2022年6月10日四川马尔康MS6.0震群序列时空演化特征

宫悦, 龙锋, 赵敏, 杨鹏, 王宇玺, 梁明剑, 乔慧珍, 王宇航

宫悦,龙锋,赵敏,杨鹏,王宇玺,梁明剑,乔慧珍,王宇航. 2024. 2022年6月10日四川马尔康MS6.0震群序列时空演化特征. 地震学报,46(2):173−191. DOI: 10.11939/jass.20230104
引用本文: 宫悦,龙锋,赵敏,杨鹏,王宇玺,梁明剑,乔慧珍,王宇航. 2024. 2022年6月10日四川马尔康MS6.0震群序列时空演化特征. 地震学报,46(2):173−191. DOI: 10.11939/jass.20230104
Gong Y,Long F,Zhao M,Yang P,Wang Y X,Liang M J,Qiao H Z,Wang Y H. 2024. The spatio-temporal evolution characteristics of the MS6.0 Barkam earthquake sequence in Sichuan on June 10,2022. Acta Seismologica Sinica46(2):173−191. DOI: 10.11939/jass.20230104
Citation: Gong Y,Long F,Zhao M,Yang P,Wang Y X,Liang M J,Qiao H Z,Wang Y H. 2024. The spatio-temporal evolution characteristics of the MS6.0 Barkam earthquake sequence in Sichuan on June 10,2022. Acta Seismologica Sinica46(2):173−191. DOI: 10.11939/jass.20230104

2022年6月10日四川马尔康MS6.0震群序列时空演化特征

基金项目: 四川省科技计划项目(2020YJ0475)、国家重点研发计划(2021YFC3000702-05)、2023年度地震预测开放基金(XH23070D)和西藏拉萨地球物理国家野外科学观测站研究课题(NORSLS2104)共同资助
详细信息
    作者简介:

    宫悦,硕士,高级工程师,主要从事数字地震学方面的研究,e-mail:euygong@163.com

    通讯作者:

    龙锋,硕士,高级工程师,主要从事数字地震学方面的研究,e-mail:icy1111@163.com

  • 中图分类号: P315.33

The spatio-temporal evolution characteristics of the MS6.0 Barkam earthquake sequence in Sichuan on June 10,2022

  • 摘要:

    2022年6月10日马尔康MS6.0震群序列发生在松岗断裂与龙日坝断裂交会处,呈震群型活动特征。本文以四川地震台网目录为基础,对马尔康地震序列的参数特征开展研究,取该序列三次MS5.0地震之后各一个小时,作为 Ⅰ , Ⅱ , Ⅲ 共计三个阶段,进行对比分析。由于较大地震后短时间内目录遗漏的余震较多,为增大研究所需的地震样本量,首先采用模板匹配法进行微小地震识别,以补充完备目录,并利用识别的地震目录及台网目录分别计算马尔康MS6.0地震序列的b值、p值等参数。计算结果显示,相比于第 Ⅱ 和 Ⅲ 阶段,第 Ⅰ 阶段具有显著的低b值(0.59),随着时间的推移,序列b值逐渐上升,后两个阶段分别为0.84和0.86。第 Ⅰ 阶段低b值的结果反映了此阶段孕震区应力水平较高。另外,第 Ⅰ 阶段序列的p值为0.76,明显低于后两个阶段的1.81和1.64,反映出第 Ⅰ 阶段序列频次衰减速度较慢,应力释放不充分,而后两个阶段刚好相反,表明不同阶段序列的时间演化特征存在差异。综合分析认为,MS5.8地震是MS6.0地震的前震。序列西支与东支的参数计算结果呈现不一样的特征,可能与MS5.8前震序列发生在西支有关。

    Abstract:

    According to the China Earthquake Networks Center, at 00:03 on June 10, 2022, local time, an earthquake with MS5.8 (ML6.3) struck Barkam City (32.27°N, 101.82°E), Aba Prefecture, Sichuan Province, with a focal depth of 10 km. Subsequently, at 01:28 local time, another MS6.0 (ML6.5) earthquake occurred in the same location (32.25°N, 101.82°E), with a focal depth of 13 km. These two earthquakes were located in the southeast part of the Bayan Har block, approximately two kilometers apart. According to the definition of earthquake sequence type, the magnitude difference between the two earthquakes ΔM=0.2 constitutes a swarm type earthquake, which is hereinafter referred to as “MS6.0 Barkam earthquake swarm”. The MS6.0 Barkam earthquake swarm exhibited numerous minor earthquakes, up until 23:00 on June 30, 2022, a total of 4 821 earthquakes of magnitude 0 and above were recorded, including seven earthquakes with magnitude ranging from MS3.0 to MS3.9, three earthquakes with magnitude ranging from MS4.0 to MS4.9, two earthquakes with magnitude ranging from MS5.0 to MS5.9, and one MS6.0 earthquake. The largest aftershock recorded was an earthquake with MS5.2 (ML5.6) at 03:27 local time on June 10. Considering the significant event of an earthquake with MS5.8 preceding the occurrence of the main shock with MS6.0, it is important to investigate the characteristics of the MS5.8 earthquake sequence as a foreshock and the sequence features before and after the main shock. Existing seismological methods indicate that earthquake sequences can intuitively reflect differences in tectonic stress fields, seismic structures, and the seismogenic environment medium. Moreover, the rupturing properties of the main shock often influence the evolution of aftershock sequences. This study utilizes seismic data from the Sichuan regional seismic network, based on parameters such as the b-value and p-value of the sequence, in combination with regional structure and focal mechanism solution parameters of the strong aftershock, to investigate the spatio-temporal evolution characteristics of the Barkam MS6.0 earthquake swarm sequence and to explore the sequence evolution characteristics before major earthquakes in Barkam.

    Regional geological settings and M≥5.0 historical earthquakes

    The Barkam region is situated in the eastern part of the southeastern margin of the Bayan Har block within the Songpan-Garze orogenic belt. The Longriba fault in the studied area divides the eastern part of the Bayan Har block into two parts, including the secondary Longmenshan block on the east and the Aba secondary block on the west. The Longmenshan block primarily features the NE-trending Longmenshan fault zone, the nearly SN-trending Minjiang fault, and the Huya fault. On the other hand, the Aba secondary block, features a series of large-scale strike-slip faults trending NW that have exhibited activity in the Late Quaternary period. These faults, along with the Garze-Yushu fault, the Xianshuihe fault, and the east Kunlun fault at the southern and northern boundaries of the Bayan Har block, collectively constitute the tectonic framework of the Bayan Har block. The Barkam MS6.0 earthquake swarm occurred near the intersection of the NW-trending Songgang fault and the NE-trending Longriba fault within a relatively complex fault structure. The Songgang fault is approximately 100 kilometers in length, with a maximum width of about 300 meters, trending between 320° and 330°, dipping to the northeast with an angle of 50° to 70°. It extends from the northern slope of Mengbi Mountain on the south side of Barkam, along a NW direction, and disappears near Zoigê. This fault exhibits relatively complex activity, featuring characteristics of multiple periods of activity. Its southern segment is a Late Pleistocene active fault, and historical records indicate that it has experienced three MS≥5.0 earthquakes, with the largest MS6.0 earthquake occurred on October 8, 1941 in Heishui area. The northern segment of the fault does not exhibit obvious surface activity since the Late Pleistocene. Apart from the Maerkang MS6.0 earthquake swarm, no MS≥5.0 earthquake was shown in historical records. Minor earthquakes are relatively active in the central part of the fault, concentrated in deep-seated dense activity along the NW direction. This reflects the existence of a northwest-trending ruptured surface and suggests that the northern segment of the fault possesses potential seismic risk. The Longriba fault is considered to be resulted from the strong obstruction of the southeastern movement of the Bayan Har block from the South China block during the Late Cenozoic, and it constitutes the backthrust-overthrust tectonic system of the Longmenshan structural belt, bearing the role of crustal deformation on the eastern edge of the Qinghai-Xizang Plateau since the Late Cenozoic. This fault is a new fault primarily characterized by right-lateral strike-slip movement in the NE direction, consisting mainly of two parallel branch faults: the Longriba fault and the Maoergai fault. It exhibits a series of distinct fault landforms and demonstrates Late Quaternary activity. Historical records indicate that the Longriba fault has not experienced any MS≥5.0 earthquakes. The M≥5.0 earthquakes that occurred within a 50 km range from the epicenter were all earthquake swarms. There were a total of two swarms, which took place on September 26 and November 6, 1969, with MS5.1 and MS5.3 in Aba, and on September 5 and November 8, 1970, with MS5.5 and MS5.5 in Rangtang.

    Basic situation of the sequence

    Using the multi-stage positioning method to locate the Barkam MS6.0 earthquake sequence. The results indicate that the sequence is situated to the northeastern side of the Songgang fault, with an overall parallel distribution along the NW-SE direction, forming two branches running in an east-west direction, parallel to the Songgang fault. The western branch spans approximately 12 km in length and 3 km in width, while the eastern branch extends about 15 km in length and 2 km in width, with a separation of roughly 2 km between the two. The sequence experienced a total of three MS≥5.0 earthquakes, with the MS5.8 earthquake occurred closer to the eastern side of the western branch, the MS6.0 earthquake located within the eastern branch, and the largest aftershock of MS5.2 situated to the east of the eastern branch. Prior to the MS6.0 earthquake, seismicity was primarily distributed along the western branch, while after the MS6.0 earthquake, the activity shifted to the eastern branch, indicating the spatial migration over time. Additionally, the distribution of seismicity is more scattered in the western branch and more concentrated in the eastern branch, suggesting potential differences in the seismicity patterns between the two branches and indicating that the sequence does not occur on a single fault structure, but rather on different branch faults.

    Using the CAP (cut and paste) method to calculate the focal mechanism solutions of the MS5.8, MS6.0, and some MS≥3.5 earthquakes of the sequence. The results revealed that the MS5.8 earthquake had best double-couple solutions with strike 324°, dip 76°, and slip 0° for nodal plane I, while strike 234°, dip 90°, and slip 166° for nodal plane Ⅱ . The MS6.0 earthquake had best double-couple solutions with strike 329°, dip 90°, and slip −3° for nodal plane I, and strike 58°, dip 87°, and slip −180° for nodal plane Ⅱ . Both main shocks and the focal mechanisms of the larger aftershocks exhibited consistent strike-slip motion, which is consistent with the regional predominance of reverse and strike-slip faulting. The strike of nodal plane I in the NW direction is consistent with the strike of the Songgang fault near the epicenter. Furthermore, the focal mechanism solutions for some MS≥3.5 events of the Barkam MS6.0 earthquake sequence indicated a concentrated depth distribution ranging from 5 to 8 km (Table 1). Combining the results of precise positioning and the study of the sequence’s seismogenic structure by Long et al (2023), it is suggested that the seismogenic structure of the Barkam MS6.0 earthquake swarm is complex, which is resulted from the simultaneous activity of several faults of different scales. These faults are located close to the Songgang fault, not exposed at the surface, and may be connected to the Songgang fault at depth, indicating that the seismogenic structure may be a concealed branch fault of the Songgang fault. It is noteworthy that there are traces of a NE-oriented distribution within the sequence, implying that the seismicity in this area may exhibit conjugate rupture characteristics.

    Early sequence parameter evolution characteristics

    The early temporal evolution of the sequence encapsulates the processes of nucleation and stress changes. The analysis of the temporal evolution characteristics is helpful to understand the mechanism and development of the sequence. In commonly used statistical seismological models, the regression parameter b value in the Gutenberg-Richter (G-R) relationship and the p value in the modified Omori’s law carry specific physical properties and are widely considered as statistical quantities characterizing the sequence. The G-R relationship is expressed as lgNabM, where b value represents the maximum likelihood solution $ {b}={\mathrm{lg}\mathrm{e}}/ ( {\overline{M}-{M}_{\mathrm{C}}} ) $, a value represents the overall level of seismic activity, N represents seismic frequency, MC represents the minimum completeness magnitude, $ \overline{M} $ represents the average magnitude, and lge=0.4343. The rock fracture experiments indicate that the b value decreases with the increase of stress level. A smaller b value reflects higher regional stress levels, while a larger b value indicates lower stress levels. So the b value, as a means of assessing regional stress accumulation levels, has been widely used in seismic hazard assessment and post-earthquake trend analysis. Laura and Stefan (2019) studied the b values of the earthquake sequences of the AmatriceNorcia MW6.2, MW6.6 in central Italy on August 24 and October 30, 2016; the Kumamoto MW6.5, MW7.3 sequence in Japan; and the Tohoku MW7.3, MW9.0 sequence in Japan. They concluded that the b value of the foreshock sequence would significantly decrease. Jiang et al2021) found that the b value of the Yongping MS6.4 earthquake sequence in Yunnan showed a decrease followed by fluctuation before and after the main shock, reflecting the intense stress adjustment state in the sequence’s continuous process. Wang et al2023) discovered the phenomenon of b value decreasing after the foreshock and increasing after the main shock, clearly reflecting the development process of the foreshock-main shock-aftershock sequence. In the actual calculation process, calculation error of the b value is obtained through the construction of a bootstrap process. Additionally, assuming N=1, M corresponds to the theoretical maximum earthquake magnitude Mmax, expressed as Mmaxa/b. The expression of the modified Omori’s law is nt)$ ={K}/{{ ( t+c ) }^{p}} $, where nt) represents the number of aftershocks at time interval t after the main shock, K represents the aftershock occurrence rate, and p is referred to as the aftershock frequency decay coefficient, representing the rate of sequence decay. A larger p value indicates faster decay, while a smaller p value suggests slower decay, typically varying between 0.9 and 1.5. Its variation characteristics may be related to the uneven structure, temperature changes, and stress accumulation levels in the crust. Discretizing frequency statistics over time periods can result in information loss, thus we obtained the p value and other coefficients in cumulative frequency form. The final integrated form of the modified Omori’s law is: when p≠1, $ N ( t ) = K[{c^{1- p}}- { ( t + c ) ^{1- p}}] /{{ ( p - 1 ) }}$, and when p=1, Nt)=Kln(c+t). In the actual inversion process, both equations are simultaneously calculated, and the fitting error is computed to select the smaller error value as the final p value calculation result. Due to the small sample size, conventional least squares methods may lead to local optimal solutions, hence genetic algorithms were used to solve the parameters. This study attempts to calculate the b value, p value, and other sequence parameters to identify evidence of the MS5.8 serving as a foreshock to the MS6.0 in the Barkam earthquake sequence.

    In this sequence, three MS≥5.0 events occurred within three hours of the sequence’s onset, indicating rapid sequence development. When we attempted to analyze the evolution characteristics between these three events, the short time intervals resulted in the signals of smaller earthquakes submerged in strong seismic waves, leading to incomplete aftershock records and insufficient statistical sample size. In order to increase the required seismic sample size for the study, a template matching method was used to detect missed earthquakes in the data from June 10th. Using 764 seismic events recorded by the network as templates, events with a correlation coefficient R≥0.85 were identified as individual earthquake events, and DBSCAN method was employed for earthquake correlation, ultimately obtaining 1 713 precise earthquake records, which is 2.2 times as much as the number of templates used. Since the identified earthquakes were similar to the template earthquakes in terms of location and nearly identical in terms of source mechanism solutions, the magnitudes of the missed earthquakes can be obtained by comparing their maximum S-wave amplitudes with the corresponding templates. The supplemented missed earthquakes mainly occurred before 10:00 a.m. , indicating significant interference of strong seismic waves in the manual identification of earthquakes, and also demonstrating the effectiveness of template matching in picking up missed earthquakes. The GFT method was used to compare and analyze the network catalog and the supplemented earthquake catalog before 10:00 a.m. , calculating the minimum completeness magnitudes, showing ML1.8 and ML1.3, respectively, proving the effectiveness of the template matching method in supplementing small magnitude earthquakes.

    On June 10, three seismic events of MS≥5.0 divided the seismic sequence into different stages. To ensure data comparability and control variables, each stage was defined as Ⅰ , Ⅱ , and Ⅲ , with each stage beginning one hour after each of the three MS≥5.0 events. For each stage, the Gutenberg-Richter-Frohlich (GFT) method was used to calculate the minimum completeness magnitude (MC) of the seismic sequence. Events above the MC were selected, and their b values, Mmax values, and p values were calculated. The analysis aimed to identify potential differences in stress states and seismic activity characteristics across the different stages and to understand the early evolution patterns of the sequence. We have listed the amount of data used and the calculation results for each stage in Table 2. From the table, it can be seen that the sample sizes for each stage (above the completeness magnitude) were all over 50, with 69, 57, and 66 events, respectively, ensuring robust calculation results. The MC values for the three stages were ML2.1, ML2.3, and ML1.7, indicating a significant impact of strong earthquakes on short-term monitoring capabilities, with the degree of impact varying with the magnitude. Compared to stages Ⅱ and Ⅲ , stageⅠexhibited a significantly lower b value (0.59). Over time, the b value gradually increased, with the subsequent two stages being 0.84 and 0.86, respectively. The low b value of stage Ⅰ suggests a high stress level in the seismic zone, indicating that the MS5.8 earthquake could be considered as a foreshock of the MS6.0 earthquake. The Mmax values also demonstrated differences across the stages, with an Mmax value of ML5.0 in stage Ⅰ , the highest among the three stages. The subsequent stages showed a gradual decrease of Mmax from ML4.2 to ML3.7, reflecting the potential foreshock nature of the seismic sequence in stage Ⅰ .

    The a value of stage Ⅰ (3.1) was not significantly different from that of stage Ⅲ (3.2), but was lower than that of stage Ⅱ (3.6), suggesting that the a value alone cannot distinguish between foreshocks and aftershocks. When calculating the p value for events above the MC for each stage, the p value for stage Ⅰ was 0.76, significantly lower than those of the subsequent two stages, which were 1.81 and 1.64, respectively. This suggested that the seismic sequence in stage Ⅰ exhibited slower decay and insufficient stress release, while the subsequent two stages were opposite, possibly indicating differences in the temporal evolution between the foreshock sequence and the aftershock sequence.

    Conclusions

    The spatial distribution characteristics of the Barkam MS6.0 earthquake swarm in the region indicated a significant spatial migration feature, suggesting that the sequence was not a simple single rupture event, but a complex seismic sequence. Given the presence of two branches in the sequence, the evolution characteristics over time were discussed separately for the east and west branches. Calculations for the west branch yielded MC of ML1.5, b value of 0.71, and p value of 0.81, while the corresponding parameters for the east branch were ML1.6, 0.93, and 0.94, respectively. The differences in the parameters between the west and east branches reflected that the two branches were formed not by a single fault structure. The lower b and p values in the west branch indicated insufficient stress release, a high stress level, and slow decay, possibly related to the occurrence of the foreshock sequence.

    In summary, the seismic cluster of the MS6.0 event in Barkam on June 10, 2022 occurred near the intersection of the Songgang fault and the Longriba fault, indicating a complex fault structure. The seismic cluster exhibited rich small earthquakes, slow overall decay, and segmental spatial characteristics. Several conclusions were drawn from the analysis:

    1) The Barkam MS6.0 earthquake swarm occurred near the intersection of the NW-trending Songgang fault and the NE-trending Longriba fault, indicating a complex fault structure. The precise positioning results showed that the sequence was located along the NE direction of the Songgang fault, with an overall NW-SE orientation and parallel east and west branches. The east and west branches exhibited spatial migration features and different spatial distribution patterns. The source mechanisms of the larger earthquakes in the sequence were consistent, all being strike-slip type, which aligns with the regional background and the nature of the Songgang fault. It is speculated that this sequence was caused by several different-sized faults, which are close to the Songgang fault, not exposed at the surface, and may be connected to the Songgang fault at depth, representing concealed branch faults of the Songgang fault.

    2) Using template matching, 1 713 precise earthquake events were identified, which was 2.2 times as much as the number of templates used. This reflected the significant interference of strong seismic waves on manual earthquake identification and demonstrates the effectiveness of template matching in detecting missed earthquakes.

    3) By dividing the sequence into three stages following each MS5.0 event, the b and p values were compared and analyzed. The results showed a significantly lower b values in stage Ⅰ , reflecting a higher stress level in the seismic zone during this stage. The M5.8 earthquake can be considered as a foreshock before the MS6.0 earthquake. Additionally, the p value for stage Ⅰ was significantly lower than the subsequent two stages, indicating differences in the temporal evolution between the foreshock sequence and the aftershock sequence.

    4) When analyzing the east and west segments separately, we found that the west segment exhibited lower b and p values, indicating insufficient stress release, high stress level, and slow decay, possibly related to the occurrence of the MS5.8 foreshock sequence in this segment.

    5) In summary, the comprehensive analysis suggests that the MS5.8 earthquake was a foreshock of MS6.0 event in Barkam. Temporally, the MS5.8 earthquake sequence before the main shock exhibited characteristics of low b and p values. Spatially, the west segment of the MS5.8 earthquake sequence also showed lower b and p values, indicating slow decay of the foreshock sequence of the Barkam MS6.0 earthquake swarm and the presence of insufficient stress release and high stress levels in the foreshock area.

  • 据中国地震台网测定,2022年6月10日0时3分,四川阿坝州马尔康市(32.27°N,101.82°E)发生MS5.8 (ML6.3)地震,震源深度为10 km;其后于1时28分几乎在原地(32.25°N,101.82°E)再次发生MS6.0 (ML6.5)地震,震源深度为13 km。两次地震均位于巴颜喀拉地块东南部,相距2 km。根据地震序列类型的定义,两次地震震级差ΔM=0.2,构成震群型地震(中国地震局监测预报司,2007),以下该震群被简称为“马尔康MS6.0震群”。

    马尔康MS6.0震群小震丰富,截至2022年6月30日23时,共记录到M≥0.0地震4821次,其中MS3.0—3.9地震7次,MS4.0—4.9地震3次,MS5.0—5.9地震2次,MS6.0—6.9地震1次,最大余震为6月10日3时27分马尔康MS5.2 (ML5.6)地震。震群位于松岗断裂北段附近,有历史记录以来,该断裂北段除本次马尔康MS6.0震群外,并未发生过MS≥5.0地震(图1)。地震序列震中分布图(图2)显示,该震群呈东西两支、沿NW向平行展布,MS5.8地震序列位于西支,MS6.0地震序列位于东支,色标指示马尔康MS6.0震群早期存在由西支向东支迁移的特征。鉴于该序列最大地震MS6.0发生前存在震级为MS5.8的显著事件,那么MS5.8序列是否属于前震、MS6.0主震发生前后序列具备什么样的特征,这都值得我们关注。

    图  1  马尔康及邻区区域构造和MS≥5.0历史地震震中分布图
    断裂数据引自徐锡伟等(2016);板块边界数据引自张培震等(2003
    Figure  1.  Map of Barkam and neighboring regional geological settings and epicenters of historical MS≥5.0 earthquakes
    Fracture data are after Xu et al2016),and plate boundary data are after Zhang et al (2003)
    图  2  马尔康MS6.0震群序列重定位及部分MS≥3.5余震震源机制解
    Figure  2.  Relocation of the Barkam MS6.0 swarm sequence and focal mechanismsolutions of some MS≥3.5 aftershocks

    地震序列能直观地反映构造应力场环境、地震构造及孕震环境介质的差异性,尤其主震的破裂性质往往影响着余震序列的演化(Reasenberg,1999蒋海昆等,2006宫悦等,2020)。本文利用四川区域地震台网记录,基于序列b值、p值等参数,结合区域构造、强余震震源机制解参数等,对马尔康MS6.0震群的时空演化特征进行研究,旨在探讨马尔康震群较大地震发生前的序列演化特征。

    马尔康地区位于巴颜喀拉地块东南缘东部,大地构造位置上属于松潘—甘孜造山带(王椿镛等,2003)。研究区龙日坝断裂将巴颜喀拉地块东部分为东侧龙门山次级地块和西侧阿坝次级地块(陈长云等,2013),其中:龙门山次级地块主要发育有NE向龙门山断裂带、近NS向岷江断裂与虎牙断裂;阿坝次级地块则发育一系列具有晚第四纪活动性的NW向大型走滑断裂(熊仁伟等,2010梁明剑等,201420202022李陈侠等,2016詹艳等,2021)。这些断裂和巴颜喀拉地块南、北边界的甘孜—玉树断裂、鲜水河断裂、东昆仑断裂共同构成巴颜喀拉地块构造格架。

    马尔康MS6.0震群发生在NW向松岗断裂与NE向龙日坝断裂交会处附近,断裂构造相对复杂。松岗断裂长度约为100 km,最宽约为300 m,走向320°—330°,倾向NE,倾角为50°—70°,南起马尔康南侧梦笔山北坡,沿NW向延伸至若尔格一带消失(龚宇等,1995孙东等,2010)。松岗断裂活动较为复杂,具有多期活动性特征,其南段属于晚更新世纪活动断裂(刘维亮,2006),有历史记录以来,曾发生过3次MS≥5.0地震,最大为1941年10月8日黑水MS6.0,断裂北段在晚更新世以来地表浅部的活动迹象并不明显(孙东等,2010)。杜明甫(2020)通过对整个阿坝区域小震进行精定位,发现松岗断裂中部小震较为活跃,活动主要集中在断裂深部,且沿NW向展布,表明了存在NW向破裂面,同时断裂北段具有潜在发震能力。此次马尔康MS6.0震群50 km范围内发生的MS≥5.0地震均为震群型地震,共有两次,分别为1969年9月26日、11月6日阿坝MS5.1与MS5.3震群,1970年9月5日、11月8日壤塘MS5.5与MS5.5震群。

    龙日坝断裂被认为是巴颜喀拉地块SE向运移过程中受到华南地块的强烈阻挡而形成的龙门山构造带后展式推覆构造系统,承载着青藏高原东缘新生代晚期至今地壳变形的作用。该断裂为一条NE向以右旋走滑为主的新生断裂,主要由两条平行的分支断层—龙日曲断裂和毛尔盖断裂组成,发育一系列明显的断错地貌,具有晚第四纪新活动性(徐锡伟等,2008)。历史震例显示,龙日坝断裂有历史记录以来,无MS≥5.0地震发生。

    采用多阶段定位法(Long et al,2015)对马尔康MS6.0震群序列进行精定位,结果显示:该序列位于松岗断裂NE侧,整体沿NW−SE向呈东西两支平行分布,与松岗断裂走向平行,其中西支长约12 km,宽约3 km,东支长约15 km,宽约2 km,二者相距约2 km。该序列共计发生3次MS≥5.0地震,其中MS5.8地震位于更靠近松岗断裂的西支东侧,MS6.0地震位于东支内部,序列最大余震(MS5.2)则位于东支以东区域。图2中地震的颜色变化表示该地震与主震发生的时间差的对数,结果显示,MS6.0地震发生前,序列主要沿西支分布,MS6.0地震发生后,序列主要沿东支分布,反映了随着时间推移,马尔康MS6.0震群在空间上存在迁移特征。另外,序列西支分布较为离散,东支则更为紧密,地震活动形态的不同或许反映了序列东、西两支在衰减特征上存在着一定的差异,表明序列并不是发生在单一的断层构造上,而是发生在不同的分支断裂上。Long等(2023)通过精定位对马尔康序列发震构造的研究结果显示,马尔康序列的发震构造复杂,几条不同规模的断层共同活动,这些断层距离松岗断裂较近、未出露地表且在深部可能与松岗断裂相连,推测发震构造为松岗断层的隐伏分支断层。

    采用CAP (Zhao,Helmberger,1994Zhu,Helmberger,1996)方法计算序列MS5.8,MS6.0及部分MS≥3.5地震的震源机制解,结果显示,此次序列MS5.8地震的最佳双力偶解分别为节面 Ⅰ 走向324°、倾角76°、滑动角0°,节面 Ⅱ 走向234°、倾角90°、滑动角166°;MS6.0地震的最佳双力偶解分别为节面 Ⅰ 走向329°、倾角90°、滑动角−3°,节面 Ⅱ 走向58°、倾角87°、滑动角−180°。两次主震与序列较大余震的震源机制解错动类型一致,均为走滑型,与区域以逆-走滑断层作用为主的背景一致(闻学泽,2018),其NW走向的节面 Ⅰ 与震中附近松岗断裂走向一致。表1列出了马尔康地震序列部分MS≥3.5事件的震源机制解,可以看出序列的震源机制解高度一致,反演深度集中分布于5—8 km。值得关注的是,序列还存在沿NE向分布的痕迹,意味着该区域地震可能具备共轭破裂特征。

    Table  1.  Focal mechanism solutions of the 10 June 2022 Barkam MS5.8,MS6.0 events and some MS≥3.5 aftershocks
    Origin time
      a-mo-d h:min
    MW M Best fit
    depth/km
    Nodal plane Ⅰ Nodal plane Ⅱ
    strike/° dip/° slip/° strike/° dip/° slip/°
    2 022-06-10 00:03 5.3 5.8 7 324 76 0 234 90 166
    2 022-06-10 01:28 5.79 6.0 6 329 90 −3 59 87 −180
    2 022-06-10 03:27 5.2 251 84 −175 160 85 −6
    2 022-06-10 04:37 4.46 4.4 6 339 76 0 249 90 166
    2 022-06-10 04:54 3.98 3.9 8 155 84 9 64 81 174
    2 022-06-14 18:11 4.38 4.4 5 149 87 22 58 68 177
    下载: 导出CSV 
    | 显示表格
    表  1  2022年6月10日马尔康MS5.8,MS6.0震群序列主震及部分MS≥3.5余震震源机制解
    Table  1.  Focal mechanism solutions of the 10 June 2022 Barkam MS5.8,MS6.0 events and some MS≥3.5 aftershocks
    发震时间
     年-月-日 时:分
    MW M 节面Ⅰ 节面Ⅱ 最佳拟合
    深度/km
    走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/°
    2 022-06-10 00:03 5.3 5.8 324 76 0 234 90 166 7
    2 022-06-10 01:28 5.79 6.0 329 90 −3 59 87 −180 6
    2 022-06-10 03:27 5.2 251 84 −175 160 85 −6
    2 022-06-10 04:37 4.46 4.4 339 76 0 249 90 166 6
    2 022-06-10 04:54 3.98 3.9 155 84 9 64 81 174 8
    2 022-06-14 18:11 4.38 4.4 149 87 22 58 68 177 5
    注:由于6月10日3时27分发生的MS5.2地震存在波形叠加现象,因此选用HASH方法求取该地震震源机制解,该方法无法求取震源深度及矩震级。
    下载: 导出CSV 
    | 显示表格

    序列早期的时间演化蕴含着成核(Popov,2010)和应力变化(Dieterich,Kilgore,1996)的过程,分析其时间演化特点有助于了解序列的产生机理和发展过程。在常用的统计地震学模型中,G-R关系(Gutenberg,Richter,1944)中的回归参数b值和修正的大森公式(Omori,1921)中的p值都具有某些特定的物理属性,被广泛认为是表征序列特性的统计量。其中G-R关系表达式为:

    $$ {\mathrm{lg}} N=a-bM . $$ (1)

    Aki (1965)给出了b值的最大似然解:

    $$ b=\frac{\mathrm{lg}\mathrm{e}}{\overline {M}-{M}_{\mathrm{C}}} \text{,} $$ (2)

    式中,a值代表地震活动性的总体水平,N代表地震频度,MC代表最小完整性震级,$ \overline {M} $代表平均震级,lge=0.434 3。岩石破裂实验表明(Scholz,1968),b值随应力水平的增加而减小。在实际计算过程中,b值计算误差通过构建bootstrap过程来获得。同时,假定式(1)中N=1时,M对应的是理论最大地震震级Mmax,其表达式为

    $$ M_{{\mathrm{max}}}=\frac {a}{{b}} . $$ (3)

    修正的大森公式的表达式(Utsu,1961)为

    $$ n ( t ) = \frac{K}{{ ( t+c ) }^{p}} \text{,} $$ (4)

    式中:nt)代表主震发生后的t时刻余震的数量;K为余震发生率,为常数;p为余震频度衰减系数,代表了序列衰减的快慢程度,p值越大,衰减越快,反之衰减越慢,其值一般在0.9—1.5之间变化,其变化特性可能与地壳结构不均匀、温度变化及应力积累水平有关(Moreno et al,2001)。

    考虑到按固定时段统计离散的地震频次会损失信息,我们采用累计频度形式求取p值及其它系数,得到最终积分形式的修正大森公式为(Shcherbakov et al,2004

    $$ \left\{\begin{array}{l} N ( t ) =\dfrac{K}{p-1} [ c^{1-p}- ( t+c ) ^{1-p} ] \qquad p\text{≠}1\text{,} \\ N ( t ) =K\mathrm{ln} ( c+t ) \qquad p=1.\end{array}\right. $$ (5)

    在实际反演过程中,我们同时计算式(4)和(5),并计算拟合误差,选取误差较小的值作为最终p值的计算结果。由于样本数较少,可能使常规的最小二乘法陷入局部最优解,为此采用遗传算法对参数进行求解。

    b值作为判断区域应力积累水平的一种手段,已广泛应用于地震危险性评价及震后趋势研判中(Wiemer,Wyss,1997Zuñiga,Wyss,2001易桂喜等,20062013龙锋等,2012冯建刚等,2016Laura,Stefan,2019)。Laura和Stefan (2019)通过对2016年8月24日和10月30日意大利中部发生的Amatrice-Norcia MW6.2和MW6.6震群、日本熊本(Kumamoto)MW6.5和MW7.3震群及日本东北地区(Tohoku)MW7.3和MW9.0震群的序列b值进行研究,得出前震序列b值会显著降低的结论。姜丛等(2021)发现2021年5月21日漾濞MS6.4地震序列的b值在主震前-后呈现出降低-起伏变化,反映了序列在持续过程中震区较为剧烈的应力调整状态。Wang等(2023)发现b值存在前震后下降,主震后升高的现象,可明确反映序列前震-主震-余震的发展过程。因此,本章节试图通过计算b值在马尔康MS5.8和MS6.0两次地震之间的变化特征,寻找MS5.8为MS6.0前震的证据。

    此次序列中3次MS≥5.0事件集中发生在序列开始后的3个小时内,且发展速度极快。当试图分析这3次事件之间序列的演化特征时,由于时间间隔较短,强震尾波掩盖了小震信号,使得余震记录不完整,从而造成统计样本量不足。为增大研究所需的地震样本量,采用模板匹配法(Peng et al,2006龙锋等,2021)对6月10日当天的数据进行遗漏地震检测。利用台网记录的764次地震为模板,将相关系数R≥0.85的事件识别为一次地震事件,采用基于密度的聚类算法(density-based spatial clustering of applications with noise,缩写为DBSCAN)进行震相关联(龙锋等,2021),最终共获得了1 713次确切地震信息,是所用模板地震数量的2.2倍(图3)。由于识别出的地震是模板地震的相似事件,它们位置接近,震源机制解几乎相同,因此遗漏地震的震级可通过它们与对应模板的最大S波振幅比来获得(龙锋等,2021)。图3a显示,补全的遗漏地震主要集中在上午10时之前,说明强震尾波对人工识别地震的干扰巨大,同时也证明了模版匹配能有效地拾取遗漏地震。采用适合度检验(goodness of fit test,缩写为GFT)方法(Wiemer,Wyss,2000龙锋等,2009)对比分析了上午10时之前的台网目录及补全地震目录并分别计算最小完整性震级,结果显示二者分别为ML1.8和ML1.3 (图3b,c),证明了模板匹配法能够有效补充小震级地震。

    图  3  2022年6月10日马尔康MS6.0震群序列M-t图和小时频次图(a)、台网目录(b)及补全地震(c)的震级-频度关系图
    Figure  3.  Hourly frequency and M-t diagram (a) of Barkam MS6.0 earthquake sequences on 10 June,2022,and magnitude-frequency relationship based on network seismic catalogue (b) and complete seismic catalogue (c)

    6月10日的三次MS≥5.0地震天然地将序列早期划分为不同阶段,考虑到资料的可对比性及对变量控制的便利性,我们取三次MS5.0地震后一个小时作为对比研究时段,并分别命名为阶段 Ⅰ , Ⅱ 和 Ⅲ 。对于单个阶段,基于补全地震目录,首先采用GFT方法计算该阶段序列的最小完整性震级MC,挑选MC震级之上的事件,利用式(2)和式(3)计算b值和Mmax值,同时利用式(4)和式(5)计算p值。通过这些工作,试图分析不同阶段的应力状态及其所展示的地震活动特性可能存在的差异,并从中找出序列早期的演化规律。我们将每个阶段所使用的数据量和计算结果列于表2。从表中可以看出,强震对震后短时监测能力的影响是显著的(Iwata,2008蒋长胜等,2013),影响程度与震级有关。三个阶段的MC分别为ML2.1,ML2.3和ML1.7。各阶段可利用的样本量(完整性震级以上)都在50以上,分别为69,57,66,可保证计算结果的稳健。我们注意到,相比于第 Ⅱ , Ⅲ 阶段,第 Ⅰ 阶段具有显著的低b值(0.61)。随着时间的推移,序列b值逐渐上升,后两个阶段分别为0.84和0.86 (图4)。第 Ⅰ 阶段b值的计算结果显著低于Schorlemmer等(2005)给定的走滑断层参考b值的下限(0.8),反映出此阶段孕震区应力水平高,MS5.8地震可认为是MS6.0地震前的1次前震(Laura,Stefan,2019)。Mmax值在MS6.0地震前后不同阶段也存在差异,如:第 Ⅰ 阶段Mmax值为ML5.0,具备三个阶段中最大的预估震级;后续两个阶段Mmax逐次从ML4.2降低到了ML3.7,反映出第 Ⅰ 阶段地震序列前震的可能性。第 Ⅰ 阶段的a值(3.1)与第 Ⅲ 阶段(3.2)差异不大,都小于第 Ⅱ 阶段(3.6),表明通过a值无法区分前震与余震。

    Table  2.  List of seismic parameters and results used in different stages
    Stage Time period MC Number of events
    with MMC
    a b Mmax p
    2 022-06-10 00:03−01:03 2.1 69 3.1 0.61±0.10 5.0 0.76
    2 022-06-10 01:27−02:27 2.3 57 3.6 0.84±0.34 4.2 1.81
    2 022-06-10 03:27−04:27 1.7 66 3.2 0.86±0.10 3.7 1.64
    下载: 导出CSV 
    | 显示表格
    图  4  马尔康MS6.0震群序列第Ⅰ阶段(a)、第Ⅱ阶段(b)和第Ⅲ阶段(c)的震级-频度关系图
    Figure  4.  Magnitude-frequency relation for Barkam MS6.0 earthquake sequences in stage Ⅰ (a),stage Ⅱ (b) and stage Ⅲ (c)
    表  2  不同阶段计算所用的地震参数及结果列表
    Table  2.  List of seismic parameters and results used in different stages
    时间段 MC MMC地震次数 a b Mmax p
    第 Ⅰ 阶段 2 022-06-10 00:03—01:03 2.1 69 3.1 0.61±0.10 5.0 0.76
    第 Ⅱ 阶段 2 022-06-10 01:27—02:27 2.3 57 3.6 0.84±0.34 4.2 1.81
    第 Ⅲ 阶段 2 022-06-10 03:27—04:27 1.7 66 3.2 0.86±0.10 3.7 1.64
    注:MC为最小完整性震级,a为地震活动率,b为地震频率随震级增加的衰减率,p为余震频度衰减系。
    下载: 导出CSV 
    | 显示表格

    基于不同阶段MC震级以上事件计算序列p值,结果显示,第 Ⅰ 阶段序列p值为0.76 (图5a),明显低于后两个阶段的1.81和1.64 (图5b,c)。说明第 Ⅰ 阶段序列衰减速度较慢,应力释放不充分(Perfettini,Avouac,2004),而后两个阶段刚好相反,这也许说明了前震序列的时间演化与余震序列存在差异。

    图  5  马尔康MS6.0震群序列第Ⅰ(a)、第Ⅱ(b)和第Ⅲ(c)阶段的余震频度随时间衰减拟合关系图
    Figure  5.  Parameter fitting results of temporal decay rate of aftershocks for Barkam MS6.0 earthquake sequence in stages Ⅰ (a), Ⅱ (b) and Ⅲ (c)

    马尔康MS6.0震群序列具有明显的空间迁移特征(图2),表明此次序列不是简单的单次破裂事件,而是复合型地震序列。鉴于序列在空间上存在东西两支(以图2红色虚线为界),因此分别讨论其随时间的演化特征。

    计算序列西支得到该支最小完整性震级MCb值和p值分别为ML1.5,0.71和0.81 (图6a);序列东支此三个参数分别为ML1.6,0.93和0.94 (图6b)。序列西支与东支参数计算结果存在差异,反映了两支序列并非单一断裂构造所致;序列西支b值和p值较低,且p值与断裂之间存在幂律分布关系(Kagan,2011),认为西支b值和p值较低的现象是该区域应力释放不充分、应力水平较高的反映,而序列衰减较慢,可能与MS5.8前震序列发生在该支有关。

    图  6  马尔康MS6.0震群序列西支(a)和东支(b)震级-频度关系(左)及余震频度随时间衰减拟合关系(右)
    Figure  6.  Magnitude-frequency relation (left) and parameter fitting results of temporal decay rate of aftershocks (right) for west segment (a) and east segment (b) of Barkam MS6.0 earthquake sequence

    2022年6月10日马尔康MS6.0震群序列发生在松岗断裂附近,为震群型地震。该序列小震丰富,整体衰减较慢,且空间上呈现分段特性,通过分析得到以下几点结论:

    1) 马尔康MS6.0震群发生在NW向松岗断裂与NE向龙日坝断裂的交会处附近,断裂构造相对复杂。序列精定位结果显示,序列位于松岗断裂的NE向,整体沿NW−SE向展布,呈东、西两支平行分布,与松岗断裂走向近似平行,且东西两支序列在空间上存在迁移特征,空间分布形态也有所不同。序列中较大地震的震源机制解错动类型一致,均为走滑型,与区域背景及松岗断裂性质一致,故推测本次序列由几条不同规模的断层共同活动所致,这些断层距离松岗断裂较近、虽未出露地表但在深部可能与松岗断裂相连,为松岗断层的隐伏分支断层。

    2) 采用模板匹配法对主震发生当日的数据进行微小地震识别。结果显示,模板最终共获得了1 713次确切地震信息,是所用模板地震数量的2.2倍,反映了强震尾波对人工识别地震的干扰是巨大的,同时也证明了模版匹配能有效地拾取遗漏地震。

    3) 利用识别的地震目录及台网目录,取序列三次MS5.0地震之后各一个小时,将其分为Ⅰ , Ⅱ , Ⅲ共计3个时段,对序列bp值进行对比计算分析。结果显示,第Ⅰ阶段具有显著的低b值,反映了此阶段孕震区应力水平较高,MS5.8地震可认为是MS6.0地震的一次前震。另外,第Ⅰ阶段序列p值明显低于后两个阶段,反映了前震序列的时间演化与余震序列存在差异。

    4) 将序列分为东西两段,分别计算其bp值。序列西支的b值和p值较低,反映了该区域应力释放不充分、应力水平较高,序列衰减较慢,可能与MS5.8前震序列发生在该支有关。

    综合分析认为,MS5.8地震是马尔康MS6.0震群序列的前震,时间上,主震发生前的MS5.8地震序列具有低b值、低p值的特征;空间上,MS5.8地震所在的西支序列,同样具有较低的b值和p值,反映了马尔康MS6.0震群前震序列衰减较慢,前震所在的区域存在应力释放不充分、应力水平较高的特点。

    本文MCb值的计算使用了Zmap程序(Wiemer,2001),审稿专家对本文提出了建设性的意见,让笔者获益良多,在此一并表示衷心的感谢。

  • 图  1   马尔康及邻区区域构造和MS≥5.0历史地震震中分布图

    断裂数据引自徐锡伟等(2016);板块边界数据引自张培震等(2003

    Figure  1.   Map of Barkam and neighboring regional geological settings and epicenters of historical MS≥5.0 earthquakes

    Fracture data are after Xu et al2016),and plate boundary data are after Zhang et al (2003)

    图  2   马尔康MS6.0震群序列重定位及部分MS≥3.5余震震源机制解

    Figure  2.   Relocation of the Barkam MS6.0 swarm sequence and focal mechanismsolutions of some MS≥3.5 aftershocks

    图  3   2022年6月10日马尔康MS6.0震群序列M-t图和小时频次图(a)、台网目录(b)及补全地震(c)的震级-频度关系图

    Figure  3.   Hourly frequency and M-t diagram (a) of Barkam MS6.0 earthquake sequences on 10 June,2022,and magnitude-frequency relationship based on network seismic catalogue (b) and complete seismic catalogue (c)

    图  4   马尔康MS6.0震群序列第Ⅰ阶段(a)、第Ⅱ阶段(b)和第Ⅲ阶段(c)的震级-频度关系图

    Figure  4.   Magnitude-frequency relation for Barkam MS6.0 earthquake sequences in stage Ⅰ (a),stage Ⅱ (b) and stage Ⅲ (c)

    图  5   马尔康MS6.0震群序列第Ⅰ(a)、第Ⅱ(b)和第Ⅲ(c)阶段的余震频度随时间衰减拟合关系图

    Figure  5.   Parameter fitting results of temporal decay rate of aftershocks for Barkam MS6.0 earthquake sequence in stages Ⅰ (a), Ⅱ (b) and Ⅲ (c)

    图  6   马尔康MS6.0震群序列西支(a)和东支(b)震级-频度关系(左)及余震频度随时间衰减拟合关系(右)

    Figure  6.   Magnitude-frequency relation (left) and parameter fitting results of temporal decay rate of aftershocks (right) for west segment (a) and east segment (b) of Barkam MS6.0 earthquake sequence

    Table  1   Focal mechanism solutions of the 10 June 2022 Barkam MS5.8,MS6.0 events and some MS≥3.5 aftershocks

    Origin time
      a-mo-d h:min
    MW M Best fit
    depth/km
    Nodal plane Ⅰ Nodal plane Ⅱ
    strike/° dip/° slip/° strike/° dip/° slip/°
    2 022-06-10 00:03 5.3 5.8 7 324 76 0 234 90 166
    2 022-06-10 01:28 5.79 6.0 6 329 90 −3 59 87 −180
    2 022-06-10 03:27 5.2 251 84 −175 160 85 −6
    2 022-06-10 04:37 4.46 4.4 6 339 76 0 249 90 166
    2 022-06-10 04:54 3.98 3.9 8 155 84 9 64 81 174
    2 022-06-14 18:11 4.38 4.4 5 149 87 22 58 68 177
    下载: 导出CSV

    表  1   2022年6月10日马尔康MS5.8,MS6.0震群序列主震及部分MS≥3.5余震震源机制解

    Table  1   Focal mechanism solutions of the 10 June 2022 Barkam MS5.8,MS6.0 events and some MS≥3.5 aftershocks

    发震时间
     年-月-日 时:分
    MW M 节面Ⅰ 节面Ⅱ 最佳拟合
    深度/km
    走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/°
    2 022-06-10 00:03 5.3 5.8 324 76 0 234 90 166 7
    2 022-06-10 01:28 5.79 6.0 329 90 −3 59 87 −180 6
    2 022-06-10 03:27 5.2 251 84 −175 160 85 −6
    2 022-06-10 04:37 4.46 4.4 339 76 0 249 90 166 6
    2 022-06-10 04:54 3.98 3.9 155 84 9 64 81 174 8
    2 022-06-14 18:11 4.38 4.4 149 87 22 58 68 177 5
    注:由于6月10日3时27分发生的MS5.2地震存在波形叠加现象,因此选用HASH方法求取该地震震源机制解,该方法无法求取震源深度及矩震级。
    下载: 导出CSV

    Table  2   List of seismic parameters and results used in different stages

    Stage Time period MC Number of events
    with MMC
    a b Mmax p
    2 022-06-10 00:03−01:03 2.1 69 3.1 0.61±0.10 5.0 0.76
    2 022-06-10 01:27−02:27 2.3 57 3.6 0.84±0.34 4.2 1.81
    2 022-06-10 03:27−04:27 1.7 66 3.2 0.86±0.10 3.7 1.64
    下载: 导出CSV

    表  2   不同阶段计算所用的地震参数及结果列表

    Table  2   List of seismic parameters and results used in different stages

    时间段 MC MMC地震次数 a b Mmax p
    第 Ⅰ 阶段 2 022-06-10 00:03—01:03 2.1 69 3.1 0.61±0.10 5.0 0.76
    第 Ⅱ 阶段 2 022-06-10 01:27—02:27 2.3 57 3.6 0.84±0.34 4.2 1.81
    第 Ⅲ 阶段 2 022-06-10 03:27—04:27 1.7 66 3.2 0.86±0.10 3.7 1.64
    注:MC为最小完整性震级,a为地震活动率,b为地震频率随震级增加的衰减率,p为余震频度衰减系。
    下载: 导出CSV
  • 陈长云,任金卫,孟国杰,杨攀新,熊仁伟,胡朝忠,苏小宁,苏建峰. 2013. 巴颜喀拉块体东部活动块体的划分、形变特征及构造意义[J]. 地球物理学报,56(12):4125–4141. doi: 10.6038/cjg20131217

    Chen C Y,Ren J W,Meng G J,Yang P X,Xiong R W,Hu C Z,Su X N,Su J F. 2013. Division,deformation and tectonic implication of active blocks in the eastern segment of Bayan Har block[J]. Chinese Journal of Geophysics,56(12):4125–4141 (in Chinese).

    杜明甫. 2020. 阿坝地区小震精定位及其活动构造意义[D]. 成都:成都理工大学:46−47.

    Du M F. 2020. Location of Small Seismic Essence in Aba Area and Its Active Structural Significance[D]. Chengdu:Chengdu University of Technology:46−47 (in Chinese).

    冯建刚,张辉,杨萍. 2016. 2013年岷县漳县6.6级地震前地震b值异常特征研究[J]. 地震,36(1):32–37. doi: 10.3969/j.issn.1000-3274.2016.01.004

    Feng J G,Zhang H,Yang P. 2016. Anomalies of b-value changes before the 2013 Minxian-Zhangxian MS6.6 earthquake[J]. Earthquake,36(1):32–37 (in Chinese).

    龚宇,何玉林,伍先国. 1995. 抚边河断裂新活动特征的探讨[J]. 四川地震,(4):31–36.

    Gong Y,He Y L,Wu X G. 1995. Discussion on the recent active feature of the Fubianhe fault[J]. Earthquake Research in Sichuan,(4):31–36 (in Chinese).

    宫悦,王宇玺,梁明剑,龙锋,赵敏. 2020. 2019年四川长宁6.0级地震序列时空演化特征及其地震构造环境研究[J]. 地震,40(4):90–102. doi: 10.12196/j.issn.1000-3274.2020.04.007

    Gong Y,Wang Y X,Liang M J,Long F,Zhao M. 2020. Study on the spatio-temporal evolution characteristics and seismic structure environment of the 2019 M6.0 Changning Sichuan earthquake sequence[J]. Earthquake,40(4):90–102 (in Chinese).

    姜丛,蒋长胜,尹凤玲,张延保,毕金孟,龙锋,司政亚,尹欣欣. 2021. 基于数据驱动的时间序列b值计算新方法(TbDD):以2021年云南漾濞MS6.4地震序列为例[J]. 地球物理学报,64(9):3126–3134. doi: 10.6038/cjg2021P0385

    Jiang C,Jiang C S,Yin F L,Zhang Y B,Bi J M,Long F,Si Z Y,Yin X X. 2021. A new method for calculating b-value of time sequence based on data-driven (TbDD):A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan[J]. Chinese Journal of Geophysics,64(9):3126–3134 (in Chinese).

    蒋长胜,吴忠良,庄建仓. 2013. 地震的“序列归属”问题与ETAS模型:以唐山序列为例[J]. 地球物理学报,56(9):2971–2981.

    Jiang C S,Wu Z L,Zhuang J C. 2013. ETAS model applied to the Earthquake-Sequence Association (ESA) problem:The Tangshan sequence[J]. Chinese Journal of Geophysics,56(9):2971–2981 (in Chinese).

    蒋海昆,曲延军,李永莉,郑建常,华爱军,代磊,侯海峰. 2006. 中国大陆中强地震余震序列的部分统计特征[J]. 地球物理学报,49(4):1110–1117. doi: 10.3321/j.issn:0001-5733.2006.04.024

    Jiang H K,Qu Y J,Li Y L,Zheng J C,Hua A J,Dai L,Hou H F. 2006. Some statistic features of aftershock sequences in Chinese mainland[J]. Chinese Journal of Geophysics,49(4):1110–1117 (in Chinese).

    李陈侠,袁道阳,杨虎,徐锡伟. 2016. 东昆仑断裂带东段分支断裂—阿万仓断裂晚第四纪构造活动特征[J]. 地震地质,38(1):44–64. doi: 10.3969/j.issn.0253-4967.2016.01.004

    Li C X,Yuan D Y,Yang H,Xu X W. 2016. The tectonic activity characteristics of Awancang fault in the Late Quaternary,the sub-strand of the eastern Kunlun fault[J]. Seismology and Geology,38(1):44–64 (in Chinese).

    梁明剑,周荣军,闫亮,赵国华,郭红梅. 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨[J]. 地震地质,36(1):28–38. doi: 10.3969/j.issn.0253-4967.2014.01.003

    Liang M J,Zhou R J,Yan L,Zhao G H,Guo H M. 2014. The relationships between neotectonic activity of the middle segment of Dari fault and its geomorphological response,Qinghai Province,China[J]. Seismology and Geology,36(1):28–38 (in Chinese).

    梁明剑,杨耀,杜方,宫悦,孙玮,赵敏,何强. 2020. 青海达日断裂中段晚第四纪活动性与1947年M7¾地震地表破裂带再研究[J]. 地震地质,42(3):703–714.

    Liang M J,Yang Y,Du F,Gong Y,Sun W,Zhao M,He Q. 2020. Late Quaternary activity of the central segment of the Dari fault and restudy of the surface rupture zone of the 1947 M7¾ Dari earthquake,Qinghai Province[J]. Seismology and Geology,42(3):703–714 (in Chinese).

    梁明剑,黄飞鹏,孙凯,张会平,吴微微,张佳伟,杜方,周文英. 2022. 巴颜喀拉块体内部五道梁—长沙贡玛断裂中段全新世活动及最新古地震证据[J]. 地球科学,47(3):766–778.

    Liang M J,Huang F P,Sun K,Zhang H P,Wu W W,Zhang J W,Du F,Zhou W Y. 2022. The Holocene activity and its evidence from paleoearthquake of the middle segment of Wudaoliang-Changshagongma fault inside the Bayan Har block[J]. Earth Science,47(3):766–778 (in Chinese).

    刘维亮. 2006. 大渡河金川水电站区域地壳稳定性评价[D]. 成都:成都理工大学:29−30.

    Liu W L. 2006. Regional Custal Stability Assessment in Dadu River Jinchuan Hydropower Station[D]. Chengdu:Chengdu University of Technology:29−30 (in Chinese).

    龙锋,闻学泽,倪四道. 2009. 区域最小完整性震级时空分布的确定:以龙门山断裂带为例[J]. 地震,29(3):27–36.

    Long F,Wen X Z,Ni S D. 2009. Determination of temporal-spatial distribution of the regional minimum magnitudes of completeness:Application to the Longmenshan fault zone[J]. Earthquake,29(3):27–36 (in Chinese).

    龙锋,蒋长胜,冯建刚,唐兰兰. 2012. 历史大地震破裂区地震危险性的地震活动性定量分析:以南北地震带中北段为例[J]. 地震,32(3):98–108. doi: 10.3969/j.issn.1000-3274.2012.03.011

    Long F,Jiang C S,Feng J G,Tang L L. 2012. Quantitative seismicity analysis for the risk of historical large earthquake rupture zones:Applied to the mid-north segment of the South-North Seismic Belt[J]. Earthquake,32(3):98–108 (in Chinese).

    龙锋,祁玉萍,赵敏,芮雪莲. 2021. 一种基于模板匹配的震相关联和提取技术及其初步应用[J]. 中国地震,37(2):368–378. doi: 10.3969/j.issn.1001-4683.2021.02.010

    Long F,Qi Y P,Zhao M,Rui X L. 2021. A template-matching based process and its preliminary application on seismic phase association and extraction[J]. Earthquake Research in China,37(2):368–378 (in Chinese).

    孙东,王道永,吴德超,赵德军,黄晨. 2010. 马尔康巴拉水电站近场区主要断裂活动性及对工程的影响[J]. 工程地质学报,18(6):940–949.

    Sun D,Wang D Y,Wu D C,Zhao D J,Huang C. 2010. Activity and effect of main faults in near field of Bala hydropower station in Maerkang[J]. Journal of Engineering Geology,18(6):940–949 (in Chinese).

    王椿镛,韩渭宾,吴建平,楼海,白志明. 2003. 松潘—甘孜造山带地壳速度结构[J]. 地震学报,25(3):229–241.

    Wang C Y,Han W B,Wu J P,Lou H,Bai Z M. 2003. Crustal structure beneath the Songpan-Garze orogenic belt[J]. Acta Seismologica Sinica,25(3):229–241 (in Chinese).

    闻学泽. 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震[J]. 地震学报,40(3):255–267. doi: 10.11939/jass.20170211

    Wen X Z. 2018. The 2008 Wenchuan,2013 Lushan and 2017 Jiuzhaigou earthquakes,Sichuan,in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block[J]. Acta Seismologica Sinica,40(3):255–267 (in Chinese).

    熊仁伟,任金卫,张军龙,杨攀新,李智敏,胡朝忠,陈长云. 2010. 玛多—甘德断裂甘德段晚第四纪活动特征[J]. 地震,30(4):65–73. doi: 10.3969/j.issn.1000-3274.2010.04.008

    Xiong R W,Ren J W,Zhang J L,Yang P X,Li Z M,Hu C Z,Chen C Y. 2010. Late Quaternary active characteristics of the Gande segment in the Maduo-Gande fault zone[J]. Earthquake,30(4):65–73 (in Chinese).

    徐锡伟,闻学泽,陈桂华,于贵华. 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学:D辑,38(5):529–542.

    Xu X W,Wen X Z,Chen G H,Yu G H. 2008. Discovery of the Longriba fault zone in eastern Bayan Har block,China and its tectonic implication[J]. Science in China:Series D,51(9):1209–1223. doi: 10.1007/s11430-008-0097-1

    徐锡伟,韩竹军,杨晓平,张世民,于贵华,周本刚,李峰,马保起,陈桂华,冉勇康. 2016. 中国及邻近地区地震构造图[M].北京:地震出版社:1−64.

    Xu X W,Han Z J,Yang X P,Zhang S M,Yu G H,Zhou B G,Li F,Ma B Q,Chen G H,Ran Y K. 2016. Seismotectonic Map in China and Its Adjacent Regions[M]. Beijing:Seismological Press:1−64 (in Chinese).

    易桂喜,闻学泽,王思维,龙锋,范军. 2006. 由地震活动参数分析龙门山—岷山断裂带的现今活动习性与强震危险性[J]. 中国地震,22(2):117–125. doi: 10.3969/j.issn.1001-4683.2006.02.001

    Yi G X,Wen X Z,Wang S W,Long F,Fan J. 2006. Study on fault sliding behaviors and strong-earthquake risk of the Longmenshan-Minshan fault zones from current seismicity parameters[J]. Earthquake Research in China,22(2):117–125 (in Chinese).

    易桂喜,闻学泽,辛华,乔慧珍,王思维,宫悦. 2013. 龙门山断裂带南段应力状态与强震危险性研究[J]. 地球物理学报,56(4):1112–1120.

    Yi G X,Wen X Z,Xin H,Qiao H Z,Wang S W,Gong Y. 2013. Stress state and major-earthquake risk on the southern segment of the Longmen Shan fault zone[J]. Chinese Journal of Geophysics,56(4):1112–1120 (in Chinese).

    詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式[J]. 地球物理学报,64(7):2232–2252. doi: 10.6038/cjg2021O0521

    Zhan Y,Liang M J,Sun X Y,Huang F P,Zhao L Q,Gong Y,Han J,Li C X,Zhang P Z,Zhang H P. 2021. Deep structure and seismogenic pattern of the 2021. 5.22 Madoi (Qinghai) MS7.4 earthquake[J]. Chinese Journal of Geophysics, 64 (7):2232−2252 (in Chinese).

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24. doi: 10.1360/03dz0002

    中国地震局监测预报司. 2007. 中国大陆地震序列研究:“十五”中国地震预报科技攻关成果系列丛书[M]. 北京:地震出版社:34−56.

    Department of Monitoring and Forecasting,China Earthquake Administration. 2007. Research on Mainland China Earthquake Sequence:Series of Achievements in China Earthquake Forecasting Science and Technology During the Tenth Five-Year Plan[M]. Beijing:Seismological Press:34−56 (in Chinese).

    Aki K. 1965. Maximum likelihood estimate of b in the formula logN=abM and its confidence limits[J]. Bull Earthq Res Inst,Univ Tokyo, 43 (2):237−239.

    Dieterich J H,Kilgore B. 1996. Implications of fault constitutive properties for earthquake prediction[J]. Proc Natl Acad Sci USA,93(9):3787–3794. doi: 10.1073/pnas.93.9.3787

    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185

    Iwata T. 2008. Low detection capability of global earthquakes after the occurrence of large earthquakes:Investigation of the Harvard CMT catalogue[J]. Geophys J Int,174(3):849–856. doi: 10.1111/j.1365-246X.2008.03864.x

    Kagan Y Y. 2011. Random stress and Omori’s law[J]. Geophys J Int,186(3):1347–1364. doi: 10.1111/j.1365-246X.2011.05114.x

    Laura G,Stefan W. 2019. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature,574(7777):193–199. doi: 10.1038/s41586-019-1606-4

    Long F,Wen X Z,Ruan X,Zhao M,Yi G X. 2015. A more accurate relocation of the 2013 MS7.0 Lushan,Sichuan,China,earthquake sequence,and the seismogenic structure analysis[J]. J Seismol,19(3):653–665. doi: 10.1007/s10950-015-9485-0

    Long F,He C,Yi G X,He X H,Li L,Shi F Q,Gong Y,Peng L Y. 2023. Seismogenic structures and spatiotemporal seismicity patterns of the 2022 MS6.0 Maerkang earthquake sequence,Sichuan,China[J]. Front Earth Sci,10:1049911. doi: 10.3389/feart.2022.1049911

    Moreno Y,Correig A M,Gómez J B,Pacheco A F. 2001. A model for complex aftershock sequences[J]. J Geophys Res:Solid Earth,106(B4):6609–6619. doi: 10.1029/2000JB900396

    Omori F. 1921. Investigation of the Shinano-Omachi earthquake of 1918[J]. Rep Imp Earthq Invest Common,24:16–69.

    Peng Z G,Vidale J E,Houston H. 2006. Anomalous early aftershock decay rate of the 2004 MW6.0 Parkfield,California,earthquake[J]. Geophys Res Lett,33(17):L17307.

    Perfettini H,Avouac J P. 2004. Postseismic relaxation driven by brittle creep:A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks,application to the Chi-Chi earthquake,Taiwan[J]. J Geophys Res:Solid Earth,109(B2):B02304.

    Popov V L. 2010. Contact Mechanics and Friction[M]. Berlin:Springer:117−136.

    Reasenberg P A. 1999. Foreshock occurrence before large earthquakes[J]. J Geophys Res:Solid Earth,104(B3):4755–4768. doi: 10.1029/1998JB900089

    Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bull Seismol Soc Am,58(1):399–415. doi: 10.1785/BSSA0580010399

    Schorlemmer D,Wiemer S,Wyss M. 2005. Variations in earthquake-size distribution across different stress regimes[J]. Nature,437(7058):539–542. doi: 10.1038/nature04094

    Shcherbakov R,Turcotte D L,Rundle J B. 2004. A generalized Omori’s law for earthquake aftershock decay[J]. Geophys Res Lett,31(11):L11613.

    Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Mag,30(4):521–605.

    Wang R,Chang Y,Han P,Miao M,Zeng Z Y,Shi H X,Li D N,Liu L F,Su Y J. 2023. Optimized traffic light system with AIC and application to the 2021 M6.7 Yangbi earthquake sequence[J]. Entropy,25(5):759. doi: 10.3390/e25050759

    Wiemer S,Wyss M. 1997. Mapping the frequency-magnitude distribution in asperities:An improved technique to calculate recurrence times?[J]. J Geophys Res:Solid Earth,1021(B7):15115–15128.

    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114

    Wiemer S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismol Res Lett,72(3):373–382. doi: 10.1785/gssrl.72.3.373

    Zhao L S,Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634

    Zuñiga F R,Wyss M. 2001. Most and least-likely locations of large to great earthquakes along the Pacific coast of Mexico estimated from local recurrence times based on b-values[J]. Bull Seismol Soc Am,91(6):1717–1728. doi: 10.1785/0120000303

图(6)  /  表(4)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  56
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-10
  • 修回日期:  2023-12-19
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回