唐山地震区的地壳结构及大陆地震成因的探讨
CRUSTAL STRUCTURE OF TANGSHAN EPICENTRAL REGION AND ITS RELATION TO THE SEISMOGENIC PROCESS OF A CONTINENTAL EARTHQUAKE
-
摘要: 本文对唐山地震区的深地震测深资料进行了分析解释。结果表明,该区地壳结构的几个特点,与大陆地区的强震发生有明显关系。 在该震区,相应于不同记录剖面的不同地段,其地壳结构可分为三种类型:类型Ⅰ,类型Ⅱ和类型Ⅲ。每种类型都有它们独特的速度——深度分布。在两种类型的地壳结构边界,或者边界附近,通常存在莫霍界面深度的急剧变化,这种变化可视为某种类型的断层。上述三种类型地壳结构的差异,主要是由上地幔物质向地壳的垂直迁移程度不同造成的。震中区的地壳结构,显示出极高度的物质迁移。然而,应该指出,现今地壳结构是在漫长的地质年代里,经过多次变形积累而形成的。因此,这种结构特征,是表示过去的构造活动痕迹,还是表示现今的构造活动,尚难定论。如我们将不同类型地壳结构的边界,与剥去第三纪的地质构造图进行对比,可以发现,不同地壳结构类型的分界,恰与一定的古老地质构造边界相符合。象北京——天津——唐山这样距离海洋不远的地区,古老的不同种类的小地质体,可能在古代的全球构造运动中聚集起来,并粘结在一起。 1976年唐山主震发生在地壳结构类型Ⅱ内、靠近类型Ⅰ的边界处。因此,唐山地震可能是由于上地幔物质向上迁移的结果,也可能是由于板块的横向挤压、引起脆弱边界重新活化的结果。另有一点是,Abstract: In the present paper, the authors discuss the different phases in DSS profile records obtained from Tangshan, and the methods of their interpretations. The DSS data of some profiles running through the Tangshan epicentral region show that the crustal structure in this region is characterized by some special features, which may bear some significant relations to the cause of the occurence of a great earthquake in continintal region.In this area, the earths crust are of three different types, each of which exhibits some peculiar features in velocity structure. An abrupt change of depth of Moho and hence a certain type of faulting usually occurs at or near the boundary between two areas of different types of crust. The difference between different crustal structures may be largely due to the difference in degree of vertical migration of-materials from the uppermost mantle into the crust. The crustal strusture of the epicentral region exhibits the highest degree of material migration from the uppermost mantle in to the lower crust. However, the present crustal structure is a collective fossil inherited from a long span of geological time. Therefore, it is still not very clear whether the migration processes which seem to have been very prominent in the past, are still working effectively at the present. A comparison has been made of the boundaries between different types of crustal structure with the geological map in which the Tertiary surface layer has been stripped off. If is striking that the boundary between different crustal structures is in coincidence with a certain ancient geological map. It is possible that in such an area as Beijing-Tianjing-Tangshan, which is not very far from the coast, different kinds of small ancient geological bodies have been brought together and cemented by ancient global tectonic processes. The main shock of Tangshan earthquake of 1976 occured in the crustal structure of type Ⅱ and near the boundary of the crustal structure of type Ⅱ and type Ⅲ. Therefore, either the occurence of Tang-shan earthquake is due to vertical migration of material from the uppermost mantle into the crust, or it is caused by the reactivation of the weak zone while the whole region is at present under the action of a certain tectonic force. However, it is quite certain that in the area with crustal structure of type Ⅱ, the middle crustal layer has negligible thickness or is totally absent. Since the upper part of the crust may be brittle, it will easily collapse under the action of present tectonic stress.
-
-
[1] 国家地震局,1976年唐山地震,地震出版社,1982,
[2] Brekovskikh, L., Waves in Layered Media, Academic Press, New York, 1980.
[3] Cerveny, V. et al., Refraction of elastic waves mto.medium of low velocity——pseudospherical waves. Peere Appl. Geophys. 92, 115——132, 1971.
[4] Cervenj", V., and J. Kozak, Experimental evidence and investigation of pseudospherical waves. J Geophys. 38, 617——628, 1972.
[5] Fuchs, K. and K. Schulz, Tunnelling of low——frequency waves through the subcrustal lithosphere J. GeopEtys. 42, 175——190, 1976.
[6] 曾融生等,岩石圈下部的速度结构,地球物理学报27,31——41 1976,
[7] Meissner, R., Exploring deep interface by seismic wide angle measurements. Geophysical Prospe——trnR, 15, 598——616, 1967.
[8] Prodehl, C., Crustal structure of the western United States, Geological Survey Professional Papet1034, 1979.
[9] Molnar, P. and P. Taponnier, Cenozoic tectonics of Asia: Effects of a continental collision, Science,189, 419——420, 1975.
[10] 族顺民等,唐山地震区域构造背景和发震模式的讨论,地质科学,4, 305——321,1977.
[11] Richardson, R. H. et al., Intraplate stress as an indication of plate tectonic driving forces. J.Geophys. Res. 81, 1947——1956, 1976.
[12] 曾融生,固体地球物理学导论,第十二章,科学出版社,1941.
[13] Sykes, L. R., Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonics postdating continental fragmentation, Rev. Geophys. and poce Phys. 16, 621——688, 1978.
[14] 张少泉,俞玉琪,高世玉,周海南,横向非均匀介质的射线追踪方法及其应用,地震地磁观测与研究,4,6,1——3,1953[1] 国家地震局,1976年唐山地震,地震出版社,1982,
[2] Brekovskikh, L., Waves in Layered Media, Academic Press, New York, 1980.
[3] Cerveny, V. et al., Refraction of elastic waves mto.medium of low velocity——pseudospherical waves. Peere Appl. Geophys. 92, 115——132, 1971.
[4] Cervenj", V., and J. Kozak, Experimental evidence and investigation of pseudospherical waves. J Geophys. 38, 617——628, 1972.
[5] Fuchs, K. and K. Schulz, Tunnelling of low——frequency waves through the subcrustal lithosphere J. GeopEtys. 42, 175——190, 1976.
[6] 曾融生等,岩石圈下部的速度结构,地球物理学报27,31——41 1976,
[7] Meissner, R., Exploring deep interface by seismic wide angle measurements. Geophysical Prospe——trnR, 15, 598——616, 1967.
[8] Prodehl, C., Crustal structure of the western United States, Geological Survey Professional Papet1034, 1979.
[9] Molnar, P. and P. Taponnier, Cenozoic tectonics of Asia: Effects of a continental collision, Science,189, 419——420, 1975.
[10] 族顺民等,唐山地震区域构造背景和发震模式的讨论,地质科学,4, 305——321,1977.
[11] Richardson, R. H. et al., Intraplate stress as an indication of plate tectonic driving forces. J.Geophys. Res. 81, 1947——1956, 1976.
[12] 曾融生,固体地球物理学导论,第十二章,科学出版社,1941.
[13] Sykes, L. R., Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonics postdating continental fragmentation, Rev. Geophys. and poce Phys. 16, 621——688, 1978.
[14] 张少泉,俞玉琪,高世玉,周海南,横向非均匀介质的射线追踪方法及其应用,地震地磁观测与研究,4,6,1——3,1953 -
期刊类型引用(20)
1. 朱冰清,王伟涛,谢俊举,李志伟,姚新强,黄翔,卞真付,林逸. 利用近震Sp转换波到时和远震接收函数P波峰值延迟研究华北盆地浅部结构. 地球物理学报. 2024(06): 2172-2190 . 百度学术
2. 王秋实,李永华,武岩. 使用接收函数自相关约束渤海湾北部沉积层结构. 地球物理学报. 2024(06): 2191-2203 . 百度学术
3. 任雅哲,丰成君,戚帮申,葛伟亚,谭成轩,孟静. 北京顺义断裂活动对首都机场地裂缝影响定量研究. 地质力学学报. 2023(05): 685-703 . 百度学术
4. 王莉婵,毛国良,蔡玲玲,马旭东,王亚玲,王宁. 唐山北部地区浅层一维剪切波速度结构初步研究. 震灾防御技术. 2022(01): 104-113 . 百度学术
5. 窦甜甜,程惠红,周元泽,石耀霖. 华北平原地下水开采对区域地震活动性的影响. 地球物理学报. 2022(08): 2931-2944 . 百度学术
6. 徐纪人,李海兵,曾祥芝,赵志新. 江苏东海深井观测地震波形及其信噪比研究. 地震学报. 2022(06): 1007-1018 . 本站查看
7. 李赫,董一兵,王熠熙,彭研枫,刘双庆,吴博洋. 廊固凹陷深部剪切破裂构造的地震学证据. 地球物理学报. 2020(02): 492-504 . 百度学术
8. 朱音杰,刘丽,杜航,丁成,刘檀,石磊. 利用井下摆近震记录研究华北盆地沉积层速度结构. 华北地震科学. 2020(03): 44-48 . 百度学术
9. 冀战波,王宝善. 2015年8月12日天津化学爆炸产生的多模式面波分析及其应用研究. 地球物理学报. 2020(11): 4097-4113 . 百度学术
10. 康治梁,余嘉顺. 基于Dropout—BPNN的地球物理反演——以表层横波速度反演为例. 工程地球物理学报. 2019(03): 286-294 . 百度学术
11. 杨传茂,钱韵衣,危自根. 核幔边界反射P波对接收函数影响的研究. 地球物理学进展. 2019(03): 974-985 . 百度学术
12. 邓莉,谭毅培,刘双庆,马婷,卞真付,曹井泉. 天津滨海爆炸事件检测与相对定位研究. 地震. 2018(03): 158-169 . 百度学术
13. 韦庆海,孟宪森,杨家亮,高东辉,郝永梅,刁桂苓,孟令蕾,佟艳英. 松嫩盆地井下摆记录到的地方震地表反射波. 中国地震. 2015(02): 432-438 . 百度学术
14. 郝重涛,姚陈. 首都圈地区远震基底PS波分裂研究. 地球物理学报. 2014(08): 2573-2583 . 百度学术
15. 韦庆海,孟宪森,高东辉,郝永梅,康健,方瑶. 依据浅层剪切波速度估计纵波速度. 世界地震工程. 2014(01): 160-164 . 百度学术
16. 刘双庆,高原,张磊,汪翠枝,马建英. 2012年天津宝坻2次有感地震的力学机制研究. 中国地震. 2014(04): 514-522 . 百度学术
17. 谢军,倪四道,曾祥方. 四川盆地中部浅层地壳一维剪切波速度结构初步研究. 四川地震. 2012(02): 20-24 . 百度学术
18. 王未来,吴建平,房立华. 利用地脉动信息约束沉积层区域台站下方速度结构反演. 地震学报. 2011(01): 28-38+122 . 本站查看
19. 刘渊源,崇加军,倪四道. 基于井下摆天然地震数据测量首都圈近地表波速结构. 地震学报. 2011(03): 342-350+406 . 本站查看
20. Effects of sedimentary layer on earthquake source modeling from geodetic inversion. Earthquake Science. 2011(02): 221-227 . 必应学术
其他类型引用(11)
计量
- 文章访问数: 1161
- HTML全文浏览量: 33
- PDF下载量: 110
- 被引次数: 31