有限断层地震波辐射能估算及其在合成强地面运动中的应用

孟令媛 史保平

孟令媛 史保平. 2011: 有限断层地震波辐射能估算及其在合成强地面运动中的应用. 地震学报, 33(5): 637-649.
引用本文: 孟令媛 史保平. 2011: 有限断层地震波辐射能估算及其在合成强地面运动中的应用. 地震学报, 33(5): 637-649.
Meng Lingyuan Shi Baopingcom asic personality. 2011: Ground motion prediction based on estimated seismic energy radiated from finite fault. Acta Seismologica Sinica, 33(5): 637-649.
Citation: Meng Lingyuan Shi Baopingcom asic personality. 2011: Ground motion prediction based on estimated seismic energy radiated from finite fault. Acta Seismologica Sinica, 33(5): 637-649.

有限断层地震波辐射能估算及其在合成强地面运动中的应用

详细信息
  • 中图分类号: P315.3+1

Ground motion prediction based on estimated seismic energy radiated from finite fault

  • 摘要: 对有限断层地震波能量辐射的估算通常采用断层面上子源能量的逐点求和方法。基于Brune圆盘模型,Anderson推导出有限断层地震波能量辐射S波的求解公式,即 ,其中 为断层面上地震矩, 为剪切模量, 和 分别为动态应力降和静态应力降,并指出在复合震源模型强地面运动预测应用中 以满足能量守恒。Rivera和Kanamori则从能量辐射表象定理出发,给出了有限断层中辐射能量的积分表达式,明确地指出了逐点求和所存在的问题。依据该积分表达式,本文推导出了复合源模型中新的辐射能完整的求解方法,指出Anderson方法实为断层面上点源辐射能量的简单叠加求和,后者则充分考虑了断层面上任一点在任一时刻能量传播过程中受到的断层面上所有位移破裂路径的交互影响。以1976年唐山7.6地震为例,应用上述方法分别计算了有限断层模型的辐射能量及近场强地面运动,如质点运动加速度,速度。结果表明如果模型参数满足 时,由本文给出的求解方法计算所得到的地震波辐射能已远远超出实际的辐射能量值,直接导致了对近场强地面运动参数如质点速度、加速度等的过高估算。因此,Zeng等和Anderson工作的局限性是非常明显的:地震矩守恒以及非物理的 无法准确地预测近场地面运动。未来工作中,对于有限断层模型的建立,在地震矩守恒这一约束条件的基础上,远场和近场能量解(或视应力)将可作为另一个重要的约束条件,为强地面运动的模拟提供一个更为恰当的求解方案。
    Abstract: The radiated seismic energy strongly depends on how the rupture propagates during the earthquake. In this study, we calculated the radiated energy and apparent stress, from the known slip distribution described by Brunersquo;s source function which is commonly used in the strong motion modeling, resulting from the composite source model. A new technique based on the far-field energy integrand over a simple finite fault is developed to estimate S-wave energy radiation with associated composite source model. Comparing with point source summation proposed by Anderson in which , where is the energy radiated by S-wave, and are the scalar seismic moment and shear rigidity, respectively, and are the static and dynamic stress drops, respectively, the new result is numerically given by , where (k=1, 2, 3,hellip;, n) are the subevent size, CS and q are constants which can be determined from seismic moment conservation used previously by Zeng et al. and Anderson. As Rivera and Kanamori pointed out that, in such case, the integration of the energy flux from any point on the fault depend not only the slip function at such point, but also on the slip function everywhere over the fault plane. Moreover, we discussed the frictional overshoot and undershoot behaviors inherited from Andersonrsquo;s consideration and our current solution for the composite source model, and the scaling relation of radiated energy to the ratio of given by Anderson may be incorrect in the source energy estimation. For comparing purpose, we developed composite source model to simulate the 1976 Mw7.6 Tangshan Earthquake and calculate the radiated S-wave energies based on theAndersonrsquo;s solution and our new solution. The results show that, forAndersonrsquo;s solution, the energy conservation occurs when , and the corresponded near-fault particle velocity or PGV (peak ground velocity) reaches about2m/s which are much higher than real observation. In contrast, the result derived from our new solution indicates that the energy conservation occurs at which is similar to the theoretical consideration of ( is called apparent stress and ), and the corresponded near fault PGV is about 0.9~1.3m/s which is much smaller than that fromAndersonrsquo;s solution. We suggest that, for the strong motion simulation, the seismic moment alone is insufficient to quantify the ground motion level, the radiated energy or apparent stress derived from earthquake source inversion should be an additional constraint condition in the future development of numerical algorithm of strong motion prediction.
  • 期刊类型引用(20)

    1. 朱冰清,王伟涛,谢俊举,李志伟,姚新强,黄翔,卞真付,林逸. 利用近震Sp转换波到时和远震接收函数P波峰值延迟研究华北盆地浅部结构. 地球物理学报. 2024(06): 2172-2190 . 百度学术
    2. 王秋实,李永华,武岩. 使用接收函数自相关约束渤海湾北部沉积层结构. 地球物理学报. 2024(06): 2191-2203 . 百度学术
    3. 任雅哲,丰成君,戚帮申,葛伟亚,谭成轩,孟静. 北京顺义断裂活动对首都机场地裂缝影响定量研究. 地质力学学报. 2023(05): 685-703 . 百度学术
    4. 王莉婵,毛国良,蔡玲玲,马旭东,王亚玲,王宁. 唐山北部地区浅层一维剪切波速度结构初步研究. 震灾防御技术. 2022(01): 104-113 . 百度学术
    5. 窦甜甜,程惠红,周元泽,石耀霖. 华北平原地下水开采对区域地震活动性的影响. 地球物理学报. 2022(08): 2931-2944 . 百度学术
    6. 徐纪人,李海兵,曾祥芝,赵志新. 江苏东海深井观测地震波形及其信噪比研究. 地震学报. 2022(06): 1007-1018 . 本站查看
    7. 李赫,董一兵,王熠熙,彭研枫,刘双庆,吴博洋. 廊固凹陷深部剪切破裂构造的地震学证据. 地球物理学报. 2020(02): 492-504 . 百度学术
    8. 朱音杰,刘丽,杜航,丁成,刘檀,石磊. 利用井下摆近震记录研究华北盆地沉积层速度结构. 华北地震科学. 2020(03): 44-48 . 百度学术
    9. 冀战波,王宝善. 2015年8月12日天津化学爆炸产生的多模式面波分析及其应用研究. 地球物理学报. 2020(11): 4097-4113 . 百度学术
    10. 康治梁,余嘉顺. 基于Dropout—BPNN的地球物理反演——以表层横波速度反演为例. 工程地球物理学报. 2019(03): 286-294 . 百度学术
    11. 杨传茂,钱韵衣,危自根. 核幔边界反射P波对接收函数影响的研究. 地球物理学进展. 2019(03): 974-985 . 百度学术
    12. 邓莉,谭毅培,刘双庆,马婷,卞真付,曹井泉. 天津滨海爆炸事件检测与相对定位研究. 地震. 2018(03): 158-169 . 百度学术
    13. 韦庆海,孟宪森,杨家亮,高东辉,郝永梅,刁桂苓,孟令蕾,佟艳英. 松嫩盆地井下摆记录到的地方震地表反射波. 中国地震. 2015(02): 432-438 . 百度学术
    14. 郝重涛,姚陈. 首都圈地区远震基底PS波分裂研究. 地球物理学报. 2014(08): 2573-2583 . 百度学术
    15. 韦庆海,孟宪森,高东辉,郝永梅,康健,方瑶. 依据浅层剪切波速度估计纵波速度. 世界地震工程. 2014(01): 160-164 . 百度学术
    16. 刘双庆,高原,张磊,汪翠枝,马建英. 2012年天津宝坻2次有感地震的力学机制研究. 中国地震. 2014(04): 514-522 . 百度学术
    17. 谢军,倪四道,曾祥方. 四川盆地中部浅层地壳一维剪切波速度结构初步研究. 四川地震. 2012(02): 20-24 . 百度学术
    18. 王未来,吴建平,房立华. 利用地脉动信息约束沉积层区域台站下方速度结构反演. 地震学报. 2011(01): 28-38+122 . 本站查看
    19. 刘渊源,崇加军,倪四道. 基于井下摆天然地震数据测量首都圈近地表波速结构. 地震学报. 2011(03): 342-350+406 . 本站查看
    20. Effects of sedimentary layer on earthquake source modeling from geodetic inversion. Earthquake Science. 2011(02): 221-227 . 必应学术

    其他类型引用(11)

计量
  • 文章访问数:  1678
  • HTML全文浏览量:  545
  • PDF下载量:  155
  • 被引次数: 31
出版历程
  • 发布日期:  2011-09-19

目录

    /

    返回文章
    返回