Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array
-
摘要:
目前我国约有数百个井下地震观测台。井下观测可以避免地表噪声干扰和场地效应,填补在高噪声区域获取高精度地震资料的空白。增加井下观测台站可以弥补地表观测能力的不足,使观测台站的布局更加科学合理,从而也为地震学观测研究开辟新途径。井下台网观测波形有利于准确测定地震参数,建立高精度波速模型,探索地震成因,从而推动地震预报工作。唐山强震就发生在低速体与高速体之间,文安地震前波速出现了可信的地震前兆性降低异常。井下地震仪可观测到地表反射波,对研究地壳精细结构和资源评估均有重要意义。井下观测到的震级、矩震级以及拐角频率均小于地面台站观测结果。江苏东海大陆深井垂直地震台阵井下波形的平均信噪比为70 dB以上,在高噪声背景区可获得高保真度的地震波形,也为研究震源提供更直接的约束条件,有利于高可信度的震源理论研究,以及地震波传播的非线性效应和场地效应的研究,进而提高强地面运动预测的精确度。井下与地面观测的震级差异可能与上层介质的波形非线性增幅效应及波的频率有关,它们拐角频率差异可能与上层介质对不同频率波分量的影响有关。这些差异的成因也具有多重复杂性,有待于深入地科学研究和探索。我国近期将建设更多井下地震观测台站,井下观测网和垂直地震台阵观测研究是创新未来地球物理学发展的重要途径。
Abstract:This paper summarizes the newly research achievements of the underground seismic observation networks and borehole vertical seismic arrays in China, and looks forward to the prospect of underground observation research in the future. There are hundreds of underground observation stations with excellent observation quality currently. The underground seismic observational network pioneers a new technical approach for the physics in the Earth's interior of observation and study in the depths.
This analysis indicates that the underground observation can avoid the surface noise and site effects, and obtain high-quality seismic data. Therefore, it is possible for scientist to construct borehole stations scientifically in the earthquake monitoring areas, even if in the high noise background areas. Then the earthquake epicenter will be determined more accurately based on data observed from the reasonable station layout. The ability monitoring seismic activity is improved greatly. Simultaneously, the underground seismometer can record clear seismic wave near the epicenter because of avoiding the surface noise. The seismic waves observed near the epicenter retain more high-frequency components of waveforms which are essential data for study of the fine structure of the earth. It promotes the development of the seismological science.
It also can reduce the average velocity differences of P and S waves between stations due to different ground station foundations for us to study the spatial heterogeneity of the seismic wave velocity distribution if we use underground observation velocities. The accuracy and reliability of the 3D velocity model can significantly be improved by employing the data that reduced velocity differences mentioned above. The research findings suggested that the Tangshan strong earthquake occurred between the low speed zone and high speed zone too. The study results on the temporal variation of wave velocity indicated that a credible precursor process of wave velocity reduction also appeared before the Wen’an MS5.1 earthquake.
The surface reflected seismic waves near earthquakes have been surveyed through the underground observations. The accurate velocity structure of the crustal sedimentary layer can be established by employing the combination of incident waves and surface reflection waves. The high precision velocity models of the shallow layer are also of great significance to study the fine structure of the Earth’s interior.
The seismic kinematic and dynamic parameters, such as arrival time, component frequency and amplitude of seismic waves can accurately be determined by employing the low noise waves by the underground observation. The reliable high-level research findings are likely achieved based on the accurate parameters. The low noise waves observed by borehole seismometer are actually reasonable constraint for the study on seismic source. It is beneficial for scientist to solve the precise seismic source parameters and to acquire highly reliable results about the source under the strict constraint condition. A large number of excellent results have already been achieved based on the data of underground observation today. The seismic moments and moment magnitudes calculated by employing seismic waveform data from the underground observations are less than that calculated using waveforms by the ground observation. The stress drops and average earthquake dislocations computed using the waveforms from the underground observation are both less than those computed from waveforms observed in the ground bedrock. The corner frequencies calculated by seismic waveforms observed at the underground platforms are also lower than that calculated using data from the ground observations. The high-frequency components of the source spectrum calculated by waveforms from underground observation are weak, and not as abundant as that calculated using waveforms observed on the ground. As mentioned above, the magnitude and moment magnitude of the underground observation are less than those observed in the surface bedrock. The differences between the two kinds of magnitudes may be attributed to the nonlinear amplification effect of the wave in the upper medium of the borehole seismograph and the frequencies of seismic waves. Relatively, the lower corner frequencies of underground observations compared with the surface observations may be attributed to the absorption and amplification effect for different frequency wave components by the upper medium of underground instruments. In addition, the site response of the surface layer also has a significant impact on the source spectral parameters. The majority of the site responses underground platform are greater than 1 at the low-frequency domain and less than 1 at the high frequency domain respectively. The different site response between high and low frequency domain may also cause the magnitude and corner frequency observed by underground stations to be lower than those observed on the ground. The causes of source parameter differences mentioned above may be generally multiple complexities. It is still an important topic of future scientific exploration.
The underground seismometer recorded the surface reflection waves besides of the direct waves. The phenomenon is very valuable. So the nonlinear site effects and amplification characteristics of seismic wave propagation in sediment layers are solved accurately using the two types of data: Direct and reflected waves. Then the uncertainty of theoretical wave field solution can be reduced using the high-precision site effect results. The accuracy of strong ground motion prediction can surely be improved.
The Donghai, Jiangsu Province, borehole vertical seismic array is the first vertical seismic array in China. The array is consisted of one station at surface and four stations established at different deep layers in the borehole over
5000 meters deep and another borehole station with multiple geophysical instruments about 500 m away from the5000 m deep borehole. The array can observe more clearer waveforms of micro-earthquakes with zero or negative magnitudes and then improve the ability to monitor crustal and seismic activities. The signal-to-noise ratios of waveforms recorded at different depths in the borehole can provide valuable reference for the construction of underground stations currently. The signal-to-noise ratios of waveforms observed in the borehole are also all greater than or equal to 70 dB. The seismic waveforms with high fidelity were obtained in the high noise background areas by means of the vertical seismic array system. The precise three-dimensional seismic wave velocity model can be established using high-quality seismic waveforms, which contributes to comprehensive reveal of the tectonic movement of the earth. The waveforms without site response and noise observed by the vertical array system are more appropriate constraints for the study of seismic sources too. The innovative research achievements on seismic source theory are expectable by the study under above scientific constraint condition.The borehole seismic observation research not only have made significant contributions to earth science, but also is of great practical significance for the resource assessment, earthquake prediction and disaster prevention and mitigation of earthquakes.
The underground observation net and vertical array observation research are the frontiers of scientific problem in the world currently. More underground observation networks and borehole vertical seismic arrays are being constructed to obtain more high-precision seismic data and research findings, which will continuously innovate the future development of earth science.
-
引言
地形变观测被公认为是目前最有效的地震前兆监测手段之一,自1966年邢台地震后我国就开始设站进行地形变的连续观测(吴翼麟,1990;张国民,2002),经多期规划调整,目前已发展成多学科、多方法的综合观测,并初步实现了观测的数字网络化(秦家林,2015)。大量的地形变观测数据被初步用于前兆异常识别和强震地点预测研究(严尊国等,2000;江在森,武艳强,2012),但随着观测资料的日益丰富及观测数据的长期积累,我们注意到同台同物理量不同仪器的观测数据有较大差异,部分仪器的观测结果与区域构造背景明显不符,给观测数据的物理解释造成了一定困难,同时也影响了前兆异常的可靠性。因此,结合仪器观测原理和台址环境建模作进一步分析,从而深化对观测数据的认识是十分必要的。
地震地质建模的研究由来已久,早在20世纪80年代就开始引用数值模拟方法(England,McKenzie,1982),特别是将有限元建模方法用于三维非线性多场耦合复杂建模分析,目前已成为主流的建模分析方法之一(Parsons,2002),在走滑断层活动过程(Xing,Makinouchi,2002)、地震孕育机理(Xing et al,2004 ;邓志辉等,2011)、滑坡形成机制(申通等,2014)、构造应力与历史地震(祝爱玉等,2015)、活动地块地壳形变差异(唐方头等,2003)、介质不均匀性和断层倾角对同震位移场影响(李锋,黄金水,2011)的模拟以及地壳运动动力学机制的有限元分析(叶正仁,王建,2004)等方面均有很多应用。此外,针对地电台址的介质条件和构造环境也有过初步的数值模拟研究(阮爱国,赵和云,1991;赵和云,阮爱国,1992),但基于山体上形变台站的应力环境的数值模拟研究相对缺乏,基底应力场与山体中观测到的应力变化是否一致目前尚存在很大争议。为此,本文拟以黔江仰头山上的形变综合台黔江台为例,结合实际构造地质资料建立有限元模型,分析台址环境对观测数据的影响,以期解释前兆观测结果的真实物理意义。
1. 黔江台简介
黔江台地处重庆市黔江区仰头山,海拔1 020 m,属于渝东南武陵山区。武陵山区的地貌受地质拼迭控制,以低中山为主,山脉走向多与构造线方向一致,其中仰头山是NE走向山脉的一段,其NW方向有区域内最高的八面山,其SE方向为黔江向斜,地势低洼,阿蓬江贯穿其中(图 1a)。黔江台位于NE向彭水基底断裂与黔江断裂之间,距台站4 km处有第四纪仰头山断层(1856年小南海M6¼地震即发生在该断层上)通过(图 1b),而断裂可能影响区域应力场的分布(曹建玲等,2013)。
黔江台配置SS-Y伸缩仪、DSQ水管仪和VS垂直摆等三套形变仪器,均安装在同一个观测硐室,其中水管仪和伸缩仪的基线布设相同,分别监测该区域的应变和倾斜变化,每套仪器分南北和东西分量。三套仪器均能记录到明显的固体潮,数据连续性较好,同震记录丰富。
2. 黔江台地质环境
黔江台位于上扬子台坳、渝东南断褶隆起区,区域内NNE向褶皱群呈带状分布,以隔槽式褶皱为主,背斜轴部发育正断层,盖层中逆冲推覆构造发育,断层的新生性较强。此外,新生代的山间盆地和断陷盆地也较为发育。
2.1 地层特征
黔江地区新生代以来遭受了比较强烈的剥蚀,地层出露良好(图 2a),其中以古生界地层发育最佳,下古生界发育最全,分布最广,上古生界假整合于中志留统之上,发育较差,缺失早中泥盆统和早晚石炭统的沉积;中生界假整合于长兴组之上,三叠系分布广泛,中侏罗统与上白垩统之间为角度不整合接触;新生界第三系和第四系不甚发育,零星分布,角度不整合于老地层之上(丁仁杰,李克昌,2004)。
观测硐室的台基为二叠系栖霞灰岩,厚约68 m;其下为泥盆系泥灰岩夹砂岩,岩层相对较薄;基底出露大量志留纪泥页岩。
2.2 岩性特征
结合黔江区域的地层分布特征,该区域出露的岩性主要为砂岩、灰岩和页岩(图 2b),由于不同岩性的物质成分和结构均不相同,其物理特性和岩石力学参数具有很大差异(叶金汉等,1991)。① 砂岩。岩性较硬,年代较新,上白垩统为砂质灰质细砾岩和石英砂岩,中侏罗统石英粉砂岩和长石砂岩互层,上三叠统为细至粗粒石英砂岩及岩屑砂岩,中三叠统上部为白云质、钙质石英砂岩;中志留统上部为罗惹坪组粉砂岩;② 灰岩。岩性致密,岩溶裂隙发育,中三叠统下部为薄—厚层灰岩、灰质白云岩及白云岩,下三叠统为中厚—巨厚层白云岩和灰岩互层;上二叠统为中—厚层含硅质团块和条带灰岩,下二叠统为中—巨厚层灰岩,夹硅质层;上泥盆统上部为泥质灰岩;③ 页岩。岩性较软,主要为下二叠统梁山组炭质页岩、中志留统罗惹坪组粉砂质页岩和下志留统龙马溪组页岩。
2.3 构造特征
黔江区域的盖层变形以NE向构造(NE向褶皱及其伴生断裂)为主体构造格架,断层走向和褶皱轴向以NE向为主,相互平行交替排列,同时存在少数NNE和NNW向派生构造。褶皱主要为铜西向斜,位于黔江台的东南部,呈NE走向,核部出露白垩系和三叠系新地层,与邻近的背斜构成箱状褶皱。
黔江地区NE向断裂与NNE向褶皱伴生形成盖层断裂,当褶皱完全发育后,地壳持续缩短进而导致错断,平行于褶皱轴线发育逆冲断层和逆掩断层,如黔江断裂,总体走向为N40°E,全长约140 km,在平面上由近于平行的4条断裂组合形成右阶斜列式结构,以阶区为界,黔江断裂分为北、中、南三段,黔江台位于龙潭坝断裂与筲箕滩断裂(中南段)的交界处;该断裂剖面上,破碎带比较发育,断层岩主要为碎裂岩、角砾岩、方解石脉和断层泥,为晚更新世活动断层。与褶皱轴直交发育派生的正断层,如仰头山断层,距黔江台约4 km,总体走向为290°—320°,断续展布约12 km,倾向SW或NE,倾角为70°—80°,具有逆滑左行平移性质,断裂破碎带发育,由碎裂岩、角砾岩、方解石脉和团块组成,1856年该断层上发生重庆辖区最大的小南海M6¼地震,活动性较强(刘玉亮,2009)。
3. 黔江台应力环境
重庆地处中国南北构造带的东侧,属于东、西部板块运动的中间过渡地区。从前述构造运动、活动断裂、褶皱的形成过程分析,该区域断褶构造的形成和地壳的缩短、隆升分别与印度板块和太平洋板块碰撞、俯冲所产生的挤压相联系,反映了印度板块与太平洋板块两侧在挤压动力条件下对区域新生代构造应力场的影响和制约。
丁仁杰和李克昌(2004)通过汇集经绝对年龄测定或有确切证据认定的近30条第四纪活动断层资料,依据其力学性质和运动方式,确定其正应力方向,同时基于现代地震震源机制解的P轴轴向,结合新构造运动形迹(图 3),综合推断出重庆辖区新生代构造应力场的基本特征。
图 3 重庆辖区应力环境及黔江地区应力示意图(改自丁仁杰和李克昌,2004)Figure 3. The stress environment in Chongqing area and the stress distribution in Qianjiang region (modified from Ding and Li,2004)3.1 构造应力环境
构造应力分析主要结合重庆辖区第四纪活动构造展布的空间位置、力学性质、运动方向及区域地震的震源机制反演进行。该区域的新构造运动是在NNE向倾斜的古地势环境下发展演化而来,现阶段地壳活化,持续掀斜抬升运动(李伦炯,1997);受NW向压应力和深部滑脱层的影响,该区域发育大量的隔槽式褶皱和逆冲推覆构造,其轴向多为NE向,垂直于区域应力方向;而第四纪断层的力学性质表现为NE向断层的逆滑(左行)运动;近NS向或NNE向断层表现为强烈压性逆冲性质;反演所得正应力轴向整体为WNW方向,反映该区域的主应力迹线方向为WNW向(颜丹平,汪新文,2000;颜丹平等,2008)。徐纪人等(2008)的中国大陆中强地震的震源机制解表明该区域的P轴方位集中在280°—290°和340°—350°的范围内,而辖区内发生的统景M5.2,M5.4和荣昌M5.2地震,其震源机制解P轴轴向分别为287.5°和320°,与断层运动所表现出的正应力轴向基本吻合。因此,渝西-渝东南地区所形成的主应力迹线,由西向东呈WNW向缓缓弯曲转为NW向(图 3)。主应力迹线形态与该断褶构造的力学性质基本吻合,而现代地震震中地震构造的正应力方向与震源主压应力轴向基本一致,也证明了现代构造应力场对新生代构造应力场的继承性。
3.2 GPS应力场
结合全球导航卫星系统资料可知,印度板块以(37±0.2) mm/a的平均速度沿NNE方向运动(Malaimani et al,2008),但在北部坚硬地块的阻挡下,青藏地块发生明显的缩短、隆起并向东部逃逸,这使得川滇地块向SE方向运动(张培震等,2002),而辖区GPS站点(全球国际地球参考2008框架)以大约30 mm/a的速度向SE方向运动。陈涛等(2013)结合重庆辖区2008—2012年GPS资料,应用块体整体旋转线性应变模型获取了该地区的水平形变场和应变场,结果显示该区域的应变以压应变为主,方向近似NW向,主压应力方向与大范围构造应力场基本一致。杨淑贤等(2005)利用地形变测量、震源机制解和钻孔应力测量等资料,综合分析认为重庆辖区新构造期现代构造应力场的作用方向具有明显的分区性,其中黔江区域的应力主要受到NW向的挤压。综上所述,多种研究结果一致认为研究区域内的应力场以NW向压应力为主,各种应变参数处于10−8量级。
4. 有限元建模分析
有限元分析是利用数学近似的方法对真实物理系统进行模拟,通过有限的相互作用的单元去逼近无限未知量的真实系统,从而将复杂问题简单化并求得近似解。随着科技的不断发展,涌现出大量的有限元分析工具,其中Ansys软件常用于地质工程的应力和结构分析。经过不断更新,Ansys软件的有限元分析功能越来越强大,涵盖结构、静力、动力、流体、电磁及多场耦合等多领域分析。本文选用Ansys16.0中的Workbench模块进行建模分析。
4.1 问题描述与假设条件
自2008年观测以来,黔江台的三套仪器工作正常,积累了丰富的观测资料,经对比分析可知:① 在基线布设完全相同的情况下,倾斜类仪器的映震能力远远高于应变类仪器;② 两套倾斜仪能记录到明显的固体潮,而应变仪固体潮幅度较小,特别是东西分量几乎记录不到固体潮;③ 两套倾斜仪的长期趋势不一致,垂直摆观测趋于东南倾,而水管仪观测没有明显的倾斜方向。以上现象除受仪器观测原理影响外,还可能与台址环境有关,因此有必要对其进行建模分析,解释数据差异产生的原因。
由于实际台址环境较复杂,且针对大量的物理量只有定性的研究,为了便于建模分析,本文设定以下假设:① 山体模型。因该地区山体、褶皱及断裂均沿NE方向展布,本文以SW向的地质剖面为基准,并沿其法线方向(NE向)拉伸形成的几何体模拟实际的山体模型;② 地质条件。因该区域的地质构造条件较复杂,可能存在局部破裂或岩性的不均一性,而该模型是针对山体整体的受力变形,故对岩性和构造要素作简单的均一化处理;③ 应力环境。因该区域内的应力场以NE向压应力为主,应变大小为10−8量级,本文设置的应力载荷为108量级,方向指向SE向。
4.2 模型建立与分析
4.2.1 几何模型建立
黔江台位于NE向仰头山体内,沿山体两侧均有同方向的断裂和褶皱分布,构造格局较复杂,区域主压应力方向为SE方向(图 4a)。本文选用与应力方向大致相同的AB剖面图建模分析(图 4b),既保留了整个山体的构造框架,又利于简化模型分析结果的显示。
台址的应力状态除受构造要素影响外,还与该区域的岩石力学性质相关,尤其是当岩石力学性质差异较大时,较软的岩石更容易受力变形。正如图 4b所示,该区域出露的岩性主要为志留纪页岩、泥盆纪砂岩及二叠纪灰岩,以及受断裂破碎作用形成的碎裂岩,这几种岩石的成因、成分、结构及岩石力学性质均不相同,因此,本文结合实际地质资料,参考岩石力学参数表(叶金汉等,1991),设定介质模型的材料参数,列于表 1。
表 1 模型介质岩石力学参数汇总表Table 1. The rock mechanics parameters of model medium岩性 容重/(103 kg·m−3) 抗压强度/MPa 弹性模量/GPa 泊松比 剪切模量/GPa 体积模量/GPa 灰岩 2.70 96 6.00 0.35 2.22 6.66 砂岩 2.58 75 4.00 0.30 1.54 3.33 页岩 2.49 50 2.66 0.20 1.11 1.48 断层 1.32 20 0.91 0.18 3.88 4.73 4.2.2 模型分析
1) 网格划分。网格划分的目的是使模型离散化,并利用适当数量的网格单元得到相对精确的解。网格划分的工具有多种,本文选用Workbench中的自动网格划分工具,该工具自动优化网格划分类型,可满足模型要求。网格的疏密程度直接影响到计算结果的精度,但是网格加密会增加CPU计算时间,需要更大的存储空间。为保证模型网格密度和计算质量,综合考虑计算精度和计算量,本文选取网格尺寸为1.5 m (几何模型的规模为百米级),其它参数均采用默认值,满足模型的需求。
2) 接触关系。当几何体存在多个部件时,需要确定部件之间的相互关系,部件的接触关系影响其间的荷载传递方式。Workbench提供多种接触类型,但由于不同岩层间的摩擦系数和黏合系数很难确定,且岩层之间不存在滑脱现象,本文采用直接绑定接触,符合模型的需求。
3) 边界条件。载荷和约束是Ansys软件求解计算的边界条件,是以所选单元的自由度形式定义的,本文主要分析台址环境受力变化特征,因此载荷主要选择力载荷工具的压力载荷,方向为SE向,大小为100 MPa。考虑到垂向上重力与下地壳的支持力处于平衡状态,模型的基底采用垂向结构约束;而台址东南侧为华南板块,比较稳定,为防止模型移动,模型的东南端采用固定约束。
4.3 模型结果解释
本模型主要研究在SE向应力的挤压下,台址山体的等效应力分布特征和变形特征,其中:等效应力分布主要反映山体受挤压后的应力传播途径,而变形特征则显示山体不同部位的变形程度,包括水平变形和垂向变形。图 5给出了有限元模型的分析结果。
等效应力分布结果(图 5a)显示:在NW向应力的挤压下,区域等效应力的分布受构造要素影响较大,特别是在断层破裂带,应力的方向发生明显变化,远离断层后恢复正常;当岩层具有明显弯曲褶皱时,等效应力较集中于向斜轴部岩层弯曲角度较大的地方。
总体变形结果(图 5b)显示:受挤压后,山体明显缩短,越接近力源,变形幅度越大;岩性较软的志留纪页岩和断层碎裂岩更容易变形,而较硬的灰岩和砂岩变形幅度较小,使得山体变形不均匀,下部页岩在力的作用下水平缩短,垂向上增厚,向上推挤上覆岩层形成上拱的背斜,这与实际的地貌相符合。此外,由于岩层之间存在摩擦力和黏附力,上覆岩层也能记录到部分水平变形(图 5c),但其变形幅度远小于对应的垂向变形(图 5d),特别是山体西北部垂向变形最大,造成山体岩层倾向SE方向。
结合总体变形和等效应力结果可知:黔江仰头山受SE方向的挤压,其变形和应力均集中在山体基底,下部的志留纪页岩发生塑性缩短而向上隆起;上部的二叠纪灰岩受力不再是水平挤压,而是垂向上抬升,使得上覆岩层上拱形成一定弧度,越接近背斜的轴部,其变形越大,对应的上覆岩层弯曲拉张。在上拱的同时,由于岩层自身倾向SE方向,加剧了台站向SE方向倾斜的趋势(图 6)。
4.4 模型验证
黔江台有倾斜观测和应变观测,前者用于观测地壳垂向上的变形,后者用于观测地壳水平向上的变形。观测仪器均布设在仰头山山腰的硐室内,基岩为二叠纪灰岩,观测时段长达十余年,均能记录到清晰的固体潮和同震形变波,灵敏度和精度较高,观测结果可靠。因此,本文选用该台长期积累的观测资料来检验有限元模型的可靠性。黔江台伸缩仪和垂直摆的东西分量均呈稳定持续上升变化趋势(图 7),反映了观测点位的张性变化和东倾变化与模型计算结果一致,即岩层持续上拱,地表弯曲拉张,山体持续向岩层倾向方向倾斜。
综上所述,黔江台能记录到区域应力场的形变信息,但受岩石力学性质和构造要素的影响,台址的变形与山体基底的变形具有一定的差异性,台站记录到的形变并不能完全反映区域应力变化,而是区域应力与构造条件及岩石力学参数的综合反映。因此,定点形变台站观测到的形变信息并非完全是区域应力场的信息,而是经台址构造环境改变后的信息,这是导致其观测结果与构造应力背景不一致的主要原因。
5. 讨论与结论
台站区域范围内的断层、褶皱、岩性及岩层特征是构成台站构造环境的主要因素。由于不同台站具有其独特的台址构造环境,仪器观测数据差异性较大,观测数据的物理意义不明确。以往的研究大多是结合数据曲线形态、时频特征、固体潮及同震信息来提取前兆异常,研判震情形势(即传统的经验预报方法);而关于数据曲线变化的物理意义及前兆机理方面的研究较少,这也正是下一步物理预报所急需解决的问题之一。因此,本文通过地质模型将观测数据与台址环境有机地结合在一起,探寻数据变化的内在本质。
黔江地区构造较复杂,岩性变化差异较大,长期受NW向挤压应力的影响,使得该区域出现大量的褶皱和断层,这些构造要素在一定程度上影响着区域应力场的大小和方向。本文对黔江台的台址资料进行全面收集和整理,并以此为依据建立有限元模型,分析观测数据不同趋势变化的成因机理,得到以下结论:
1) 有限元模型分析结果显示:在NW向压力的作用下,岩性较软的页岩和断层碎裂岩更容易发生变形,而上覆的砂岩和灰岩变形较小;页岩在压力作用下不断塑性缩短,其上覆岩层上拱形成背斜,并倾向SE方向,使得上覆岩层垂向变形大于水平变形;等效应力的分布受断层及褶皱轴的倾向影响较大,均与实际地貌相符。此外,该模型分析结果有助于理解黔江台仪器观测数据的物理意义。
2) 建模结果表明,受岩石力学性质和断层构造要素影响,台址的变形与基底的变形存在差异,台站仪器记录到的形变不完全反映区域应力,而是区域应力与构造条件及岩石力学参数的综合反映,基于此对形变观测数据进行分析,能更好地理解观测数据变化的指示意义。
-
图 2 东海垂直地震台阵的地面及井下仪器记录的2019年9月22日烟台ML3.1地震
G0:地表宽频地震仪;G1:400 m深宽频地震仪;G3:3 km深短周期地震仪
Figure 2. The September 22,2019,Yantai ML3.1 earthquake recorded by surface and underground instruments of Donghai
vertical seismic array G0:Surface broadband seismograph;G1:400 m deep broadband seismograph; G3:3 km deep short period seismometer
表 1 我国部分井下观测台站基本情况
Table 1 Basic information of some underground observation stations in China
台站名 井深/m 地震仪型 参考文献 台站名 井深/m 地震仪型 参考文献 首都圈台网 150—480 宽、甚频 短周期 刘渊源等(2 011) 上海东滩 421 FSS-3DBH 裴晓等(2 012) 北京市台网 宽、甚频 短周期 兰从欣等(2 005) 上海金泽 305 FSS-3DBH 首都圈白家疃 257 韦士忠和李玉萍(1 990) 上海上戏 370 FSS-3DBH 首都圈文安 266 上海南汇 280 JDF-2 首都圈东三旗 250 上海大新中学 375 FSS-3DBH 首都圈大兴 110 上海竹园 317 JDF-1 首都圈雄县 358 上海虹桥 651 768 首都圈龙门庄 447 上海八角厅 780 JDF-1 吉林松原 384 FSS-3DBH 韦庆海等(2 015) 上海张江 350 KS-2000M 裴晓等(2 013) 吉林松原 243 FSS-3DBH 陈闯等(2 022) 上海崇明 463 李伟等(2 013) 大庆新台 708 JD-2 韦庆海等(2 015) 江苏宝应 460 CMG-3TB 仇中阳等(2 014) 河北赵县 260 BBVS-60 郑德高等(2 018) 江苏高邮 440 CMG-3TB 河北唐海 480 短周期 郑德高等(2 018) 江苏淮安 315 JDF-2 河北涿县 320 768 李彦林和郑淑兰(1 989) 江苏涟水 400 CMG-3TB 河北邯郸 400 JD-2 张新东(2 002) 江苏射阳 380 CMG-3TB 河北肥乡 400 JD-2 江苏盐城 445 CMG-3TB 河北临漳 440 JD-2 江苏金湖 447 GL-S60B 宫杰等(2 019) 天津静海 371 768 赵惠君等(1 991) 江苏滨海 470 GL-S60B 天津芦台 276 768 江苏丹阳 175 GL-S60B 天津武清 450 768 江苏响水 410 GL-S60B 内蒙赤峰 90 GL-S120B 郭延杰等(2 020) 江苏高邮 458 GL-S60B 甘肃天水 337 短周期 蔡耐芳(1 990) 江苏建湖 443 GL-S60B 新疆喀什 283 GL-S60B 赵瑞胜等(2 021) 江苏启东 410 GL-S60B 山西太原 500 JD-2 张少泉等(1 988) 江苏盐城 436 GL-S60B 陕西定边 300 BBSV-60BH 李少睿等(2 016) 江苏泰兴 425 GL-S60B 宁夏灵武 248 JDF-2 江苏东台 458 GL-S60B 宁夏陶乐 245 JDF-2 江苏溧阳 83 CMG-DM24 mk3 胡米东(2 014) 河南安阳 393 FSS-3DBH 江苏盐城 445 CMG-DM24 mk3 河南清丰 308 FSS-3DBH 江苏南通 105 CMG-DM24 mk3 四川泸州 95 CMG-3TB 江苏大丰 366 短周期 徐元耀(1 994) 山东荷泽 370 768 周焕鹏(1 986) 江苏淮阴 325 井下摆 安徽六安 126 GL-S60B 石英杰等(2 021) 江苏海安 420 JD-2 安徽霍邱 150 GL-S60B 石英杰等(2 021) 云南昆明 2 02 GL-S60B 李雷等(2 018) 浙江景宁 68 FSS-3DBH 张明等(2 019) 云南昆明 452 JD-2 修济刚(1 988) 浙江北仑 86 FSS-3DBH 云南大寨 375 井下仪 王芳等(2 017) 浙江南麂岛 110 GL-60DBH 广东汕头 2 00 TBG-60B 郭德顺等(2 014) 上海普陀 564 768 叶世元和柳国华(1 987) 江苏东海 4050 宽频 短周期 Xu等(2 016) 上海海运 600 768 叶世元和柳国华(1 987) 表 2 江苏东海垂直地震台阵地面与井下观测能力比较
Table 2 Comparison of observation ability between surface and underground of vertical seismic array in Jiangsu Donghai
ML 震中距
Δ/km地面观测宽频
带地震仪井下观测 井深/m 仪器 观测效果 −1.3 64 无法识别 2545 短周期 图像清晰 −0.5 71 无法识别 2545 短周期 图像清晰 0.8 97 无法识别 3500 短周期 图像清晰 3.1 492 无法识别 400 宽频 图像清晰 -
卞真付,姚兰予,庞群英. 2005. 利用井下数字地震记录反演非弹性衰减系数震源参数和场地响应[J]. 西北地震学报,27(增刊):58–64. Bian Z F,Yao L Y,Pang Q Y. 2005. The inversion of non-elasticity attenuation coefficient,source parameters and site response using borehole digital seismic recordings[J]. Northwestern Seismological Journal,27(S1):58–64 (in Chinese).
蔡耐芳. 1990. 兰州电传台网天水台井下摆记录特征[J]. 地震地磁观测与研究,11(5):51–55. Cai N F. 1990. Characteristics of seismograms recorded by borehole pendulums at Tianshui Station of the Lanzhou Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,11(5):51–55 (in Chinese).
陈闯,危自根,张璇,高金哲. 2022. 井下、地表地震计记录波形对比:以松原地震台为例[J]. 地震地磁观测与研究,43(1):99–105. Chen C,Wei Z G,Zhang X,Gao J Z. 2022. Comparison and analysis of waveforms recorded by borehole and ground seismometers:Taking Songyuan Seismic Station as an example[J]. Seismological and Geomagnetic Observation and Research,43(1):99–105 (in Chinese).
陈宏水,付迺珍. 1987. 井下地震计的遥控装置[J]. 地震地磁观测与研究,8(5):45–49. Chen H S,Fu D Z. 1987. A remote control device for borehole seismographs[J]. Seismological and Geomagnetic Observation and Research,8(5):45–49 (in Chinese).
陈吉锋,陈军辉,刘洋君,张明. 2014. 浙江岛屿深井地震台防雷接地系统设计[J]. 地震地磁观测与研究,35(3/4):220–224. Chen J F,Chen J H,Liu Y J,Zhang M. 2014. Design of lightning protection and grounding system for the islands of Zhejiang deep seismic stations[J]. Seismological and Geomagnetic Observation and Research,35(3/4):220–224 (in Chinese).
丁海平,任琼洁,于彦彦. 2014. 基于竖向台阵地震记录的场地地震响应分析[J]. 地震工程与工程振动,34(2):12–18. Ding H P,Ren Q J,Yu Y Y. 2014. Site seismic response analysis based on vertical borehole array records[J]. Earthquake Engineering and Engineering Dynamics,34(2):12–18 (in Chinese).
高龙生. 1986. 井下地震波学术讨论会暨工作会议于1986年5月在天津举行[J]. 地震学报,8(4):444. Gao L S. 1986. The conference on observation by means of borehole seismographs and the related working meeting were held in Tianjin in May of 1986[J]. Acta Seismologica Sinica,8(4):444 (in Chinese).
宫杰,胡米东,康清清,张敏. 2019. 江苏地区同频带井下地震计地震监测能力对比[J]. 地震地磁观测与研究,40(6):93–99. Gong J,Hu M D,Kang Q Q,Zhang M. 2019. Comparative analysis of monitoring capability of underground seismometer in the same frequency band in Jiangsu[J]. Seismological and Geomagnetic Observation and Research,40(6):93–99 (in Chinese).
郭德顺,陈建涛,谢剑波,叶春明. 2014. 汕头试验井地面与井下环境地噪声对比测试分析[J]. 华南地震,34(3):57–64. Guo D S,Chen J T,Xie J B,Ye C M. 2014. The comparison test analysis of environment seismic noise on ground surface and underground at Shantou pilot hole[J]. South China Journal of Seismology,34(3):57–64 (in Chinese).
郭延杰,于章棣,齐彬彬,屈楠,范东海,黄瑞滨,刘继伟. 2020. 赤峰中心地震台地面与井下地震观测系统监测能力对比分析[J]. 地震地磁观测与研究,41(4):100–104. Guo Y J,Yu Z D,Qi B B,Qu N,Fan D H,Huang R B,Liu J W. 2020. Comparative analysis of monitoring capacities of the ground and underground observation systems at Chifeng Center Seismic Station[J]. Seismological and Geomagnetic Observation and Research,41(4):100–104 (in Chinese).
胡米东. 2014. 江苏省部分井下地震计监测能力差异初探[J]. 四川地震,(4):31–34. Hu M D. 2014. Primary study on the monitoring ability of underground seismometers in Jiangsu Province[J]. Earthquake Research in Sichuan,(4):31–34 (in Chinese).
兰从欣,刘杰,郑斯华,马士振,李菊珍. 2005. 北京地区中小地震震源参数反演[J]. 地震学报,27(5):498–507. Lan C X,Liu J,Zheng S H,Ma S Z,Li J Z. 2005. Inversion of source parameters for moderate and small earthquakes in Beijing region[J]. Acta Seismologica Sinica,27(5):498–507 (in Chinese).
李慧民,朱元清,章纯. 1992. 利用深井地震速度记录确定震级的初步研究[J]. 地震地磁观测与研究,13(5):11–15. Li H M,Zhu Y Q,Zhang C. 1992. A primary study on magnitude determination by using the records of deep-hole velocity seismometer[J]. Seismological and Geomagnetic Observation and Research,13(5):11–15 (in Chinese).
李雷,邓存华,黄瑶,钱文品,谭文正. 2018. 昆明地震台地面与井下地震计地震记录震级偏差[J]. 地震地磁观测与研究,39(4):96–108. Li L,Deng C H,Huang Y,Qian W P,Tan W Z. 2018. Analysis of seismic magnitude bias calculated based on the records of the ground and borehole seismometer at Kunming Seismic Station[J]. Seismological and Geomagnetic Observation and Research,39(4):96–108 (in Chinese).
李少睿,毛国良,王党席,罗治国. 2016. 井下地震计方位角检测技术应用研究[J]. 地球物理学报,59(1):299–310. doi: 10.6038/cjg20160125 Li S R,Mao G L,Wang D X,Luo Z G. 2016. Research on the application of borehole seismometer azimuth detection technology[J]. Chinese Journal of Geophysics,59(1):299–310 (in Chinese).
李伟,赵文舟,尹继尧. 2013. 上海深井地震综合观测地磁资料分析[J]. 地震地磁观测与研究,8(3/4):89–95. Li W,Zhao W Z,Yin J Y. 2013. Analysis of multi-component geomagnetic data observed in deep borehole in Shanghai[J]. Seismological and Geomagnetic Observation and Research,8(3/4):89–95 (in Chinese).
李稳,刘伊克,刘保金. 2016. 基于稀疏分布特征的井下微地震信号识别与提取方法[J]. 地球物理学报,59(10):3869–3882. doi: 10.6038/cjg20161030 Li W,Liu Y K,Liu B J. 2016. Downhole microseismic signal recognition and extraction based on sparse distribution features[J]. Chinese Journal of Geophysics,59(10):3869–3882 (in Chinese).
李小军,荣棉水,喻烟. 2020. 场地土层模型参数的地震动记录反演方法[J]. 地球物理学报,63(1):236–246. doi: 10.6038/cjg2020M0491 Li X J,Rong M S,Yu Y. 2020. Inversion for velocity structure of soil layers by seismic acceleration records[J]. Chinese Journal of Geophysics,63(1):236–246 (in Chinese).
李彦林,郑淑兰. 1989. 涿县台地面与井下地震观测[J]. 华北地震科学,7(1):95–97. Li Y L,Zheng S L. 1989. Ground and underground seismic observation at Zhuoxian Station[J]. North China Earthquake Sciences,7(1):95–97 (in Chinese).
林云松. 1989. 深井观测中的地面反射波震相[J]. 地震地磁观测与研究,10(3):12–20. Lin Y S. 1989. Phases of ground surface reflection waves observed in deep well[J]. Seismological and Geomagnetic Observation and Research,10(3):12–20 (in Chinese).
刘瑞丰,高景春,陈运泰,吴忠良,黄志斌,徐志国,孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报,30(5):533–539. doi: 10.3321/j.issn:0253-3782.2008.05.012 Liu R F,Gao J C,Chen Y T,Wu Z L,Huang Z B,Xu Z G,Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica,30(5):533–539 (in Chinese).
刘渊源,崇加军,倪四道. 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报,33(3):342–350. doi: 10.3969/j.issn.0253-3782.2011.03.007 Liu Y Y,Cong J J,Ni S D. 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica,33(3):342–350 (in Chinese).
罗诚,谢俊举,温增平. 2018. 熊本MW7.0地震近场地表与井下地震动对比研究[J]. 地震学报,40(1):108–120. doi: 10.11939/jass.20170111 Luo C,Xie J J,Wen Z P. 2018. Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica,40(1):108–120 (in Chinese).
毛华锋,张义德,仇中阳,陈健. 2014. 江苏部分测震台井下与地面观测震源参数对比[J]. 四川地震,(3):43–47. Mao H F,Zhang Y D,Qiu Z Y,Chen J. 2014. Comparison between the seismic source parameters of borehole observation and ground observation in northern Jiangsu Province[J]. Earthquake Research in Sichuan,(3):43–47 (in Chinese).
裴晓,尹继尧,杨庭春. 2012. 上海遥测台网各类型台基背景噪声分析[J]. 地球物理学进展,27(5):1897–1903. Pei X,Yin J Y,Yang T C. 2012. Shanghai telemetry station network analysis of the various types of background noise pedestal[J]. Progress in Geophysics,27(5):1897–1903 (in Chinese).
裴晓,尹继尧,杨庭春. 2013. 张江台地表与深井地震观测对比分析[J]. 地震工程学报,35(2):366–371. Pei X,Yin J Y,Yang T C. 2013. Comparative analysis of Zhangjiang Station surface and deep seismic observation[J]. China Earthquake Engineering Journal,35(2):366–371 (in Chinese).
齐诚,赵大鹏,陈颙,陈棋福,王宝善. 2006. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报,49(3):805–815. Qi C,Zhao D P,Chen Y,Chen Q F,Wang B S. 2006. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region[J]. Chinese Journal of Geophysics,49(3):805–815 (in Chinese).
仇中阳,毛华峰,陈健,胡米东. 2014. 苏北测震台网地面和井下地震记录波形频谱分析[J]. 地震地磁观测与研究,35(3/4):105–111. Qiu Z Y,Mao H F,Chen J,Hu M D. 2014. Feature analysis on seismic wave spectrum from ground and underground records by seismic stations in Jiangsu Province[J]. Seismological and Geomagnetic Observation and Research,35(3/4):105–111 (in Chinese).
沈伟森,罗艳,倪四道,崇加军,陈颙. 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报,32(2):137–146. Shen W S,Luo Y,Ni S D,Chong J J,Chen Y. 2010. Resolving near surface S velocity structure in natural earthquake frequency band:A case study in Beijing region[J]. Acta Seismologica Sinica,32(2):137–146 (in Chinese).
石英杰,龙剑锋,赵楠. 2021. 安徽六安井下地震计与地表地震计观测质量对比[J]. 地震地磁观测与研究,42(5):141–144. Shi Y J,Long J F,Zhao N. 2021. Comparison of observation quality between downhole seismometer and surface seismometer in Lu’an area[J]. Seismological and Geomagnetic Observation and Research,42(5):141–144 (in Chinese).
王芳,李丽,王宝善. 2017. 普洱大寨深井噪声压制效果及井孔附近波场特征研究[J]. 地震学报,39(6):831–847. Wang F,Li L,Wang B S. 2017. Ability of decreasing noise and the characteristics of near-surface wave field around Dazhai borehole in Pu'er[J]. Acta Seismologica Sinica,39(6):831–847 (in Chinese).
王俊国,卫鹏飞,吴晓芝. 1988. 井下与地面地震波记录特征的对比研究[J]. 地震学报,10(3):270–279. Wang J G,Wei P F,Wu X Z. 1988. Comparative study between the characteristics of seismic waves recorded downhole and on ground surface[J]. Acta Seismologica Sinica,10(3):270–279 (in Chinese).
王林瑛,郭永霞,刘芳,蒋长胜. 2008. 文安地震前后首都圈分区波速比时变特征[J]. 地震学报,30(3):240–253. Wang L Y,Guo Y X,Liu F,Jiang C S. 2008. Temporal vp/vS variation characteristics in different zones of China’s Capital area before and after 2006 Wen’an earthquake[J]. Acta Seismologica Sinica,30(3):240–253 (in Chinese).
王晓蕾,薛兵,朱小毅,崔仁胜. 2021. 深井共点观测地震波形数据处理技术初探[J]. 地震地磁观测与研究,42(增刊):212–214. Wang X L,Xue B,Zhu X Y,Cui R S. 2021. The data processing technology of collocated seismic waveform observed in deep boreholes[J]. Seismological and Geomagnetic Observation and Research,42(S1):212–214 (in Chinese).
韦庆海,孟宪森,杨家亮,高东辉,郝永梅,刁桂苓,孟令蕾,佟艳英. 2015. 松嫩盆地井下摆记录到的地方震地表反射波[J]. 中国地震,31(2):432–438. Wei Q H,Meng X S,Yang J L,Gao D H,Hao Y M,Diao G L,Meng L L,Tong Y Y. 2015. The surface reflection wave of local earthquake record by underground seismographs in the Songnen basin[J]. Earthquake Research in China,31(2):432–438 (in Chinese).
韦士忠,李玉萍. 1990. 深井观测对测定地震波谱和震源参数的可能影响[J]. 地震地磁观测与研究,11(5):56–62. Wei S Z,Li Y P. 1990. Possible effect of deep borehole observation on the determination of seismic spectrum and focal parameters[J]. Seismological and Geomagnetic Observation and Research,11(5):56–62 (in Chinese).
吴晶,高原,陈运泰,黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报,50(1):209–220. doi: 10.3321/j.issn:0001-5733.2007.01.027 Wu J,Gao Y,Chen Y T,Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics,50(1):209–220 (in Chinese).
乌统昱,赵惠君. 1992. 井下记录的PP和SS震相[J]. 地震地磁观测与研究,13(2):20–26. Wu T Y,Zhao H J. 1992. PP and SS seismic phases recorded from borehole[J]. Seismological and Geomagnetic Observation and Research,13(2):20–26 (in Chinese).
修济刚. 1988. 我国井下地震观测研究概述[J]. 国际地震动态,(6):1–4. Xiu J G. 1988. An outline of research on borehole seismic observations in China[J]. Recent Developments in World Seismology,(6):1–4 (in Chinese).
徐纪人,赵志新. 2006. 深井地球物理长期观测的最新进展及其前景[J]. 地球科学(中国地质大学学报),31(4):557–563. Xu J R,Zhao Z X. 2006. Advances and prospects for long-term geophysical observation in deep borehole[J]. Earth Science:Journal of China University of Geosciences,31(4):557–563 (in Chinese).
徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003 Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).
徐纪人,李海兵,曾祥芝,赵志新. 2022. 江苏东海深井观测地震波形及其信噪比研究[J]. 地震学报,44(6):1007–1018. doi: 10.11939/jass.20220195 Xu J R,Li H B,Zeng X Z,Zhao Z X. 2022. Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province[J]. Acta Seismologica Sinica,44(6):1007–1018 (in Chinese).
徐永林,熊里军,章纯,赵志光. 2002. 用强震仪记录资料研究上海地表土层的地震动放大反应[J]. 地震学报,24(6):662–666. Xu Y L,Xiong L J,Zhang C,Zhao Z G. 2002. A study on amplification response of soil ground motion in Shanghai using strong-motion accelerogaph records[J]. Acta Seismologica Sinica,24(6):662–666 (in Chinese).
徐元耀. 1994. 苏北平原井下摆观测效果的讨论[J]. 地震地磁观测与研究,15(6):31–35. Xu Y Y. 1994. The analysis of the efficiency of borehole pendulum observation in the North Jiangsu Plate[J]. Seismological and Geomagnetic Observation and Research,15(6):31–35 (in Chinese).
叶世元,柳国华. 1987. 上海电信传输地震台网部分深井观测点躁声背景分析[J]. 地震地磁观测与研究,8(2):30–33. Ye S Y,Liu G H. 1987. Analysis of the noise background of a part of the deep-well observation points in Shanghai telemeter seismic station network[J]. Seismological And Geomagnetic Observation And Research,8(2):30–33 (in Chinese).
叶世元,周生良,姜伟荣. 1988. 深井地震观测中地脉动谱的作用[J]. 地震地磁观测与研究,9(1):55–58. Ye S Y,Zhou S L,Jiang W R. 1988. The effect of spectrum of earth tremors on seismic observation in deep holes[J]. Seismological and Geomagnetic Observation and Research,9(1):55–58 (in Chinese).
于湘伟,陈运泰,王培德. 2003. 京津唐地区中上地壳三维P波速度结构[J]. 地震学报,25(1):1–14. Yu X W,Chen Y T,Wang P D. 2003. Three-dimensional P wave velocity structure in Beijing-Tianjin-Tangshan area[J]. Acta Seismologica Sinica,25(1):1–14 (in Chinese).
袁卫红,戴佩新,杜江,朱镇,王宇. 2012. 大庆地震台网近震震级偏差分析与校正[J]. 地震地磁观测与研究,33(2):27–31. Yuan W H,Dai P X,Du J,Zhu Z,Wang Y. 2012. Analysis and adjustment of regional seismology magnitude deviation in Daqing Seismic Network[J]. Seismological and Geomagnetic Observation and Research,33(2):27–31 (in Chinese).
张阿瑶,范广超,王敏超,沈旭峰,张诚鎏,卢娜,崔甲甲. 2018. 不同深度布设台站的噪声及信号幅值特征分析[J]. 地震学报,40(4):440–447. doi: 10.11939/jass.20170150 Zhang A Y,Fan G C,Wang M C,Shen X F,Zhang C L,Lu N,Cui J J. 2018. Amplitude characteristic analysis of noise and signal from the stations deployed at different depths[J]. Acta Seismologica Sinica,40(4):440–447 (in Chinese).
章纯,朱元清,李慧民. 1992. 利用深井观测速度型记录的最大振幅测定近震震级的一种方法[J]. 地震地磁观测与研究,13(6):51–59. Zhang C,Zhu Y Q,Li H M. 1992. A method to determine the local magnitude using the maximum amplitude of bore-hole velocity records[J]. Seismological and Geomagnetic Observation and Research,13(6):51–59 (in Chinese).
张明,陈军辉,严俊峰,尹晶飞,戴陈兵. 2019. 浙江省测震观测台网井下地震计方位角检测与校正[J]. 地震地磁观测与研究,40(4):125–129. Zhang M,Chen J H,Yan J F,Yin J F,Dai C B. 2019. Detection and correction of azimuth of borehole seismograph in Zhejiang Seismic Network[J]. Seismological and Geomagnetic Observation and Research,40(4):125–129 (in Chinese).
张寿康,张碧晖,左素军. 1986. 井下与地面地震观测对比研究[J]. 华北地震科学,4(4):79–84. Zhang S K,Zhang B H,Zuo S J. 1986. Comparative study in borehole and surface seismic observations[J]. North China Earthquake Sciences,4(4):79–84 (in Chinese).
张少泉,李凤杰,林云松,郭建明,王博文. 1988. 井下记录振幅随深度变化的对数模型(上)[J]. 地震地磁观测与研究,9(2):77–90. Zhang S Q,Li F J,Lin Y S,Guo J M,Wang B W. 1988. A logarithmic model for the change in amplitude of seismic wave with depth recorded in a bore-hole (1)[J]. Seismological and Geomagnetic Observation and Research,9(2):77–90 (in Chinese).
张少泉,杨懋源,郭建民,朱元清,林云松,王俊国,卫鹏飞,韦世忠. 1992. 深井观测地震波的研究[J]. 中国地震,8(1):83–94. Zhang S Q,Yang M Y,Guo J M,Zhu Y Q,Lin Y S,Wang J G,Wei P F,Wei S Z. 1992. A study on the propagation of seismic wave observed by downhole seismometer[J]. Earthquake Research in China,8(1):83–94 (in Chinese).
张尉,陈棋福,丘学林,陈颙. 2009. 首都圈数字地震台网对微弱爆破信号的检测能力[J]. 地球物理学报,52(3):681–690. Zhang W,Chen Q F,Qiu X L,Chen Y. 2009. Weak explosion signal detection by the Beijing metropolitan digital Seismic Network[J]. Chinese Journal of Geophysics,52(3):681–690 (in Chinese),.
张新东. 2002. 邯郸台网深井摆与地面摆记录分析对比[J]. 地震地磁观测与研究,23(1):65–69. Zhang X D. 2002. The analysis and comparison of the record of deep-well pendulum seismgraph and surface pendulum seismgraph of Handan Seismic Station Net[J]. Seismological and Geomagnetic Observation and Research,23(1):65–69 (in Chinese).
赵惠君,田真丽,乌统昱. 1991. 天津遥测地震台网井下地震波地动位移与地动速度记录的对比分析[J]. 地震地磁观测与研究,12(2):54–60. Zhao H J,Tian Z L,Wu T Y. 1991. Comparative analysis between ground motion displacement of seismic waves and records of seismic velocity from borehole of the Tianjin Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,12(2):54–60 (in Chinese).
赵瑞胜,危自根,闫新义,黄瑜. 2021. 喀什基准台宽频带井下和地表地震计记录数据对比研究[J]. 中国地震,37(4):898–907. doi: 10.3969/j.issn.1001-4683.2021.04.015 Zhao R S,Wei Z G,Yan X Y,Huang Y. 2021. Earthquake waveform comparison of broadband records between borehole and ground seismometers in Kashi seismic station[J]. Earthquake Research in China,37(4):898–907 (in Chinese).
郑德高,倪四道,杨卓欣,刘志. 2018. 井下地震计的P波接收函数正演计算及其稳定性研究:以首都圈地区为例[J]. 地球物理学报,61(10):3964–3979. doi: 10.6038/cjg2018M0027 Zheng D G,Ni S D,Yang Z X,Liu Z. 2018. Stability of receiver function from borehole seismometer from forward modeling and case study of waveform data in China Capital Region[J]. Chinese Journal of Geophysics,61(10):3964–3979 (in Chinese).
周焕鹏. 1986. 深井摆与地面摆的记录差异[J]. 地震地磁观测与研究,7(6):65–72. Zhou H P. 1986. Differences between recordings made by deep well pendulum and ground pendulum[J]. Seismological and Geomagnetic Observation and Research,7(6):65–72 (in Chinese).
朱音杰,刘丽,杜航,丁成,刘檀,石磊. 2020. 利用井下摆近震记录研究华北盆地沉积层速度结构[J]. 华北地震科学,38(3):44–48. Zhu Y J,Liu L,Du H,Ding C,Liu T,Shi L. 2020. Velocity structure of sedimentary layer in North China basin based on downhole seismic records[J]. North China Earthquake Sciences,38(3):44–48 (in Chinese).
朱雅山,李永勤. 1992. 淮阴台井下测震震级偏差初探[J]. 地震地磁观测与研究,13(6):39–42. Zhu Y S,Li Y Q. 1992. The preliminary investigation to the deviation of the magnitude for bore-hole seismometry records in Huaiying Seismic Station[J]. Seismological and Geomagnetic Observation and Research,13(6):39–42 (in Chinese).
Abercrombie R E. 1997. Near-surface attenuation and site effects from comparison of surface and deep borehole recordings[J]. Bull Seismol Soc Am,87(3):731–744.
Aster R C,Shearer P M. 1991. High-frequency borehole seismograms recorded in the San Jacinto fault zone,southern California. Part 1. Polarizations[J]. Bull Seismol Soc Am,81(4):1057–1080. doi: 10.1785/BSSA0810041057
Baisch S,Bohnhoff M,Ceranna L,Tu Y M,Harjes H P. 2002. Probing the crust to 9-km depth:Fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole,Germany[J]. Bull Seismol Soc Am,92(6):2369–2380. doi: 10.1785/0120010236
Hollender F,Theodoulidis N,Mariscal A,Chaudat T,Steidl J,Bard P Y,Roumelioti Z. 2023. The “Glass Beads” coupling solution for borehole and posthole accelerometers:Shaking table tests and field retrievability[J]. Seismol Res Lett,94(2A):925–934.
Hung R J,Ma K F,Song T R A,Lin Y Y,Weingarten M. 2022. Observation of temporal variations in seismic anisotropy within an active fault-zone revealed from the Taiwan Chelungpu-fault Drilling Project Borehole seismic array[J]. J Geophys Res:Solid Earth,127(4):e2021JB023050. doi: 10.1029/2021JB023050
Lay V,Buske S,Bodenburg S B,Townend J,Kellett R,Savage M K,Schmitt D R,Constantinou A,Eccles J D,Bertram M,Hall K,Lawton D,Gorman A R,Kofman R S. 2020. Seismic P wave velocity model from 3-D surface and borehole seismic data at the Alpine fault DFDP-2 drill site (Whataroa,New Zealand)[J]. J Geophys Res:Solid Earth,125(4):e2019JB018519. doi: 10.1029/2019JB018519
Ma K F. 2021. A review of the 1999 Chi-Chi,Taiwan,earthquake from modeling,drilling,and monitoring with the Taiwan Chelungpu-fault Drilling Project[M]//Earthquake Geology and Tectonophysics around Eastern Tibet and Taiwan. Singapore:Springer:63−82.
Oye V,Chavarria J A,Malin P E. 2004. Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data[J]. Geophys Res Lett,31(12):L12S10.
Riga E,Hollender F,Roumelioti Z,Bard P Y,Pitilakis K. 2019. Assessing the applicability of deconvolution of borehole records for determining near-surface shear-wave attenuation[J]. Bull Seismol Soc Am,109(2):621–635. doi: 10.1785/0120180298
Shearer P M,Abercrombie R E. 2021. Calibrating spectral decomposition of local earthquakes using borehole seismic records:Results for the 1992 big Bear aftershocks in Southern California[J]. J Geophys Res:Solid Earth,126(3):e2020JB020561. doi: 10.1029/2020JB020561
Stephenson W J,Louie J N,Pullammanappallil S,Williams R A,Odum J K. 2005. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley:Implications for earthquake ground-motion assessment[J]. Bull Seismol Soc Am,95(6):2506–2516. doi: 10.1785/0120040240
Takahashi H,Hamada K. 1975. Deep borehole observation of the Earth's crust activities around Tokyo-introduction of the Iwatsuki observatory[J]. Pure Appl Geophys,113(1):311–320. doi: 10.1007/BF01592920
Xu J R,Zhao Z X,Zeng X Z,Pi J Y. 2016. Long-term geophysical observations and analysis of the world’s deepest borehole[J]. Acta Geologica Sinica (English Edition),90(3):1061–1062.
Yamauchi T,Ishii H,Asai Y,Okubo M,Matsumoto S,Azuma S I. 2005. Development of deep borehole instruments for both multi-component observation and in situ stress measurement,and some interesting results obtained[J]. Zisin (J Seismol Soc Japan. 2nd Ser.),58(1):1–14.
Zeng X Z,Yang W C. 2021. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Appl Sci,11(14):6606. doi: 10.3390/app11146606
Zhao Z X,Xu J R,Ryuji K. 2004. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake[J]. Chinese Science Bulletin,49(22):2405–2414. doi: 10.1007/BF03183430
Zoback M,Hickman S,Ellsworth W,The SAFOD Science Team. 2011. Scientific drilling into the San Andreas fault zone:An overview of SAFOD's first five years[J]. Sci Dril,11:14–28.
-
期刊类型引用(6)
1. 郭昱琴,龚丽文,郭瑛霞,胡久常,李盛. 定点形变资料变化的动力学机制——以五指山台定点形变为例. 大地测量与地球动力学. 2023(08): 869-874 . 百度学术
2. 李萌,卢和雄,赵爱平,严丽. 有限元建模与实测应变分析——以九江地震台为例. 大地测量与地球动力学. 2023(10): 1063-1067 . 百度学术
3. 刘珠妹,张景发,李盛乐. 2000—2018年全国形变台站周边环境时空变化特征及对垂直摆观测影响分析. 地震工程学报. 2021(03): 583-593 . 百度学术
4. 龚丽文,陈丽娟,郭卫英,陈涛,唐小勇. 奉节钻孔应变前兆异常机理分析——区域应力场应力传递的结果. 地震工程学报. 2021(05): 1087-1094+1102 . 百度学术
5. 龚丽文,陈丽娟,吕品姬,张燕,郭卫英,肖家强. 黔江台水管仪与垂直摆预报效能对比分析. 地震. 2021(04): 168-179 . 百度学术
6. 袁曲,许裕之,吕品姬,张辉,王慧,宋潇潇. 宜昌台三类地倾斜仪观测数据的对比研究. 地震工程学报. 2019(06): 1536-1544 . 百度学术
其他类型引用(0)