2023年甘肃积石山MS6.2地震序列及发震构造分析

王世广, 胥广银, 李帅, 杨婷, 石磊, 张龙, 唐方头, 房立华

王世广,胥广银,李帅,杨婷,石磊,张龙,唐方头,房立华. 2024. 2023年甘肃积石山MS6.2地震序列及发震构造分析. 地震学报,46(6):953−968. DOI: 10.11939/jass.20240007
引用本文: 王世广,胥广银,李帅,杨婷,石磊,张龙,唐方头,房立华. 2024. 2023年甘肃积石山MS6.2地震序列及发震构造分析. 地震学报,46(6):953−968. DOI: 10.11939/jass.20240007
Wang S G,Xu G Y,Li S,Yang T,Shi L,Zhang L,Tang F T,Fang L H. 2024. Analysis of earthquake sequence and seismogenic structure of the 2023 MS6.2 Jishishan earthquake,Gansu Province,China. Acta Seismologica Sinica46(6):953−968. DOI: 10.11939/jass.20240007
Citation: Wang S G,Xu G Y,Li S,Yang T,Shi L,Zhang L,Tang F T,Fang L H. 2024. Analysis of earthquake sequence and seismogenic structure of the 2023 MS6.2 Jishishan earthquake,Gansu Province,China. Acta Seismologica Sinica46(6):953−968. DOI: 10.11939/jass.20240007

2023年甘肃积石山MS6.2地震序列及发震构造分析

基金项目: 第二次青藏高原综合科学考察研究(2019QZKK0708)、国家自然科学基金(42374081、42274118)和中央级公益性科研院所基本科研业务费专项(DQJB22K36、DQJB23Y45)共同资助
详细信息
    作者简介:

    王世广,博士,助理研究员,主要从事活动构造方面的研究,e-mail:wangshguang@qq.com

    通讯作者:

    胥广银,博士,研究员,主要从事地震活动性、地震地质、工程地震与地震区划等方面的研究,e-mail:xugy1971@163.com

  • 中图分类号: P315.2

Analysis of earthquake sequence and seismogenic structure of the 2023 MS6.2 Jishishan earthquake,Gansu Province,China

  • 摘要:

    2023年12月18日23时59分,甘肃省临夏州积石山县发生了MS6.2强震,震中位于柴达木—祁连地块东北缘拉脊山断裂系南段。本文基于地震重新定位与震源机制和应力反演结果对此次地震的发震构造进行了分析,并对区域危险性进行了初步探讨。采用甘肃和青海地震台网的观测数据,利用双差定位方法对震后10天的地震序列进行重定位,共获得605个高精度定位结果,结果显示主震震中位置为(35.748°N,102.812°E),震源深度为16.4 km。余震序列主要分布在6—15 km深度处,水平分布上,在震源区域内呈长轴沿NW−SE向展布,逐渐向北转变为近NS向展布,深度剖面显示出断层倾向为NE向。应用FocMech-Flow自动化流程反演震源机制解,获得MS6.2主震的最佳双力偶解,节面Ⅰ走向302°、倾角58°、滑动角45°;节面Ⅱ走向 184°、倾角53°、滑动角138°。其中,节面Ⅰ走向与震源区附近余震展布方向一致,可判定其为发震断层面。应力场反演结果表明震源区应力性质主要为逆冲型,最大主应力轴为WSW−ENE向。结合区域重力异常和已有地质资料,判断此次地震的发震断层为积石山东缘断裂系中的一条较深的反冲断层,并将其命名为“大河家断裂”。现有历史地震资料表明,近二十年来柴达木—祁连地块发生的强震具有向东迁移的趋势,此次地震的发生,暗示出位于积石山东部的西秦岭北缘断裂带未来的强震危险性有所增加。

    Abstract:

    On December 18th, 2023 at 23:59, an earthquake of MS6.2 occurred in Jishishan County, Linxia Prefecture, Gansu Province, with the epicenter located near the southern segment of the Lajishan fault system in the northeastern Qaidam-Qilian block. In this paper, we conducted the relocation, focal mechanism and stress inversion results to analyze the seismic structure and regional seismic risk. Using digital waveform data from the seismic networks of Gansu and Qinghai Provinces, the double-difference location algorithm was conducted on the earthquake sequence within 10 days after the earthquake.

    A total of 605 high-precision relocated earthquakes were revealed and the epicenter of the mainshock was determined to be at (35.748°E, 102.812°N), with a depth of 16.4 km. Most aftershocks located at depths of 6−15 km spreading along NW-SE direction near the mainshock epicenter, while some aftershocks gradually shift to a near NS direction to the north. Depth profile of aftershocks further suggests that the seismogenic fault plane dips to NE. By applying the FocMech-Flow automatic inversion of focal mechanism, the best double-couple solution for the MS6.2 mainshock was obtained. The parameters of two nodal planes are as follows: strike 302°, dip 58°, rake 45° for nodal plane I and strike 184°, dip 53°, rake 138° for nodal plane Ⅱ. Consistent with the direction of aftershock distribution near the mainshock, the plane Ⅰ is considered as the fault plane responsible for this earthquake. Stress field inversion results indicated that the stress in the epicenter belongs to thrust-type and the azimuth of σ1 axis orients WSW-ENE. Combining regional gravity anomaly and previous geological data, we suggest that the seismogenic fault is a deeply buried back thrust fault in the east Jishishan fault system and named it as “Dahejia fault”. Historical earthquake records in the Qaidam-Qilian block show that the strong earthquakes gradually migrate eastward in recent two decades. This earthquake further enhances the seismic hazards of the western Qinling fault to the east of Jishishan.

  • 图  3   余震序列重定位结果分布图

    (a) 余震震中位置及断层分布图;(b−c) 震源沿AA’和BB’剖面的深度分布图,黄色阴影区为余震集中分布深度,红色条带为拟合的发震断层面

    Figure  3.   Relocation results of the aftershock sequence

    (a) Distribution of the aftershock epicenters and regional faults;(b−c) Distribution of focal depth along profile AA’ and BB’,yellow shaded area represent the depth of most aftershocks,while the red shaded area shows the fit line of the fault plane

    图  1   积石山MS6.2地震区域主要断裂和历史地震分布图

    (a) 柴达木—祁连地块主要活动断裂及历史地震分布图;(b) 震中区主要活动断裂及历史地震分布图(块体主要活动断裂及历史地震分布引自文献Tapponnier 等 (2001),Yuan 等 (2013),徐锡伟等 (2014),Li 等(2023a)GPS矢量引自Wang和Shen (2020);烈度圈(等震线)引自甘肃省地震局(2023)

    Figure  1.   Maps showing the major active faults and epicenters of historical earthquakes in the regional area of Jishishan MS6.2 earthquake

    (a) Map showing major active faults in epicenters of historical earthuqakes in Qaidam-Qilian block;(b) Map showing the active faults and epicenters of historic earthquakes in the region of Jishishan MS6.2 earthquakeFault trace is based on the map (Tapponnier et al,2001Yuan et al,2013Xu et al,2014Li et al,2023a);GPS vectors are from Wang and Shen (2020);Isoseismal map from Gansu Earthquake Agency (2023

    图  2   积石山MS6.2地震震中区域活动断层分布图

    地层分布根据青海省地质矿产局(1991)绘制,区域断层数据由桂林理工大学陈立春提供,图中红色断层为本文推测的发震断层,基于遥感解译和野外调查确定

    Figure  2.   Maps showing the detailed active faults in the regional area of Jishishan MS6.2 earthquake

    Stratigraphic distribution based on the map Qinghai Bureau of Geology and Mineral Resources (1991),fault traces provided by the Professor Chen Lichun from Guilin University of Technology,the red fault in the figure is the conjectural seismogenic faults determined by interpretation of remote sensing images and geological surveying

    图  4   2023年积石山MS6.2主震和12月18—21日M≥2.0余震的震源机制解

    (a) 震源机制解空间分布,断层性质与图3a一致;(b) 震源机制分类三角图;(c) 应力场反演结果震源机制类型:蓝色代表逆冲型,紫红色为走滑型,黑色为正断型

    Figure  4.   Focal mechanism solutions of the Jishishan MS6.2 main shock and M≥2.0 after shocks during 18−21 December 2023

    (a) Distribution of focal mechanism solutions,the fault type is consistent with fig.3a;(b) Triangular diagram of focal mechanism types;(c) Stress field inversion results. Focal mechanisms:Blue represents thrust type, purple represents strike-slip type,black represents normal type

    图  5   研究区布格重力异常∆G (a)和断裂倾角β图(b)

    Figure  5.   Bouguer gravity anomalies ∆G (a) and dip angle β distribution map (b) of the study area

    图  6   大河家断裂野外特征照片(照片位置见图2

    大河家断裂南(a)、北(c)段断层野外照片和大河家断裂断层面擦痕(b,d)指示了逆冲兼左旋滑的运动特征。图(a−b)位置由中国地震局地质研究所郭鹏提供,图(c−d)由青海省地震局李智敏提供

    Figure  6.   Field photos of Dahejia fault (location in fig.2

    Figs.(a,c) are field photos of Dahejia fault in the southern and northern section;Figs.(b,d) are lineation on the fault plane show-ing the thrust with left-lateral slip component of Dahejia fault. Location of Figs.(a−b) are provided by Guo Peng from the Institute of Geology,China Earthquake Administration; Figs.(c−d) are provided by Li Zhimin from Qinghai Earthquake Agency

    图  7   甘肃积石山MS6.2地震发震断层三维模型

    断层滑动速率据文献李智敏等 (2014)和Zhuang等 (2023

    Figure  7.   Three dimensional seismogenic fault model of the Jishishan MS6.2 earthquake

    Slip rates are from Li et al2014) and Zhuang et al2023

    图  8   柴达木—祁连块体构造运动与变形模式图

    (a) 柴达木—祁连地块活动断裂与历史地震分布图,修改自Li 等(2023a);(b) 印度板块与欧亚板块碰撞下的青藏高原向东逃逸运动学模型,修改自Tapponnier和Molnar (1976)及Wang等(2022a). 橘色条带为近年来柴达木—祁连地块的强震向东迁移趋势,蓝色箭头代表GPS滑动矢量,棕色、红色箭头分别代表北向和东向的运动分量,GPS矢量据引自Wang和Shen (2020

    Figure  8.   Model showing Qidam-Qilian block motion and the structural deformation pattern

    (a) Active faults and historical earthquaks in Qaidam-Qilian block,modified from Li et al (2023a);(b) Extrusion model of Qinghai-Xizang Plateau under the collision of Indian and Eurasian plates,modified from Tapponnier ,Molnar (1976) and Wang et al2022a). The orange bands show the eastward moving trend of strong earthquakes in the Qidam-Qilian block. The blue arrow represents the GPS vector,and the brown and red arrows represent the northern and eastern components of movement,respectively. The GPS vector is based on Wang and Shen (2020

    表  1   震区应力场反演结果表

    Table  1   Stress field inversion results in Jishishan area

    应力方位角/°倾角/°
    σ1244.30±6.863.67
    σ2152.77±12.2622.63
    σ3343.01±11.9567.04
    下载: 导出CSV
  • 蔡妍,吴建平,房立华,刘雅宁,王长在,肖雨辰. 2023. 2022年芦山MS6.1 地震:发生在隐伏反冲断层上的一次中强地震[J]. 地震学报,45(5):823–835.

    Cai Y,Wu J P,Fang L H,Liu Y N,Wang C Z,Xiao Y C. 2023. The 2022 Lushan MS6.1 earthquake:A moderately strong earthquake on a blind back thrust fault[J]. Acta Seismologica Sinica,45(5):823–835 (in Chinese).

    房立华,吴建平,王未来,吕作勇,王长在,杨婷,蔡妍. 2013. 四川芦山MS7.0级地震及其余震序列重定位[J]. 科学通报,58(20):1901–1909.

    Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Cai Y. 2013. Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake[J]. Chinese Science Bulletin,58(28):3451–3459.

    房立华,吴建平,王未来,吕作勇,王长在,杨婷,钟世军. 2014. 云南鲁甸MS6.5地震余震重定位及其发震构造[J]. 地震地质,36(4):1173–1185. doi: 10.3969/j.issn.0253-4967.2014.04.019

    Fang L H,Wu J P,Wang W L,Lü Z Y,Wang C Z,Yang T,Zhong S J. 2014. Relocation of the aftershock sequence of the MS6.5 Ludian earthquake and its seismogenic structure[J]. Seismology and Geology,36(4):1173–1185 (in Chinese).

    房立华,吴建平,苏金蓉,王毛毛,蒋策,范莉苹,王未来,王长在,谭夏露. 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位[J]. 科学通报,63(7):649–662.

    Fang L H,Wu J P,Su J R,Wang M M,Jiang C,Fan L P,Wang W L,Wang C Z,Tan X L. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake[J]. Chinese Science Bulletin,63(7):649–662 (in Chinese). doi: 10.1360/N972017-01184

    甘肃省地震局. 2023. 甘肃省临夏州积石山县发生6.2级地震 (续一)[EB/OL]. [2023−12−19]. https://www.gsdzj.gov.cn/info/1026/20049.htm.

    Gansu Earthquake Agency. 2023. A MS6.2 earthquake occurred in Jishishan County,Linxia Prefecture,Ganxu Province (Continued 1) [EB/OL]. [2023−12−19]. https://www.gsdzj.gov.cn/info/1026/20049.htm (in Chinese).

    郭祥云,张旭,张喆,韩立波,房立华,陈鲲,刘瑞丰,王永哲. 2024. 2023年12月18日甘肃积石山6.2级地震基本信息和发震构造特征[J]. 地震科学进展,54(1):1–11.

    Guo X Y,Zhang X,Zhang Z,Han L B,Fang L H,Chen K,Liu R F,Wang Y Z. 2024. Basic information and seismic structural characteristics for the M6.2 Jishishan earthquake in Gansu Province on December 18,2023[J]. Progress in Earthquake Sciences,54(1):1–11 (in Chinese).

    胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509

    Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).

    李传友,张培震,张剑玺,袁道阳,王志才. 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J]. 第四纪研究,27(1):54–63. doi: 10.3321/j.issn:1001-7410.2007.01.007

    Li C Y,Zhang P Z,Zhang J X,Yuan D Y,Wang Z C. 2007. Late-Quaternary activity and slip rate of the western Qinling fault zone at Huangxianggou[J]. Quaternary Sciences,27(1):54–63 (in Chinese).

    李海兵,潘家伟,孙知明,司家亮,裴军令,刘栋梁,Chevalier M L,王焕,卢海建,郑勇,李春锐. 2021. 大陆构造变形与地震活动:以青藏高原为例[J]. 地质学报,95(1):194–213.

    Li H B,Pan J W,Sun Z M,Si J L,Pei J L,Liu D L,Chevalier M L,Wang H,Lu H J,Zheng Y,Li C R. 2021. Continental tectonic deformation and seismic activity:A case study from the Tibetan Plateau[J]. Acta Geologica Sinica,95(1):194–213 (in Chinese).

    李智敏,李延京,田勤俭,夏玉胜,张加庆,姚生海,黄伟. 2014. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究,37(增刊):109–115.

    Li Z M,Li Y J,Tian Q J,Xia Y S,Zhang J Q,Yao S H,Huang W. 2014. Study on the relationship between paleoseismic on Laji Mountain fault and catastrophic event on Lajiashan site[J]. Journal of Seismological Research,37(S1):109–115 (in Chinese).

    鲁人齐,房立华,郭志,张金玉,王伟,苏鹏,陶玮,孙晓,刘冠伸,单新建,何宏林. 2022. 2022年6月1日四川芦山MS6.1强震构造精细特征[J]. 地球物理学报,65(11):4299–4310. doi: 10.6038/cjg2022Q0438

    Lu R Q,Fang L H,Guo Z,Zhang J Y,Wang W,Su P,Tao W,Sun X,Liu G S,Shan X J,He H L. 2022. Detailed structural characteristics of the 1 June 2022 MS6.1 Sichuan Lushan strong earthquake[J]. Chinese Journal of Geophysics,65(11):4299–4310 (in Chinese).

    青海省地震局.2023. 甘肃临夏州积石山县发生6.2级地震[EB/OL]. [2023−12−19]. https://www.qhdzj.gov.cn/Item/2/24310.aspx.

    Qinghai Earthquake Agency. 2023. A MS6.2 earthquake occurred in Jishishan County, Linxia Prefecture, Ganxu Province[EB/OL]. [2023−12−19]. https://www.qhdzj.gov.cn/Item/2/24310.aspx (in Chinese).

    青海省地质矿产局. 1991. 青海省区域地质志[M]. 北京:地质出版社:1–662.

    Qinghai Bureau of Geology and Mineral Resources. 1991. Regional Geology of the Qinghai Province[M]. Beijing:Geology Press:1–662 (in Chinese).

    邵延秀,袁道阳,王爱国,梁明剑,刘琨,冯建刚. 2011. 西秦岭北缘断裂破裂分段与地震危险性评估[J]. 地震地质,33(1):79–90. doi: 10.3969/j.issn.0253-4967.2011.01.008

    Shao Y X,Yuan D Y,Wang A G,Liang M J,Liu K,Feng J G. 2011. The segmentation of rupture and estimate of earthquake risk along the north margin of western Qinling fault zone[J]. Seismology and Geology,33(1):79–90 (in Chinese).

    石磊,陈涛,李永华. 2022. 利用重力异常分析2021年青海玛多MS7.4地震发震断层与结构特征[J]. 地球物理学报,65(10):3858–3870. doi: 10.6038/cjg2022P0918

    Shi L,Chen T,Li Y H. 2022. Analysis of seismogenic fault and structural characteristics of the 2021 Madoi,Qinghai MS7.4 earthquake using gravity anomalies[J]. Chinese Journal of Geophysics, 65 (10):3858–3870 (in Chinese).

    徐锡伟,程佳,许冲,李西,于贵华,陈桂华,谭锡斌,吴熙彦. 2014. 青藏高原块体运动模型与地震活动主体地区讨论:鲁甸和景谷地震的启示[J]. 地震地质,36(4):1116–1134. doi: 10.3969/j.issn.0253-4967.2014.04.015

    Xu X W,Cheng J,Xu C,Li X,Yu G H,Chen G H,Tan X B,Wu X Y. 2014. Discussion on block kinematic model and future themed areas for earthquake occurrence in the Tibetan plateau:Inspiration from the Ludian and Jinggu earthquakes[J]. Seismology and Geology,36(4):1116–1134 (in Chinese).

    易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297

    Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).

    俞春泉,陶开,崔效锋,胡幸平,宁杰远. 2009. 用格点尝试法求解P波初动震源机制解及解的质量评价[J]. 地球物理学报,52(5):1402–1411. doi: 10.3969/j.issn.0001-5733.2009.05.030

    Yu C Q,Tao K,Cui X F,Hu X P,Ning J Y. 2009. P-wave first-motion focal mechanism solutions and their quality evaluation[J]. Chinese Journal of Geophysics,52(5):1402–1411 (in Chinese).

    袁道阳,张培震,雷中生,刘百篪,刘小龙. 2005. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震,21(1):93–102. doi: 10.3969/j.issn.1001-4683.2005.01.010

    Yuan D Y,Zhang P Z,Lei Z S,Liu B C,Liu X L. 2005. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China,21(1):93–102 (in Chinese).

    张波. 2012. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州:中国地震局兰州地震研究所:1−108.

    Zhang B. 2012. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Lajishan Fault[D]. Lanzhou:Lanzhou Institute of Seismology,China Earthquake Administration:1−108 (in Chinese).

    郑文俊,袁道阳,张培震,俞晶星,雷启云,王伟涛,郑德文,张会平,李新男,李传友,刘兴旺. 2016. 青藏高原东北缘活动构造几何图像、运动转换与高原扩展[J]. 第四纪研究,36(4):775–788. doi: 10.11928/j.issn.1001-7410.2016.04.01

    Zheng W J,Yuan D Y,Zhang P Z,Yu J X,Lei Q Y,Wang W T,Zheng D W,Zhang H P,Li X N,Li C Y,Liu X W. 2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences,36(4):775–788 (in Chinese).

    Álvarez-Gómez, J. A. 2019. FMC:Earthquake focal mechanisms data management, cluster and classification[J]. SoftwareX,9:299–307

    Beiki M. 2013. TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters:An example from the Asele area,Sweden[J]. J Appl Geophys,90:82–91. doi: 10.1016/j.jappgeo.2013.01.002

    Beiki M,Pedersen L B. 2010. Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J]. Geophysics,75(6):I37–I49. doi: 10.1190/1.3484098

    Chen P,Lin A M. 2019. Tectonic topography and Late Pleistocene activity of the West Qinling fault,northeastern Tibetan Plateau[J]. J Asian Earth Sci,176:68–78. doi: 10.1016/j.jseaes.2019.02.007

    Fang L H,Wu J P,Wang W L,Du W K,Su J R,Wang C Z,Yang T,Cai Y. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake[J]. Seismol Res Lett, 86 (4):1135−1142.

    Guo L H,Meng X H,Chen Z X,Li S L,Zheng Y M. 2013. Preferential filtering for gravity anomaly separation[J]. Comput Geosci,51:247–254. doi: 10.1016/j.cageo.2012.09.012

    Hao M,Li Y H,Wang Q L,Zhuang W Q,Qu W. 2021. Present-day crustal deformation within the Western Qinling mountains and its kinematic implications[J]. Surv Geophys,42(1):1–19. doi: 10.1007/s10712-020-09621-5

    Kusumoto S. 2015. Estimation of dip angle of fault or structural boundary by eigenvectors of gravity gradient tensors[J]. Butsuri-Tansa, 68 (4):277-287 (in Japanese).

    Lasserre C,Morel P H,Gaudemer Y,Tapponnier P,Ryerson F J,King G C P,Métivier F,Kasser M,Kashgarian M,Liu B C,Lu T Y,Yuan D Y. 1999. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan fault,Gansu,China[J]. J Geophys Res:Solid Earth,104(B8):17633–17651. doi: 10.1029/1998JB900082

    Lease R O,Burbank D W,Clark M K,Farley K A,Zheng D W,Zhang H P. 2011. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology,39(4):359–362. doi: 10.1130/G31356.1

    Lease R O,Burbank D W,Zhang H P,Liu J H,Yuan D Y. 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau:Is lower crustal flow necessary?[J]. Tectonics,31(3):TC3011.

    Li H B,van der Woerd J,Tapponnier P,Klinger Y,Qi X,Yang J,Zhu Y. 2005. Slip rate on the Kunlun fault at Hongshui Gou,and recurrence time of great events comparable to the 14/11/2001,MW7.9 Kokoxili earthquake[J]. Earth Planet Sci Lett,237(1/2):285–299.

    Li K,Tapponnier P,Xu X W,Kang W J. 2023a. The 2022,MS6.9 Menyuan earthquake:Surface rupture,Paleozoic suture reactivation,slip-rate and seismic gap along the Haiyuan fault system,NE Tibet[J]. Earth Planet Sci Lett,622:118412. doi: 10.1016/j.jpgl.2023.118412

    Li S,Fang L H,Xiao Z W,Zhou Y J,Liao S R,Fan L P. 2023b. FocMech-Flow:Automatic determination of P-wave first-motion polarity and focal mechanism inversion and application to the 2021 Yangbi earthquake sequence[J]. Appl Sci,13(4):2233. doi: 10.3390/app13042233

    Liu J Z. 2021. Using gravity gradient component and their combination to interpret the geological structures in the eastern Tianshan Mountains[J]. Geophys J Int,228(2):982–998. doi: 10.1093/gji/ggab373

    Lozos J C,Oglesby D D,Duan B,Wesnousky S G. 2011. The effects of double fault bends on rupture propagation:A geometrical parameter study[J]. Bull Seismol Soc Am,101(1):385–398. doi: 10.1785/0120100029

    Matsumoto N,Yoshihiro H,Sawada A. 2016. Continuity,segmentation and faulting type of active fault zones of the 2016 Kumamoto earthquake inferred from analyses of a gravity gradient tensor[J]. Earth Planets Space,68:167. doi: 10.1186/s40623-016-0541-y

    Mickus K L,Hinojosa J H. 2001. The complete gravity gradient tensor derived from the vertical component of gravity:A Fourier transform technique[J]. J Appl Geophys,46(3):159–174. doi: 10.1016/S0926-9851(01)00031-3

    Pan J W,Li H B,Chevalier M L,Tapponnier P,Bai M K,Li C,Liu F C,Liu D L,Wu K G,Wang P,Li C R,Lu H J,Chen P. 2022. Co-seismic rupture of the 2021,MW7.4 Maduo earthquake (northern Tibet):Short-cutting of the Kunlun fault big bend[J]. Earth Planet Sci Lett,594:117703. doi: 10.1016/j.jpgl.2022.117703

    Ren J J,Xu X W,Zhang G W,Wang Q X,Zhang Z W,Gai H L,Kang W J. 2022. Coseismic surface ruptures,slip distribution,and 3D seismogenic fault for the 2021 MW7.3 Maduo earthquake,central Tibetan Plateau,and its tectonic implications[J]. Tectonophysics,827:229275. doi: 10.1016/j.tecto.2022.229275

    Tapponnier P,Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature,264(5584):319–324. doi: 10.1038/264319a0

    Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978

    Vavryčuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms[J]. Geophys J Int,199(1):69–77. doi: 10.1093/gji/ggu224

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774

    Wang S G,Replumaz A,Chevalier M L,Li H B. 2022a. Decoupling between upper crustal deformation of southern Tibet and underthrusting of Indian lithosphere[J]. Terra Nova,34:62–71

    Wang X,Jiang W L,Zhang J F,Shen W H,Fu Z H. 2022b. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault zone,eastern Chinese mainland[J]. J Asian Earth Sci,224:105027. doi: 10.1016/j.jseaes.2021.105027

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002. doi: 10.1785/BSSA0840040974

    Xu X W,Yu G H,Klinger Y,Tapponnier P,Van Der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8),northern Tibetan Plateau,China[J]. J Geophys Res:Solid Earth,111(B5):B05316.

    Yang T,Jia K,Zhu A Y,Wang S G,Fang L H. 2023. The 2022 MS5.8 and 6.0 Maerkang earthquakes:Two strike-slip events occurred on V-shaped faults[J]. Bull Seismol Soc Am,113(6):2432–2446. doi: 10.1785/0120220206

    Yuan D Y,Ge W P,Chen Z W,Li C Y,Wang Z C,Zhang H P,Zhang P Z,Zheng D W,Zheng W J,Craddock W H,Dayem K E,Duvall A R,Hough B G,Lease R O,Champagnac J D,Burbank D W,Clark M K,Farley K A,Garzione C N,Kirby E,Molnar P,Roe G H. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies[J]. Tectonics,32(5):1358–1370. doi: 10.1002/tect.20081

    Zhang L,Zhou Y J,Zhang X,Zhu A Y,Li B,Wang S G,Liang S S,Jiang C,Wu J P,Li Y X,Su J R,Yan L J,Fang L H. 2023. 2022 MW6.6 Luding,China,Earthquake:A strong continental event illuminating the Moxi seismic gap[J]. Seismol Res Lett,94(5):2129–2142. doi: 10.1785/0220220383

    Zhuang W Q,Cui D X,Hao M,Song S W,Li Z J. 2023. Geodetic constraints on contemporary three-dimensional crustal deformation in the Laji Shan-Jishi Shan tectonic belt[J]. Geodesy and Geodynamics,14(6):589–596. doi: 10.1016/j.geog.2023.03.006

  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(1)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  139
  • PDF下载量:  343
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-01-22
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回