35 62.1 3.1 0.7 0.3 2 017−02−24 00:32:35.366 61.93 58.65 64.9 3.0 0.6 0.4 2 017−03−01 04:29:05.009 62.54 59.80 47.9 3.5 0.4 0.5 2 017−03−02 08:12:21.446 61.97 59.93 102.3 3.0 0.5 0.3 2 017−03−06 17:54:49.262 62.02 58.41 35.4 2.4 0.4 0.5 2 017−03−07 10:27:33.329 62.33 59.89 74.6 2.7 0.5 0.3 2 017−03−09 16:07:42.708 62.64 59.73 70.6 2.6 0.5 0.6 2 017−03−15 17:59:53.782 62.41 59.67 42.9 2.5 0.4 0.5 2 017−03−31 10:05:30.533 61.78 59.78 132.6 4.1 0.5 0.3 2 017−04−12 08:25:59.180 61.66 58.74 59.7 4.5 0.4 0.5 2 017−05−24 09:54:32.085 62.18 58.81 26.4 1.6 1.5 0.3 2 017−05−30 13:34:00.388 62.27 59.75 76.7 3.1 0.5 0.3 2 017−05−31 20:40:08.639 61.98 58.65 84.6 3.6 0.6 0.3 2 017−07−25 05:34:31.746 62.67 59.82 63.0 3.9 0.3 0.5 2 017−08−09 11:22:15.439 63.00 60.83 77.4 3.8 0.4 0.5 2 017−08−23 03:36:11.790 62.38 59.74 81.8 3.3 0.5 0.3 2 017−08−24 10:41:36.910 62.69 59.72 58.1 3.2 0.3 0.5 2 017−08−29 22:47:54.601 62.31 59.18 35.3 1.7 1.3 0.3 2 017−09−15 16:14:20.470 62.65 59.99 62.9 3.8 0.4 0.5 2 017−10−02 17:14:29.735 62.26 59.16 38.2 1.8 1.0 0.3 2 017−10−03 05:40:27.856 62.17 59.15 38.5 1.9 1.1 0.3 2 017−10−28 00:51:54.113 62.37 59.56 59.3 2.4 0.7 0.4 2 017−11−12 04:58:43.418 62.10 59.14 65.7 2.9 0.9 0.3 2 017−11−13 02:23:55.693 61.96 60.30 103.8 2.5 0.6 0.4 2 017−11−15 13:24:29.718 62.26 59.33 54.3 3.2 0.8 0.3 2 017−11−24 07:37:47.287 62.93 60.30 102.8 4.2 0.4 0.6 2 017−12−28 23:20:23.074 62.26 59.32 53.9 3.3 0.9 0.3 -
彼得·鲍曼. 2002. 新地震观测实践手册[M]. 中国地震局监测预报司,译. 北京:地震出版社:584−585. Borman P. 2002. New Manual of Seismological Observatory Practice[M]. Monitoring and Forecasting Department of China Earthquake Administration,trans. Beijing:Seismological Press:584−585 (in Chinese).
常利军,丁志峰,孙为国. 2012. 第27次南极科学考察度夏期间长城站地震观测[J]. 极地研究,24(1):95–100. Chang L J,Ding Z F,Sun W G. 2012. Seismological observation at the Great Wall Station during the 27th Chinese Antarctic expedition in the summer[J]. Chinese Journal of Polar Research,24(1):95–100 (in Chinese).
常利军. 2013. 我国近期南极地震科考进展[J]. 科学,65(2):17–20. Chang L J. 2013. Advances in Chinese Antarctic earthquake expedition[J]. Science,65(2):17–20 (in Chinese).
陈圣源,刘方兰,梁东红. 1997. 南极布兰斯菲尔德海域地球物理场与地质构造[J]. 海洋地质与第四纪地质,17(1):77–86. Chen S Y,Liu F L,Liang D H. 1997. Geophysical field and geologic structure of the Bransfield sea area in the Antarctic circle[J]. Marine Geology &Quaternary Geology,17(1):77–86 (in Chinese).
何高文,付少英,邓希光,赵庆献,王力峰,王海峰,关晓春,刘胜旋,庞云天,陈玺,柴祎,罗贤虎,朱本铎,朱振华,李强,苏丕波,何赵,吴聪,黄宁,何发光,蓝明华. 2018. 南极南设得兰群岛海域地质新进展:“海洋六号”南极科考初步成果[J]. 地球学报,39(6):643–656. He G W,Fu S Y,Deng X G,Zhao Q X,Wang L F,Wang H F,Guan X C,Liu S X,Pang Y T,Chen X,Chai Y,Luo X H,Zhu B D,Zhu Z H,Li Q,Su P B,He Z,Wu C,Huang N,He F G,Lan M H. 2018. New geological progress in offshore area of South Shetland Islands,Antarctic:Preliminary results of R/V “Hai Yang Liu Hao” expedition[J]. Acta Geoscientica Sinica,39(6):643–656 (in Chinese).
林云芳,贾国强. 1989. 中国南极长城地震台与地磁台的建立[J]. 地震学报,11(2):213–219. Lin Y F,Jia G Q. 1989. Establishment of China’s Antarctic seismological and geomagnetic observatories[J]. Acta Seismologica Sinica,11(2):213–219 (in Chinese).
刘瑞丰,陈翔,沈道康,郑秀芬,杨辉,陈宏峰. 2014. 宽频带数字地震记录震相分析[M]. 北京:地震出版社:51−59. Liu R F,Chen X,Shen D K,Zheng X F,Yang H,Chen H F. 2014. Seismic Phase Analysis of Broadband Digital Seismic Records[M]. Beijing:Seismological Press:51−59 (in Chinese).
刘小汉,郑祥身,鄂莫岚. 1991. 南极洲大地构造区划和冈瓦纳运动[J]. 南极研究,3(2):1–9. Liu X H,Zheng X S,E M L. 1991. Review on the geotectonic division and Gondwana movement,Antarctica[J]. Antarctic Research,3(2):1–9 (in Chinese).
吕文正,吴水根. 1989. 布兰斯菲尔德海槽:新生代裂谷[J]. 南极研究,1(4):28–35. Lü W Z,Wu S G. 1989. The Bransfield trough:A Cenozoic rift[J]. Antarctic Research,1(4):28–35 (in Chinese).
马龙,邢健. 2020. 南极布兰斯菲尔德海峡及邻区地壳结构反演及构造解析[J]. 海洋与湖沼,51(2):265–273. Ma L,Xing J. 2020. Structure inversion and its tectonic interpretation in Bransfield Strait and the adjacent area,Antarctic[J]. Oceanologia et Limnologia Sinica,51(2):265–273 (in Chinese).
万永革. 2016. 地震学导论[M]. 北京:科学出版社:316−318. Wan Y G. 2016. Introduction to Seismology[M]. Beijing:Science Press:316−318 (in Chinese).
王公念,陶军,吴宣志. 1997. 南极布兰斯菲尔德海峡海磁异常和深部地质[J]. 极地研究,9(2):145–151. Wang G N,Tao J,Wu X Z. 1997. Marine magnetic anomalies and deep geology of the Bransfield Strait,Antarctica[J]. Chinese Journal of Polar Research,9(2):145–151 (in Chinese).
王改云,邓希光,刘金萍,杜民. 2013. 西南极南设得兰群岛中新生代地层特征[J]. 极地研究,25(2):161–166. Wang G Y,Deng X G,Liu J P,Du M. 2013. Stratigraphic characteristics of the Mesozoic-Cenozoic in the South Shetland Islands,Antarctica[J]. Chinese Journal of Polar Research,25(2):161–166 (in Chinese).
吴水根,吕文正. 1988. 德雷克海峡的扩张历史及其影响[J]. 南极研究,1(2):1–7. Wu S G,Lü W Z. 1988. The history of spreading of Darke Passage and its effects[J]. Antarctic Research,1(2):1–7 (in Chinese).
姚伯初,王光宇,陈邦彦,陈圣源. 1995. 南极布兰斯菲尔德海峡的地球物理场特征与构造发育史[J]. 南极研究(中文版),7(1):25–35. Yao B C,Wang G Y,Chen B Y,Chen S Y. 1995. The characteristics of geophysical field and tectonical evolution in the Bransfield Strait[J]. Antarctic Research (Chinese Edition),7(1):25–35 (in Chinese).
Almendros J,Carmona E,Jiménez V,Díaz-Moreno A,Lorenzo F. 2018. Volcano-tectonic activity at deception island volcano following a seismic swarm in the Bransfield Rift (2014−2015)[J]. Geophys Res Lett,45(10):4788–4798.
Almendros J,Wilcock W,Soule D,Teixidó T,Vizcaíno L,Ardanaz O,Granja-Bruña J L,Martín-Jiménez D,Yuan X,Heit B,Schmidt-Aursch M C,Geissler W,Dziak R,Carrión F,Ontiveros A,Abella R,Carmona E,Agüí-Fernández J F,Sánchez N,Serrano I,Davoli R,Krauss Z,Kidiwela M,Schmahl L. 2020. BRAVOSEIS:Geophysical investigation of rifting and volcanism in the Bransfield Strait,Antarctica[J]. J South Am Earth Sci,104:102834.
An M J,Wiens D A,Zhao Y,Feng M,Nyblade A,Kanao M,Li Y S,Maggi A,Lévêque J J. 2015. Temperature,lithosphere-asthenosphere boundary,and heat flux beneath the Antarctic Plate inferred from seismic velocities[J]. J Geophys Res:Solid Earth,120(12):8720–8742.
Barker P F. 1982. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula:Ridge crest-trench interactions[J]. J Geol Soc,139(6):787–801.
Craddock C. 1982. Antarctic Geoscience[M]. Madison:University of Wisconsin Press:3−14.
Dziak R P,Park M,Lee W S,Matsumoto H,Bohnenstiehl D R,Haxel J H. 2010. Tectonomagmatic activity and ice dynamics in the Bransfield Strait back-arc basin,Antarctica[J]. J Geophys Res:Solid Earth,115(B1):B01102.
Erik L,Ekström G,Nettles M. 2013. Global CMT Catalog Search[DB/OL]. [2023−05−15]. https://www.globalcmt.org/CMTsearch.html.
González-Casado J M,Robles J L G,López-Martínez J. 2000. Bransfield Basin,Antarctic Peninsula:Not a normal backarc basin[J]. Geology,28(11):1043–1046.
González-Ferrán O. 1983. The Larsen Rift:An active extension fracture in West Antarctica[M]//Antarctic Earth Science. Cambridge:Cambridge University Press:344−346.
Institute for Geophysics,University of Texas. 2015. Institute for Geophysics[DB/OL]. [2023−05−15]. https://www-udc.ig.utexas.edu/external/plates/data.htm.
Janik T,Środa P,Grad M,Guterch A. 2006. Moho depth along the Antarctic Peninsula and crustal structure across the landward projection of the Hero Fracture Zone[M]//Antarctica:Contributions to Global Earth Sciences. Berlin,Heidelberg:Springer-Verlag:229−236.
Jiménez-Morales V,Almendros J,Carmona E. 2022. Long-Term evolution of the seismic activity preceding the 2015 seismic crisis at Deception Island Volcano,Antarctica (2008−2015)[J]. Surv Geophys,43(3):959–994.
Kaminuma K. 1995. Seismicity around the Antarctic Peninsula[C]//Proceedings of the NIPR Symposium on Antarctic Geosciences. Tokyo:National Institute of Polar Research:35−42.
Kaminuma K. 2006. Seismicity in the Antarctic and surrounding ocean[J]. J Ind Geophys Union,10(1):15–24.
Lawver L A,Sloan B J,Barker D H N,Ghidella M,von Herzen R P,Keller R A,Klinkhammer G P,Chin C S. 1996. Distributed,active extension in Bransfield Basin,Antarctic Peninsula:Evidence from multibeam bathymetry[J]. GSA Today,6(11):1–6.
Li W,Yuan X H,Heit B,Schmidt-Aursch M C,Almendros J,Geissler W H,Chen Y. 2021. Back-arc extension of the Central Bransfield Basin induced by ridge–trench collision:Implications from ambient noise tomography and stress field inversion[J]. Geophys Res Lett,48(21):e2021GL095032.
Olivet J L,Bettucci L S,Castro-Artola O A,Castro H,Rodríguez M,Latorres E. 2021. A seismic swarm at the Bransfield Rift,Antarctica[J]. J South Am Earth Sci,111:103412.
Parera-Portell J A,de Lis Mancilla F,Morales J,Almendros J,Jiménez-Morales V. 2021. Structure of the crust and upper mantle beneath the Bransfield Strait (Antarctica) using P receiver functions[J]. Tectonophysics,802:228744.
Pelayo A M,Wiens D A. 1989. Seismotectonics and relative plate motions in the Scotia Sea region[J]. J Geophys Res:Solid Earth,94(B6):7293–7320.
Poli P,Cabrera L,Flores M C,Báez J C,Ammirati J B,Vásquez J,Ruiz S. 2022. Volcanic origin of a long-lived swarm in the Central Bransfield Basin,Antarctica[J]. Geophys Res Lett,49(1):e2021GL095447.
USGS,Earthquake Hazards Program. 2017. Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products:Various[DB/OL].[2023−05−15]. https://doi.org/10.5066/F7MS3QZH.
Robertson Maurice S D,Wiens D A,Shore P J,Vcra E,DoRman L M. 2003. Seismicity and tectonics of the South Shetland Islands and Bransfield Strait from a regional broadband seismograph deployment[J]. J Geophys Res:Solid Earth,108(B10):2461.