探讨孕震过程中的非线性特征

安镇文1, 王琳瑛1, 陈瑶1, 潘寒萌2

安镇文1, 王琳瑛1, 陈瑶1, 潘寒萌2. 1993: 探讨孕震过程中的非线性特征. 地震学报, 15(3): 276-281.
引用本文: 安镇文1, 王琳瑛1, 陈瑶1, 潘寒萌2. 1993: 探讨孕震过程中的非线性特征. 地震学报, 15(3): 276-281.

探讨孕震过程中的非线性特征

  • 摘要: 应用谱分析方法,研究了海城、唐山和澜沧等7个大震前、后地震活动的功率谱特征.结果得到大震前、后地震活动都有连续的功率谱,表现为某种非周期行为.当距大震发生时间较远时,其活动特征均伴有明显的随机成分.主震前一年左右,在由谱幅度构造的相空间,运动轨道有收缩趋势,表现为一种闪变噪声.其它时间轨道几乎遍历整个相空间.主震后地震活动本质上为一种伴有许多噪声的浑沌态.
  • [1] 安镇文、姚栋华、陈颧,1992.岩石声发射与地震活动的信息维特征.中国科学,B, 7. 736——742.

    [2] Akl . K..1981. A probabilistic synthesis of precursory phenomena. In:Simpsion,D. W. and Rmhards,P. G. (Editors).Earthquake Predictron, 566——574. Amer. Geophys. Union,Washington.D. C

    [3] Bak,P. and Tang, C.,1989. Earthquakes as a self——organized critical phenomenon. J. Geophys.,Res.,94,Bll,15635——15637

    [4] Bak,P. and Chen.K.,1991. Self——organized criticality. Sczerzizfzc American, 264. 1,26——33.

    [5] Hirata. T.,Satoh,T and Ito,K.,1987. Fractal structure of spatial distribution of microfracturing in rock. Geophys. J. R. actr. Soc. . 90, 369——379.

    [6] Kagan, Y. Y. and Knopoff,L.,1980. Spatial distribution of earthquakes; the two——point correlation function. Geophys. J. R. astr. Soc.,62, 303——320.

    [7] Kagan,Y. Y. and Knopoff,L.,1981. Stochastic synthesis of earthquake catalogs. J. Geophys. Res.,86, 2853——2862.

    [8] King, G.,1983. The accommodation of large strains in the upper lithosphere of the earth and other solids by self——similar fault systems: the geometrical origin of b——value. Pure Appl. Geophys. 121,761——815.

    [9] Marek,M. and Schreiber, L.,1991. Chaotic Behaviour of Delermznzsizc Dasszpatire Systems, 120——122. Cambridge University Press, Cambridge.

    [10] Nicolis,G. and Prigogine.L,1977. Self——Organizatiurz in Norzequilzbrium Systems. 491pp. John Wiley. New York.

    [11] Otnes,R. K. and Enochson,L.,1972. Digital Time Series Aualysis, 298pp. A Wiley Interscience Publication. New York.

    [12] Sadovskiy,M. A.,Golubeva.T. V.,Pisarenko.V. F. and Shnirman.M. G.,1984. Characteristic dimensions of rock and hier——archical properties of seismicity. hvesizyo Earth Phys.,20, 87——96.

    [13] Sagdeev, R. Z.,Usikov, D. A.'and Zaslavsky, G. M.,1988. Nrnzlinear Physus from the Pendulum to Turbulence and Chaus. 675pp. Harwood Academic Publishers.

    [14] Sander,L. M.,1986. Fractal growth processes. Nature, 322. 789——793.

    [1] 安镇文、姚栋华、陈颧,1992.岩石声发射与地震活动的信息维特征.中国科学,B, 7. 736——742.

    [2] Akl . K..1981. A probabilistic synthesis of precursory phenomena. In:Simpsion,D. W. and Rmhards,P. G. (Editors).Earthquake Predictron, 566——574. Amer. Geophys. Union,Washington.D. C

    [3] Bak,P. and Tang, C.,1989. Earthquakes as a self——organized critical phenomenon. J. Geophys.,Res.,94,Bll,15635——15637

    [4] Bak,P. and Chen.K.,1991. Self——organized criticality. Sczerzizfzc American, 264. 1,26——33.

    [5] Hirata. T.,Satoh,T and Ito,K.,1987. Fractal structure of spatial distribution of microfracturing in rock. Geophys. J. R. actr. Soc. . 90, 369——379.

    [6] Kagan, Y. Y. and Knopoff,L.,1980. Spatial distribution of earthquakes; the two——point correlation function. Geophys. J. R. astr. Soc.,62, 303——320.

    [7] Kagan,Y. Y. and Knopoff,L.,1981. Stochastic synthesis of earthquake catalogs. J. Geophys. Res.,86, 2853——2862.

    [8] King, G.,1983. The accommodation of large strains in the upper lithosphere of the earth and other solids by self——similar fault systems: the geometrical origin of b——value. Pure Appl. Geophys. 121,761——815.

    [9] Marek,M. and Schreiber, L.,1991. Chaotic Behaviour of Delermznzsizc Dasszpatire Systems, 120——122. Cambridge University Press, Cambridge.

    [10] Nicolis,G. and Prigogine.L,1977. Self——Organizatiurz in Norzequilzbrium Systems. 491pp. John Wiley. New York.

    [11] Otnes,R. K. and Enochson,L.,1972. Digital Time Series Aualysis, 298pp. A Wiley Interscience Publication. New York.

    [12] Sadovskiy,M. A.,Golubeva.T. V.,Pisarenko.V. F. and Shnirman.M. G.,1984. Characteristic dimensions of rock and hier——archical properties of seismicity. hvesizyo Earth Phys.,20, 87——96.

    [13] Sagdeev, R. Z.,Usikov, D. A.'and Zaslavsky, G. M.,1988. Nrnzlinear Physus from the Pendulum to Turbulence and Chaus. 675pp. Harwood Academic Publishers.

    [14] Sander,L. M.,1986. Fractal growth processes. Nature, 322. 789——793.

计量
  • 文章访问数:  1022
  • HTML全文浏览量:  10
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 发布日期:  2011-09-02

目录

    /

    返回文章
    返回