渝东南武隆地区志留系龙马溪组页岩储层的古构造应力场模拟

庞一桢, 陈孔全, 张培先, 何贵松, 汤济广, 张斗中, 高令宇, 闫春明, 王砚锋

庞一桢,陈孔全,张培先,何贵松,汤济广,张斗中,高令宇,闫春明,王砚锋. 2025. 渝东南武隆地区志留系龙马溪组页岩储层的古构造应力场模拟. 地震学报,47(1):73−92. DOI: 10.11939/jass.20230137
引用本文: 庞一桢,陈孔全,张培先,何贵松,汤济广,张斗中,高令宇,闫春明,王砚锋. 2025. 渝东南武隆地区志留系龙马溪组页岩储层的古构造应力场模拟. 地震学报,47(1):73−92. DOI: 10.11939/jass.20230137
Pang Y Z,Chen K Q,Zhang P X,He G S,Tang J G,Zhang D Z,Gao L Y,Yan C M,Wang Y F. 2025. Simulation of paleotectonic stress field of Silurian Longmaxi shale reservoirs in Wulong area of southeastern Chongqing. Acta Seismologica Sinica47(1):73−92. DOI: 10.11939/jass.20230137
Citation: Pang Y Z,Chen K Q,Zhang P X,He G S,Tang J G,Zhang D Z,Gao L Y,Yan C M,Wang Y F. 2025. Simulation of paleotectonic stress field of Silurian Longmaxi shale reservoirs in Wulong area of southeastern Chongqing. Acta Seismologica Sinica47(1):73−92. DOI: 10.11939/jass.20230137

渝东南武隆地区志留系龙马溪组页岩储层的古构造应力场模拟

基金项目: 中国石化科技部项目(P21087-6)资助
详细信息
    作者简介:

    庞一桢,在读硕士研究生,主要从事构造应力场数值模拟方向研究,e-mail:18120224972@163.com

    通讯作者:

    陈孔全,博士,教授,主要从事非常规油气地质研究,e-mail:30760410@qq.com

  • 中图分类号: TE121.2

Simulation of paleotectonic stress field of Silurian Longmaxi shale reservoirs in Wulong area of southeastern Chongqing

  • 摘要:

    渝东南武隆地区志留系龙马溪组页岩储层发育,构造裂缝是页岩气运移和聚集的主控因素,而古构造应力场控制着构造裂缝的发育,对武隆地区页岩气的勘探开发具有较大影响。本文对武隆地区及周缘发育的节理进行分期配套处理,明确了武隆地区的古构造应力方向,同时通过岩石声发射实验计算得到了古构造应力的大小。在此基础上,利用ANSYS有限元软件建立了武隆地区志留系龙马溪组地层关键构造变形期的地质模型,并通过构造应力场的分析结果明确了该地区关键构造期的构造应力特征,以确定构造应力场数值模拟的边界条件,进而对构造应力场进行数值模拟。研究结果表明:武隆地区受雪峰陆内造山运动的影响,其主要构造变形期为中燕山中期和中燕山晚期,其中燕山中期的最大、最小水平主应力分别为112—194 MPa和60.93—147.99 MPa,中燕山晚期的最大、最小水平主应力分别为75.67—168.32 MPa和31.19—95.56 MPa。模拟结果显示最大水平主应力的高值区大多集中于武隆西向斜核部、断层上盘的局部区域以及断层的拐点和端点处。页岩气有利保存区与断层上盘的距离要远于断层下盘。向斜的核部曲率越大,越易形成“Λ”型裂缝,越有利于页岩气的储集和保存,因此武隆西向斜的页岩气有利保存区优于武隆东向斜。

    Abstract:

    The development of the shale reservoir within the Silurian Longmaxi Formation in the Wulong area of southeastern Chongqing is significantly affected by the superposition of multiple tectonic processes. This has led to intricate structural deformations in the region, making it imperative to analyze the principal controlling elements for shale gas preservation. Given the shale reservoir’s characteristic low porosity and low permeability, tectonic fractures play a pivotal role as the main controlling factor in the migration and accumulation of shale gas. The paleotectonic stress field determines the development of these tectonic fractures, augmenting the reservoir’s storage capacity and enhancing the connectivity among fractures. Consequently, this has a profound impact on the exploration and development of shale gas in the Wulong area. Thus, analyzing the sequence of tectonic evolution, deciphering the direction of the paleotectonic stress field, and quantitatively characterizing the features of the tectonic stress field hold substantial theoretical and practical significance for shale gas exploration and exploitation in this area.

    In this research paper, comprehensive field measurements were carried out on the data of conjugate shear joints in the Wulong area and its adjacent periphery. These data were then systematically classified into distinct stages and carefully matched. By leveraging the trend and superposition relationships of fold axes both within the study area and its surrounding regions, the direction of the paleotectonic stress was determined. Through the integration of geochronological data and the outcomes of rock acoustic emission experiments, the tectonic evolution process of the Wulong area was accurately reconstructed. This enabled the determination of the tectonic evolution periods and the corresponding stress magnitudes for each period, while also clarifying the key tectonic deformation period and the fracture distribution traits of the study area. Employing finite element software ANSYS, a three-dimensional geological model was established, specifically focusing on the key tectonic deformation period of the Silurian Longmaxi Formation in the Wulong area. In light of the distribution patterns of rock mechanical parameters in the study area, the mechanical units were appropriately divided, and a corresponding mechanical model was constructed. After multiple rounds of simulation corrections, the optimal boundary stress application conditions for the model were precisely ascertained by analyzing the distinct characteristics of the paleotectonic stress field. Subsequently, numerical simulations of the paleotectonic stress field were executed to elucidate the structural stress characteristics during the key tectonic deformation periods.

    The research findings reveal that since the Middle Yanshanian, the Wulong area has mainly experienced two phases of structural stress. These phases are characterized by stress directions in the SE−NW orientation and close to the EW direction, with the tectonic stress manifesting as compressive. During the Middle Yanshanian, under the influence of the progressive expansion of the Xuefeng intracontinental orogenic movement from the SE−NW direction, a series of NE-trending faults and associated folds emerged in the Wulong area and its neighboring areas. These formations coalesced to form the primary structural pattern of the Wulong area, marking the principal structural deformation period. This pattern has since become the dominant tectonic configuration in the region. However, during the early stage of Middle Yanshanian, the stress environment generated by the Xuefeng intracontinental orogeny underwent a transformation in the study area. The stress changed from the SE−NW compressive state to a nearly EW compressive state. This led to the formation of near SN-trending faults and related folds in the area, which superimposed upon the pre-existing structural morphology. In the process, L-shaped and T-shaped fold structures materialized in the study area and its environs. Although the tectonic activity during this late stage of Middle Yanshanian did not succeed in changing the main NE-trending tectonic pattern in the Wulong area.

    Regarding the stress magnitudes, in the middle stage of Middle Yanshanian, the maximum horizontal principal stress ranged from 112 MPa to 194 MPa, while the minimum horizontal principal stress ranged from 60.93 MPa to 147.99 MPa. Notably, the high values of the maximum principal stress were concentrated in the core of the western Wulong syncline. In the late stage of Middle Yanshanian, the maximum horizontal principal stress fluctuated from 75.67 MPa to 168.32 MPa, and the minimum horizontal principal stress varied from 31.19 MPa to 95.56 MPa. Significantly, the stress value of the western Wulong syncline surpassed that of the eastern syncline. It is also worth noting that there exists a discernible correlation between the stress distribution characteristics and the burial depth. The stress contours were distributed in a ring-like fashion, with the maximum stress value at the central region progressively diminishing outward. Additionally, the stress gradient of the low-value zone exhibited a close relationship with fault intensity. Specifically, the greater the fault intensity, the steeper the stress gradient of the maximum principal stress. At the endpoints and inflection points of the faults, the high stress regions emerged, where stress concentration occurred. Moreover the stress on the hanging wall of the fault was higher than that on the footwall. As a result, the degree of fracture development on the hanging wall of the fault was more pronounced than that on the footwall. Consequently, the favorable preservation area for shale gas was located farther from the hanging wall of the fault compared to the footwall. Moreover, stress concentration at the endpoints and inflection points of the faults led to the relatively developed structural fractures that were easily interconnected, facilitating the escape of shale gas. Hence, these areas were unfavorable for shale gas preservation. Furthermore, the deformation degree of the western Wulong syncline was more pronounced than that of the eastern Wulong syncline. The greater the deformation degree of the syncline, the larger the curvature of its core, making it more susceptible to the formation of ‘Λ’-type fractures. These fractures were conducive to the storage and preservation of shale gas. Therefore, the favorable preservation area for shale gas in the western Wulong syncline was superior to that in the eastern Wulong syncline. Studying the characteristics of the paleotectonic stress field lays the foundation for exploring the development degree of tectonic fractures and evaluating the effects of deep fracturing, and it is indeed a critical factor influencing high yields.

  • 图  10   古构造应力场中燕山中期(上)、晚期(下)的最大主应力(a,c)和最小主应力(b,d)的数值模拟结果

    Figure  10.   Numerical simulation results of the maximum principal stress (a,c) and minimum principal stress (b,d) in the middle and late stages of the Middle Yanshanian

    图  1   武隆地区区域位置图

    (a) 武隆及邻区地质构造图;(b) 龙马溪组底界构造图;(c) 沿AA′测线的地震解释剖面

    Figure  1.   Regional location map of Wulong area

    (a) Geological tectonic settings of Wulong and its adjacent areas;(b) Structural map of the bottom boundary of the Longmaxi Formation;(c) Seismic interpretation section along the seismic survey line AA

    图  2   武隆地区及周缘磷灰石裂变径迹的热史模拟

    (a) 样品AFT-1 (引自梅廉夫等,2010);(b) 样品AFT-2 (引自吴航,2019

    Figure  2.   Thermal history simulation of apatite fission tracks in Wulong and its surrounding areas

    (a) Sample AFT-1 (after Mei et al,2010);(b) Sample AFT-2 (after Wu,2009

    图  3   武隆地区及周缘的背向斜轴迹走向(a)及构造应力方向玫瑰花图(b)

    Figure  3.   The strike of the anticlinal and synclinal axis traces (a) and rose diagram of the tectonic stress direction (b) of Wulong area and its periphery

    图  4   武隆地区及周缘的野外实测点R1 (a),R2 (b),R3 (c),R4 (d),R5 (e)和R6 (f)处的共轭剪节理露头

    Figure  4.   Outcrops of conjugate shear joints at the field measurement points R1 (a),R2 (b),R3 (c),R4 (d),R5 (e) and R6 (f) in Wulong area and its surrounding areas

    图  5   样品K1 (a)和K2 (b)的岩石声发射个数与应力曲线(采样位置见图1a

    Figure  5.   Curves of rock acoustic emission number versus stress of the samples K1 (a) and K2 (b) (see Fig.1a for sampling locations)

    图  6   武隆地区志留系龙马溪组底界的中燕山中期(a)和晚期(b)的古断裂展布图

    Figure  6.   Distribution of paleo-faults in the middle (a) and late (b) stages of the Middle Yanshanian at the bottom boundary of the Silurian Longmaxi Formation in Wulong area

    图  7   武隆地区志留系龙马溪组地层的弹性模量(a)和泊松比(b)分布图

    Figure  7.   Distribution of elastic modulus (a) and Poisson’s ratio (b) of Silurian Longmaxi Formation in Wulong area

    图  8   中燕山中期(a)和晚期(b)有限元模型的网格单元划分

    Figure  8.   Mesh element division of finite element models in the middle (a) and late (b) stages of the Middle Yanshanian

    图  9   中燕山中期(a)和晚期(b)地质模型的边界条件示意图

    Figure  9.   Schematic diagram of the boundary conditions of the geological models of the middle (a) and late (b) stages of the Middle Yanshanian

    图  11   断裂带周缘裂缝发育模式图

    Figure  11.   Fracture development pattern at the periphery of the fault zone

    表  1   样品K1K2的岩石声发射实验结果

    Table  1   Results of rock acoustic emission experiments for the samples K1 and K2

    样品
    编号
    样品采集
    层位
    早燕山期 中燕山早期 中燕山中期 中燕山晚期 喜山期
    σ1/MPa σ3/MPa σ1/MPa σ3/MPa σ1/MPa σ3/MPa σ1/MPa σ3/MPa σ1/MPa σ3/MPa
    K1 T1j 15.12 7.71 33.53 22.68 150.18 73.14 120.55 40.94 71.70 48.65
    K2 T1j 31.16 7.39 50.17 33.06 153.81 141.68 124.30 86.38 109.07 34.65
    注:σ1σ3为最大、最小主应力,T1j为下三叠统嘉陵江组地层。样品测试实验室:成都市成华区东方矿产开发技术研究所;测试者:韦力;测试仪器:美国物理公司生产的AE声发射检测系统。
    下载: 导出CSV

    表  2   武隆地区多个钻井目的层岩心的岩石力学参数

    Table  2   Rock mechanical parameters of the target layer cores of several drills in Wulong area

    样品编号 弹性模量/GPa 泊松比
    LY1-1 37.14 0.266
    LY1-2 36.70 0.276
    LY2-1 31.34 0.292
    LY2-2 32.57 0.279
    LY3-1 43.22 0.241
    LY3-2 43.35 0.232
    注:样本测试实验室:成都市成华区东方矿产开发技术研究所;测试者:韦力;测试仪器:美国物理公司生产的TAW-1 000微机电液伺服控制岩石三轴应力试验机。
    下载: 导出CSV

    表  3   中燕山中期和晚期地质模型的岩石力学参数

    Table  3   The rock mechanical parameters of the geological models in the middle and late stages of the Middle Yanshanian

    岩石物理参数 弹性模量/GPa 泊松比
    力学单元1 43.21 0.23
    力学单元2 39.53 0.26
    力学单元3 32.51 0.30
    力学单元4 28.52 0.32
    断层 19.51 0.35
    缓冲区 3.62 0.28
    下载: 导出CSV

    表  4   研究区古构造应力场数值模拟结果对比

    Table  4   Comparison of numerical simulation results of paleotectonic stress field in the study area

    时期实测点最大主应力最小主应力差应力
    实验结果
    /MPa
    模拟结果
    /MPa
    差值
    /MPa
    实验结果
    /MPa
    模拟结果
    /MPa
    差值
    /MPa
    实验结果
    /MPa
    模拟结果
    /MPa
    差值
    /MPa
    中燕山中期R1150.18152.63−2.4573.1475.71−2.5777.0476.920.12
    R2153.81152.691.12124.30120.234.0729.5132.46−2.95
    中燕山晚期R1120.55118.462.0940.9442.17−1.2379.6176.293.32
    R2141.68139.981.7086.3883.972.4155.3056.01−0.71
    下载: 导出CSV
  • 丁文龙,曾维特,王濡岳,久凯,王哲,孙雅雄,王兴华. 2016. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘,23(2):63–74.

    Ding W L,Zeng W T,Wang R Y,Jiu K,Wang Z,Sun Y X,Wang X H. 2016. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers,23(2):63–74 (in Chinese).

    董敏,郭伟,张林炎,吴中海,马立成,董会,冯兴强,杨跃辉. 2022. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏,34(1):43–51.

    Dong M,Guo W,Zhang L Y,Wu Z H,Ma L C,Dong H,Feng X Q,Yang Y H. 2022. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou area,southern Sichuan Basin[J]. Lithologic Reservoirs,34(1):43–51 (in Chinese).

    葛勋,汤济广,赵培荣,唐永,许启鲁. 2023. 渝东南彭水地区页岩储层构造应力场模拟解析[J]. 西南石油大学学报(自然科学版),45(5):27–42.

    Ge X,Tang J G,Zhao P R,Tang Y,Xu Q L. 2023. Simulation and analysis of tectonic stress field of shale reservoir in Pengshui area,southeast Chongqing[J]. Journal of Southwest Petroleum University (Science &Technology Edition),45(5):27–42 (in Chinese).

    顾悦,陈世桢,贾小瑛,张竹如. 1983. 关于节理裂隙面产状随地层复平变化的一种简捷计算方法[J]. 贵州工学院学报,(3):24–28.

    Gu Y,Chen S Z,Jia X Y,Zhang Z R. 1983. A simple method for calculating the occurrence of joint fracture surface with the change of strata releveling[J]. Journal of Guizhou Institute of Technology,(3):24–28 (in Chinese).

    郭彤楼,何希鹏,曾萍,高玉巧,张培先,何贵松. 2020. 复杂构造区页岩气藏地质特征与效益开发建议:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,41(12):1490–1500.

    Guo T L,He X P,Zeng P,Gao Y Q,Zhang P X,He G S. 2020. Geological characteristics and beneficial development scheme of shale gas reservoirs in complex tectonic regions:A case study of Wufeng-Longmaxi Formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica,41(12):1490–1500 (in Chinese).

    何利,宋春彦,谭钦银,程锦翔,王瑞华,杨贵来. 2017. 川东南武隆地区五峰组—龙马溪组页岩气形成条件及富集区分析[J]. 海相油气地质,22(3):47–56.

    He L,Song C Y,Tan Q Y,Cheng J X,Wang R H,Yang G L. 2017. Accumulation conditions and enrichment zones of shale gas in Wufeng-Longmaxi Formation in Wulong area of southeast Sichuan Basin[J]. Marine Origin Petroleum Geology,22(3):47–56 (in Chinese).

    何梅朋. 2023. 武隆地区五峰组—龙马溪组优质浅层常压页岩储层发育特征及含气性影响因素[J]. 非常规油气,10(3):64–73.

    He M P. 2023. Development characteristics and gas-bearing factors of high-quality shallow ordinary-pressure shale reservoirs in Wufeng-Longmaxi Formation in Wulong area[J]. Unconventional Oil &Gas,10(3):64–73 (in Chinese).

    何希鹏,何贵松,高玉巧,张培先,卢双舫,万静雅. 2018. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业,38(12):1–14.

    He X P,He G S,Gao Y Q,Zhang P X,Lu S F,Wan J Y. 2018. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin margin transition zone of SE Chongqing[J]. Natural Gas Industry,38(12):1–14 (in Chinese).

    何希鹏,高玉巧,马军,张培先,何贵松,周頔娜,刘娜娜,孙斌. 2022. 重庆市武隆区黄莺乡五峰组—龙马溪组剖面沉积特征及地质意义[J]. 油气藏评价与开发,12(1):95–106.

    He X P,Gao Y Q,Ma J,Zhang P X,He G S,Zhou D N,Liu N N,Sun B. 2022. Sedimentary characteristics and geological significance of outcrop in Wufeng-Longmaxi Formation,Huangying Town,Wulong District,Chongqing[J]. Petroleum Reservoir Evaluation and Development,12(1):95–106 (in Chinese).

    李东东. 2017. 武陵山区中新生代古构造应力场分析[D]. 北京:中国地质大学(北京):33−34.

    Li D D. 2017. Analysis of the Characteristics of Paleotectonic Stress in Area of Wuling Mount[D]. Beijing:China University of Geosciences (Beijing):33−34 (in Chinese).

    李萧,吴礼明,王丙贤,胡秋媛,董大伟. 2021. 渝东南地区龙马溪组构造应力场数值模拟及裂缝有利区预测[J]. 地质科技通报,40(6):24–31.

    Li X,Wu L M,Wang B X,Hu Q Y,Dong D W. 2021. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation,southeastern Chongqing[J]. Bulletin of Geological Science and Technology,40(6):24–31 (in Chinese).

    李艺豪. 2023. 川东—川鄂渝黔地块武隆地区地质构造与大型滑坡响应关系研究[D]. 北京:中国地质科学院:49−50.

    Li Y H. 2023. Study on the Relationship Between Geological Structure and Large Landslide in Wulong Area of the Eastern Sichuan Block-ChuanEYuQian Block[D]. Beijing:Chinese Academy of Geological Sciences:49−50 (in Chinese).

    刘金华. 2009. 油气储层裂缝形成、分布及有效性研究[D]. 青岛:中国石油大学(华东):88−89.

    Liu J H. 2009. Study on the Formation,Distribution and Effectiveness of Reservoir Fractures With Oil and Gas[D]. Qingdao:China University of Petroleum (East China):88−89 (in Chinese).

    马新华,谢军. 2018. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,45(1):161–169.

    Ma X H,Xie J. 2018. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin,NW China[J]. Petroleum Exploration and Development,45(1):161–169 (in Chinese).

    梅廉夫,刘昭茜,汤济广,沈传波,凡元芳. 2010. 湘鄂西—川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J]. 地球科学:中国地质大学学报,35(2):161–174.

    Mei L F,Liu Z Q,Tang J G,Shen C B,Fan Y F. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China:Evidence from apatite fission track and balanced cross-section[J]. Earth Science:Journal of China University of Geosciences,35(2):161–174 (in Chinese).

    聂海宽,包书景,高波,边瑞康,张培先,武晓玲,叶欣,陈新军. 2012. 四川盆地及其周缘下古生界页岩气保存条件研究[J]. 地学前缘,19(3):280–294.

    Nie H K,Bao S J,Gao B,Bian R K,Zhang P X,Wu X L,Ye X,Chen X J. 2012. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery[J]. Earth Science Frontiers,19(3):280–294 (in Chinese).

    彭瑞,孟祥瑞,赵光明,董春亮,左超. 2015. 不同岩性岩石声发射地应力测试及其应用[J]. 中南大学学报(自然科学版),46(9):3377–3384.

    Peng R,Meng X R,Zhao G M,Dong C L,Zuo C. 2015. Acoustic emission insitu stress testing of different lithology rock and its application[J]. Journal of Central South University (Science and Technology),46(9):3377–3384 (in Chinese).

    任浩林,刘成林,刘文平,杨熙雅,李文研. 2020. 四川盆地富顺—永川地区五峰组—龙马溪组应力场模拟及裂缝发育区预测[J]. 地质力学学报,26(1):74–83.

    Ren H L,Liu C L,Liu W P,Yang X Y,Li W Y. 2020. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan block,Sichuan Basin[J]. Journal of Geomechanics,26(1):74–83 (in Chinese).

    苏文博,李志明,Ettensohn F R,Johnson M E,Huff W D,王巍,马超,李录,张磊,赵慧静. 2007. 华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学:中国地质大学学报,32(6):819–827

    Su W B,Li Z M,Ettensohn F R,Johnson M E,Huff W D,Wang W,Ma C,Li L,Zhang L,Zhao H J. 2007. Distribution of black shale in the Wufeng-Longmaxi Formations (Ordovician-Silurian),South China:Major controlling factors and implications[J]. Earth Science:Journal of China University of Geosciences,32(6):819–827 (in Chinese).

    孙斌,鞠玮,杨敏芳,杨兆彪,刘洪林,王胜宇. 2021. 滇东北地区煤储层现今地应力分布特征及渗透性预测[J]. 中国煤炭地质,33(4):44–50.

    Sun B,Ju W,Yang M F,Yang Z B,Liu H L,Wang S Y. 2021. Distribution of present-day in-situ stresses and permeability prediction within coal reservoirs of northeastern Yunnan region[J]. Coal Geology of China,33(4):44–50 (in Chinese).

    孙晓庆. 2008. 古构造应力场有限元数值模拟的应用及展望[J]. 断块油气田,15(3):31–33.

    Sun X Q. 2008. Present situation and prospect of application for finite element numerical simulation of paleotectonic stress fields[J]. Fault-Block Oil and Gas Fields,15(3):31–33 (in Chinese).

    孙玥. 2020. 四川盆地龙马溪组页岩气富集的控制因素及评价[D]. 北京:中国石油大学(北京):45−46.

    Sun Y. 2020. Comparative Analysis and Periphery of Shale Gas Enrichment and Depletion Factors in the Wufeng-Longmaxi Formation in the Sichuan Basin[D]. Beijing:China University of Petroleum (Beijing):45−46 (in Chinese).

    王珂,戴俊生,冯阵东,解艳雪,樊阳,王媛,赵力彬. 2013. 砂泥岩间互地层等效岩石力学参数计算模型及其应用[J]. 地质力学学报,19(2):143–151.

    Wang K,Dai J S,Feng Z D,Xie Y X,Pan Y,Wang Y,Zhao L B. 2013. Calculation model of equivalent rock mechanical parameters of sand-mud interbed and its application[J]. Journal of Geomechanics,19(2):143–151 (in Chinese).

    王珂,戴俊生,冯建伟,王俊鹏,李青. 2014. 塔里木盆地克深前陆冲断带储层岩石力学参数研究[J]. 中国石油大学学报(自然科学版),38(5):25–33.

    Wang K,Dai J S,Feng J W,Wang J P,Li Q. 2014. Research on reservoir rock mechanical parameters of Keshen foreland thrust belt in Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),38(5):25–33 (in Chinese).

    王琳. 2020. 渝东南地区重点层系页岩气富集条件及可采资源[D]. 北京:中国地质大学(北京):63−64.

    Wang L. 2020. Enrichment Conditions and Recoverable Resources of Shale Gas of the Focus Layers in Southeast Chongqing[D]. Beijing:China University of Geosciences (Beijing):63−64 (in Chinese).

    吴航. 2019. 川东地区中-新生代构造隆升过程研究[D]. 北京:中国石油大学(北京):126−127.

    Wu H. 2019. Meso-Cenozoic Tectonic Uplift Process of the Eastern Sichuan Basin[D]. Beijing:China University of Petroleum (Beijing):126−127 (in Chinese).

    吴聿元,张培先,何希鹏,高玉巧,何贵松,孙斌,万静雅,高全芳,周頔娜. 2020. 渝东南地区五峰组—龙马溪组页岩岩石相及与页岩气富集关系[J]. 海相油气地质,25(4):335–343.

    Wu Y Y,Zhang P X,He X P,Gao Y Q,He G S,Sun B,Wan J Y,Gao Q F,Zhou D N. 2020. Lithofacies and shale gas enrichment of Wufeng Formation-Longmaxi Formation in southeastern Chongqing[J]. Marine Oil and Gas Geology,25(4):335–343 (in Chinese).

    谢渊,丘东洲,王剑,汪正江,刘建清,余谦,李嵘,杨平,李旭兵. 2012. 雪峰山西侧盆山过渡带震旦系—下古生界油气远景区预测与评价[J]. 地质通报,31(11):1769–1780.

    Xie Y,Qiu D Z,Wang J,Wang Z J,Liu J Q,Yu Q,Li R,Yang P,Li X B. 2012. Prediction and evaluation of the Sinian-Lower Paleozoic oil-gas prospective areas in the basin-mountain transitional region on the western side of the Xuefeng Mountain[J]. Geological Bulletin of China,31(11):1769–1780 (in Chinese).

    徐政语,梁兴,王维旭,张介辉,王希有,舒红林,黄程,王高成,鲁慧丽,刘臣,张朝,李庆飞,徐鹤. 2016. 上扬子区页岩气甜点分布控制因素探讨:以上奥陶统五峰组—下志留统龙马溪组为例[J]. 天然气工业,36(9):35–43.

    Xu Z Y,Liang X,Wang W X,Zhang J H,Wang X Y,Shu H L,Huang C,Wang G C,Lu H L,Liu C,Zhang C,Li Q F,Xu H. 2016. Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region:A case study of the Upper Ordovician Wufeng Fm−Lower Silurian Longmaxi Fm,Sichuan Basin[J]. Natural Gas Industry,36(9):35–43 (in Chinese).

    薛亚东,高德利. 2000. 声发射地应力测量中凯塞点的确定[J]. 石油大学学报(自然科学版),24(5):1–3.

    Xue Y D,Gao D L. 2000. Determination of Kaiser point in measurement of geo-stress with acoustic emission[J]. Journal of the University of Petroleum,China,24(5):1–3 (in Chinese).

    云露,高玉巧,高全芳. 2023. 渝东南地区常压页岩气勘探开发进展及下步攻关方向[J]. 石油实验地质,45(6):1078–1088.

    Yun L,Gao Y Q,Gao Q F. 2023. Progress and research direction of normal-pressure shale gas exploration and development in southeastern Chongqing[J]. Petroleum Geology &Experiment,45(6):1078–1088 (in Chinese).

    曾维特. 2014. 渝东南地区下古生界页岩储层裂缝发育特征与分布预测研究[D]. 北京:中国地质大学(北京):37−38.

    Zeng W T. 2014. The Characteristics and Distribution Prediction of Fractures in Lower Paleozoic Shale,Southeast of Chongqing Area[D]. Beijing:China University of Geosciences (Beijing):37−38 (in Chinese).

    张斗中,陈孔全,汤济广,庹秀松,马帅. 2024. 鄂西荆门地区志留系龙马溪组古构造应力场研究及裂缝预测[J]. 地球学报,45(2):217–231.

    Zhang D Z,Chen K Q,Tang J G,Tuo X S,Ma S. 2024. Paleotectonic stress field and fracture prediction of Silurian Longmaxi Formation in Jingmen area,western Hubei[J]. Acta Geoscientica Sinica,45(2):217–231 (in Chinese).

    张海涛,张颖,何希鹏,高玉巧,张培先. 2018. 渝东南武隆地区构造作用对页岩气形成与保存的影响[J]. 中国石油勘探,23(5):47–56.

    Zhang H T,Zhang Y,He X P,Gao Y Q,Zhang P X. 2018. The effect of tectonism on shale gas formation and preservation in Wulong area,southeastern Chongqing[J]. China Petroleum Exploration,23(5):47–56 (in Chinese).

    张胜利. 2010. 构造应力场模拟:有限元理论、方法和研究进展[J]. 西北地震学报,32(4):405–410.

    Zhang S L. 2010. Modeling of tectonic stress field:The theory,method and related research progress of the finite element method[J]. Northwestern Seismological Journal,32(4):405–410 (in Chinese).

    张晓明,石万忠,徐清海,王任,徐壮,王健,王超,袁琪. 2015. 四川盆地焦石坝地区页岩气储层特征及控制因素[J]. 石油学报,36(8):926–939.

    Zhang X M,Shi W Z,Xu Q H,Wang R,Xu Z,Wang J,Wang C,Yuan Q. 2015. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area,Sichuan Basin[J]. Acta Petrolei Sinica,36(8):926–939 (in Chinese).

    张颖,张海涛,何希鹏,高玉巧,张培先. 2018. 渝东南武隆地区龙马溪组页岩孔裂隙特征研究[J]. 西南石油大学学报(自然科学版),40(4):29–39.

    Zhang Y,Zhang H T,He X P,Gao Y Q,Zhang P X. 2018. Shale pore characteristics of Longmaxi Formation in Wulong area,southeastern Chongqing[J]. Journal of Southwest Petroleum University (Science &Technology Edition),40(4):29–39 (in Chinese).

    赵奎,项威斌,曾鹏,杨道学,伍文凯,龚囱,杨贤达. 2021. 岩石声发射Kaiser效应研究现状及展望[J]. 金属矿山,(1):94–105.

    Zhao K,Xiang W B,Zeng P,Yang D X,Wu W K,Gong C,Yang X D. 2021. Research status and prospect of Kaiser effect in rock acoustic emission[J]. Metal Mine,(1):94−105 (in Chinese).

    钟城,秦启荣,魏志红,李虎,邓毅,何威. 2018. 酒店垭—桑木场构造须家河组节理发育特征与应力场解析[J]. 现代地质,32(2):279–288.

    Zhong C,Qin Q R,Wei Z H,Li H,Deng Y,He W. 2018. Characteristics and tectonic stress field of joints in Xujiahe Formation of Jiudianya-Sangmuchang structure[J]. Geoscience, 32 (2):279−288 (in Chinese).

    祖克威,曾大乾,程秀申,卓色强,李松峰. 2017. 普光地区嘉二段构造裂缝形成机理及预测[J]. 新疆石油地质,38(4):407–413.

    Zu K W,Zeng D Q,Cheng X S,Zhuo S Q,Li S F. 2017. Forming mechanism and prediction of structural fractures in the second member of Jialingjiang Formation in Puguang area[J]. Xinjiang Petroleum Geology,38(4):407–413 (in Chinese).

    Camac B A,Hunt S P. 2009. Predicting the regional distribution of fracture networks using the distinct element numerical method[J]. AAPG Bulletin,93(11):1571–1583. doi: 10.1306/07230909040

    Ding W L,Fan T L,Yu B S,Huang X B,Liu C. 2012. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin,Northwest China[J]. J Petrol Sci Eng, 86 87 (3):62–70.

    Ju W,Wang J L,Fang H H,Gong Y P,Zhang S J. 2017. Paleostress reconstructions and stress regimes in the Nanchuan region of Sichuan Basin,South China:Implications for hydrocarbon exploration[J]. Geosci J, 21 (4):553–564.

    Kaiser P K,Moss A. 2022. Deformation-based support design for highly stressed ground with a focus on rockburst damage mitigation[J]. J Rock Mech Geotech Eng,14(1):50–66.

    Li J J,Qin Q R,Li H,Zhao S X. 2022. Paleotectonic stress field modeling and fracture prediction of the Longmaxi Formation in the N216 well block,southern Sichuan basin,China[J]. Arab J Geosci,15(4):347.

    Liu J S,Ding W L,Wang R Y,Yin S,Yang H M,Gu Y. 2017. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs:A case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong block,South China[J]. Mar Petrol Geol,84:289–310.

    Tang Y,Yang F,Lü Q Q,Tang W J,Wang H K. 2018. Analysis of the tectonic stress field of SE Sichuan and its impact on the preservation of shale gas in Lower Silurian Longmaxi Formation of the Dingshan region,China[J]. J Geol Soc India,92(1):92–100. doi: 10.1007/s12594-018-0957-z

    Zhang D Z,Tang J G,Chen K Q,Wang K M,Zhang P X,He G S,Tuo X S. 2022. Simulation of tectonic stress field and prediction of tectonic fracture distribution in Longmaxi Formation in Lintanchang area of eastern Sichuan Basin[J]. Front Earth Sci,10:1024748.

图(11)  /  表(4)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  11
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-22
  • 修回日期:  2024-02-03
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2025-01-29

目录

    /

    返回文章
    返回