Analysis of characteristics and failure mechanism of Paodili seismic landslide in Qingchuan County
-
摘要:
以“5·12”汶川地震诱发的青川县刨地里滑坡为例,现场调查了滑坡的地质特征,并基于离散元软件(UDEC)分析了1号滑坡动力响应及变形破坏过程,探讨了滑坡的成因机制。现场调查表明,刨地里1号滑坡具有近水平“上硬下软”的地层结构,其中石坎断层穿过了滑坡后缘;滑坡堆积体的岩性分带特征表明,刨地里1号滑坡下部千枚岩先于上部硅质岩被破坏,且破坏时间早于2号和3号滑坡;数值模拟研究揭示,峰值加速度放大效应在断层带附近的千枚岩内最强,其放大系数达6.79,导致下层千枚岩首先沿陡倾面产生拉裂破坏,随后上层硅质岩体产生拉裂破坏,结果与现场调查堆积物特征较吻合;断层和上硬下软的地层结构对刨地里滑坡动力响应、变形及破坏起到了控制作用。该研究可为上硬下软且含断层的地震滑坡的评价提供参考。
-
关键词:
- “5·12”汶川地震 /
- 地震滑坡 /
- 上硬下软地层 /
- 石坎断层 /
- 成因机制
Abstract:The problem of slope stability in high-intensity mountainous area is prominent. It is of great significance to study the relationship between geological structure and strata structure and the triggering mechanism of landslide under earthquake action. In this paper, the geological characteristics of the landslide in Qingchuan County are investigated, and the dynamic response and deformation and failure process of the 1st landslide are analyzed based on discrete element software (UDEC). The field investigation shows that the slope of Paodili 1st landslide has a near-horizontal “upper-hard, lower-soft” stratigraphic texture, in which faults pass through the back edge of the slope. The lithologic zonation of landslide deposits shows that the lower phyllite of Paodili 1st landslide was destroyed earlier than the upper siliceous rock, and the broken time was earlier than the 2nd and 3rd landslides. The numerical simulation research reveals that the peak acceleration amplification effect is strongest in phyllite near the fault zone, with an amplification factor of 6.79. This leads to the lower phyllite first experienced tensile failure along the steep dip surface, then the upper siliceous rock mass produced tension failure. The results are in good agreement with the characteristics of the deposits in the field investigation. The dynamic response, deformation, and failure of the landslide are controlled by the fault and the upper-hard, lower soft stratigraphic texture. This study can provide a reference for seismic landslides evaluation in regions characterized by faulting and “upper-hard, lower-soft” strata.
-
-
图 1 刨地里滑坡地理位置图(修改自黄润秋等,2009)
Figure 1. Geographical location map of Paodili landslide (modified from Huang et al,2009)
图 3 刨地里滑坡发育分布与堆积特征
(a) 硅质岩;(b) 擦痕;(c) 千枚岩;(d) 滑源区巨块石;(e) 硅质岩堆积区;(f) 假基岩体
Figure 3. Distribution and accumulation characteristics of Paodili landslide
(a) Siliceous rock;(b) Scratches;(c) Phyllite;(d) Large block stones in the sliding source area; (e) Siliceous rock accumulation area;(f) Pseudobasic rock mass
图 6 刨地里1号滑坡破坏过程演示图
(a) 斜坡震动强放大;(b) 下部岩体震裂破坏;(c) 上部岩体失稳滑动;(d) 运动堆积阶段
Figure 6. Destruction process demonstration diagram of Paodili 1st landslide
(a) Amplification effect of strong vibration on slope;(b) Seismic fracture failure of the lower rock structure;(c) Sliding after instability of the upper rock structure;(d) Motion and accumulation
表 1 岩体力学参数
Table 1 Mechanics parameters of rock mass
岩性 密度/(kg·m−3) 黏聚力
/MPa内摩擦角
/°体积模量/GPa 剪切模量/GPa 强风化
岩体硅质岩 2 700 2.34 35 39.0 20.00 千枚岩 2 200 0.50 23 9.6 5.76 微新
岩体硅质岩 2 750 2.40 38 39.8 20.60 千枚岩 2 250 0.50 25 9.6 5.92 表 2 结构面力学参数
Table 2 Mechanics parameters of structural plane
界面 法向刚度/(GPa·m−1) 剪切刚度/(GPa·m−1) 内摩擦角/° 黏聚力/MPa 抗拉强度/MPa 岩层面 2.32 1.33 30 1.23 0.41 节理面 1.90 1.20 29 0.50 0.30 断层面 1.81 0.92 26 0.48 0 -
曹琰波,戴福初,许冲,涂新斌,闵弘,崔芳鹏. 2011. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报,30(增刊):2878–2887. Cao Y B,Dai F C,Xu C,Tu X B,Min H,Cui F P. 2011. Discrete element simulation of deformation and movement mechanism for Tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering,30(S1):2878–2887 (in Chinese).
范宣梅,王欣,戴岚欣,方成勇,邓宇,邹城彬,汤明高,魏振磊,窦向阳,张静,杨帆,陈兰,魏涛,杨银双,张欣欣,夏明垚,倪涛,唐小川,李为乐,戴可人,董秀军,许强. 2022. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报,30(5):1504–1516. Fan X M,Wang X,Dai L X,Fang C Y,Deng Y,Zou C B,Tang M G,Wei Z L,Dou X Y,Zhang J,Yang F,Chen L,Wei T,Yang Y S,Zhang X X,Xia M Y,Ni T,Tang X C,Li W L,Dai K R,Dong X J,Xu Q. 2022. Characteristics and spatial distribution pattern of MS6.8 Luding earthquake occurred on September 5,2022[J]. Journal of Engineering Geology,30(5):1504–1516 (in Chinese).
何源,罗永红,王运生,高原. 2015. 刘家湾滑坡特征及成因机制探讨[J]. 工程地质学报,23(5):835–843. He Y,Luo Y H,Wang Y S,Gao Y. 2015. Discussion on genetic mechanism and geologic characteristic of Liujiawan landslide[J]. Journal of Engineering Geology,23(5):835–843 (in Chinese).
黄润秋,唐川,李勇,张利民,李渝生,冯文凯,胡卸文,胥颐,余斌,崔芳鹏,王来贵,王刚,陈祖安,祁生文,石振明,朱大勇,黄雨. 2009. 汶川地震地质灾害研究[M]. 北京:科学出版社:235-245. Huang R Q,Tang C,Li Y,Zhang L M,Li Y S,Feng W K,Hu X W,Xu Y,Yu B,Cui F P,Wang L G,Wang G,Chen Z A,Qi S W,Shi Z M,Zhu D Y,Huang Y. 2009. Geohazard Assessment of the Wenchuan Earthquake[M]. Beijing:Science Press:235−245 (in Chinese).
黄润秋. 2011. 汶川地震地质灾害后效应分析[J]. 工程地质学报,19(2):145–151. Huang R Q. 2011. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,19(2):145–151 (in Chinese).
黄宇. 2015. 构造单面山硅质岩边坡稳定性研究:以资兴高速公路K21+638~810段边坡工程为例[D]. 长安:长安大学:47−51. Huang Y. 2015. Study on the Stability of Tectonic Cuesta Siliceous Rocks Slope:A Case Study on Slope Engineering from K21+638 to K21+810 of Ziyuan to Xing’an Highway[D]. Chang'an:Chang'an University:47−51 (in Chinese).
李传友,魏占玉. 2009. 汶川MS8.0地震地表破裂带北端位置的修订[J]. 地震地质,31(1):1–8. Li C Y,Wei Z Y. 2009. Deformation styles of the northernmost surface rupture zone of the MS8.0 Wenchuan earthquake[J]. Seismology and Geology,31(1):1–8 (in Chinese).
李龙起,张帅,何川,李昌林,邓小雪,邓天鑫. 2020. 基于离散元技术的软硬互层斜坡动力响应及失稳机理研究[J]. 水利水电技术,51(4):203–211. Li L Q,Zhang S,He C,Li C L,Deng X X,Deng T X. 2020. Discrete element technique-based study on dynamic response and instability mechanism of soft and hard interbedded slope[J]. Water Resources and Hydropower Engineering,51(4):203–211 (in Chinese).
李强,张景发,罗毅,焦其松. 2019. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报,23(4):785–795. Li Q,Zhang J F,Luo Y,Jiao Q S. 2019. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing,23(4):785–795 (in Chinese).
刘新荣,何春梅,刘树林,刘永权,路雨明,谢应坤. 2019. 高频次微小地震下顺倾软硬互层边坡动力稳定性研究[J]. 岩土工程学报,41(3):430–438. doi: 10.11779/CJGE201903004 Liu X R,He C M,Liu S L,Liu Y Q,Lu Y M,Xie Y K. 2019. Dynamic stability of slopes with interbeddings of soft and hard layers under high-frequency microseims[J]. Chinese Journal of Geotechnical Engineering,41(3):430–438 (in Chinese).
刘云鹏,邓辉,黄润秋,宋金龙,袁进科. 2012. 反倾软硬互层岩体边坡地震响应的数值模拟研究[J]. 水文地质工程地质,39(3):30–37. Liu Y P,Deng H,Huang R Q,Song J L,Yuan J K. 2012. Numerical simulation of seismic response of anti-dumping rock slope interbedded by hard and soft layers[J]. Hydrogeology &Engineering Geology,39(3):30–37 (in Chinese).
宋丹青,黄进,刘晓丽,王恩志. 2021. 地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响[J]. 清华大学学报(自然科学版),61(8):873–880. Song D Q,Huang J,Liu X L,Wang E Z. 2021. Influence of the rock mass structure and lithology on the dynamic response characteristics of steep rock slopes during earthquakes[J]. Journal of Tsinghua University (Science and Technology),61(8):873–880 (in Chinese).
孙萍,张永双,殷跃平,汪发武,吴树仁,石菊松. 2009. 东河口滑坡–碎屑流高速远程运移机制探讨[J]. 工程地质学报,17(6):737–744. doi: 10.3969/j.issn.1004-9665.2009.06.002 Sun P,Zhang Y S,Yin Y P,Wang F W,Wu S R,Shi J S. 2009. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology,17(6):737–744 (in Chinese).
谭明健,周春梅,孙东,周紫朝. 2022. 软硬互层顺层岩质边坡破坏试验[J]. 地质科技通报,41(2):274–281. Tan M J,Zhou C M,Sun D,Zhou Z C. 2022. Failure experiment of soft-hard interlayer bedding rock slope[J]. Bulletin of Geological Science and Technology,41(2):274–281 (in Chinese).
汤明高,许强,张伟,董秀军. 2011. 汶川地震触发窝前滑坡特征及失稳机制探讨[J]. 岩石力学与工程学报,30(增刊):3491–3502. Tang M G,Xu Q,Zhang W,Dong X J. 2011. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,30(S2):3491–3502 (in Chinese).
许冲,徐锡伟,吴熙彦,戴福初,姚鑫,姚琪. 2013. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报,21(1):25–44. doi: 10.3969/j.issn.1004-9665.2013.01.004 Xu C,Xu X W,Wu X Y,Dai F C,Yao X,Yao Q. 2013. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology,21(1):25–44 (in Chinese).
许强,李为乐. 2010. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,18(6):818–826. doi: 10.3969/j.issn.1004-9665.2010.06.002 Xu Q,Li W L. 2010. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,18(6):818–826 (in Chinese).
许强,刘汉香,邹威,范宣梅,陈建君. 2010. 斜坡加速度动力响应特性的大型振动台试验研究[J]. 岩石力学与工程学报,29(12):2420–2428. Xu Q,Liu H X,Zou W,Fan X M,Chen J J. 2010. Large-scale shaking table test study of acceleration dynamic responses characteristics of slopes[J]. Chinese Journal of Rock Mechanics and Engineering,29(12):2420–2428 (in Chinese).
张伟. 2009. 青川马公窝铅滑坡成因机理与运动特征研究[D]. 成都:成都理工大学:44−50. Zhang W. 2009. The Research on the Mechanism and Kinetic Characteristic of Woqian Landslide in Qingchuan Town[D]. Chengdu:Chengdu University of Technology:44−50 (in Chinese).
Kuhlemeyer R L,Lysmer J. 1973. Finite element method accuracy for wave propagation problems[J]. J Soil Mech Found Div,99(5):421–427. doi: 10.1061/JSFEAQ.0001885
Luo Y H,Zhang Y,Wang Y S,He Y,Zhang Y Y,Cao H. 2021. A unique failure model for a landslide induced by the Wenchuan earthquake in the Liujiawan area,Qingchuan County,China[J]. Eng Geol,295:106412. doi: 10.1016/j.enggeo.2021.106412
Wang Y S,Wu L Z,Gu J. 2019. Process analysis of the Moxi earthquake-induced Lantianwan landslide in the Dadu River,China[J]. Bull Eng Geol Environ,78(7):4731–4742. doi: 10.1007/s10064-018-01438-2