甘东南地区宽频带地震台阵背景噪声特征分析

颜文华, 张元生, 秦满忠, 刘旭宙, 郭瑛霞

颜文华, 张元生, 秦满忠, 刘旭宙, 郭瑛霞. 2016: 甘东南地区宽频带地震台阵背景噪声特征分析. 地震学报, 38(5): 719-727.
引用本文: 颜文华, 张元生, 秦满忠, 刘旭宙, 郭瑛霞. 2016: 甘东南地区宽频带地震台阵背景噪声特征分析. 地震学报, 38(5): 719-727.
Yan Wenhua, Zhang Yuansheng, Qin Manzhong, Liu Xuzhou, Guo Yingxia. 2016: Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region. Acta Seismologica Sinica, 38(5): 719-727.
Citation: Yan Wenhua, Zhang Yuansheng, Qin Manzhong, Liu Xuzhou, Guo Yingxia. 2016: Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region. Acta Seismologica Sinica, 38(5): 719-727.

甘东南地区宽频带地震台阵背景噪声特征分析

基金项目: 

国家自然科学基金(41574044)和地震行业科研专项(201308011)共同资助

和地震行业科研专项共同资助 201308011

国家自然科学基金 41574044

详细信息
    通讯作者:

    张元生: e-mail: zhangys2011@163.com

  • 中图分类号: P315.4

Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region

  • 摘要: 基于甘肃东南地区150个宽频带流动台站2010年的垂直分量连续波形记录,通过计算台站对之间背景噪声的互相关函数并叠加得到5—10s和10—20s两个周期的瑞雷面波信号,并通过信噪比和归一化背景能量流两种方法研究了该地区背景噪声源的时空演化特征.研究结果表明,甘东南地区5—10s和10—20s周期的背景噪声源具有明显的季节变化特征和各自的优势方位.5—10s周期的背景噪声在夏季的能量优势方位为170°—240°,噪声源主要位于印度洋,而冬季为100°—150°,主要位于北太平洋;10—20s周期的背景噪声源则比较复杂,其优势方位受多个大洋的交替影响,夏季噪声源能量优势方位为170°—210°,噪声源主要位于印度洋,冬季为90°—150°和310°—355°,噪声源分别位于北太平洋和北大西洋.由于这两个周期的背景噪声源在甘东南地区存在明显的季节变化,因此在利用背景噪声方法研究该地区介质速度结构时需充分考虑噪声源的非均匀性所产生的影响.
    Abstract: Using the vertical component records of 150 broadband seismic stations from January to December 2010 in the southeastern Gansu region, this paper calculated the ambient noise cross-correlation functions between each station-pair and stacked them to obtain Rayleigh surface wave signals in the periods of 5-10 s and 10-20 s. And then the method of signal-to-noise ratio (SNR) and normalized background energy flow (NBEF) measurement are adopted to study the characteristics of ambient noise source in southeastern Gansu region based on the asymmetrical features of cross-correlation functions. The results show that the seasonal variations of ambient noise source for both periods of 5-10 s and 10-20 s have their respective azimuthal distribution of noise energy. The azimuth of ambient noise source in the period of 5-10 s is 170°-240° in summer, which means the energy of ambient noise source is mainly affected by the Indian Ocean, and it moves to 100°-150° in winter, which means the energy of ambient noise source is mainly affected by the North Pacific Ocean. In contrast, the characteristics of ambient noise source in the period of 10-20 s is more complex, because the azimuth of ambient noise source is controlled by several oceans. The energy of ambient noise source focuses on the azimuth of 170°-210° in summer, which means it is mainly affected by the Indian Ocean, then it moves to 90°-150° and 310°-355° in winter, which means it is mainly affected by the North Pacific Ocean and the North Atlantic Ocean. Because the ambient noise source of southeastern Gansu region has obvious seasonal variation in both periods of 5-10 s and 10-20 s, inhomogeneous ambient noise source should be taken into consideration when the method of ambient noise is used to study the seismic velocity structure in the region.
  • 图  1   甘东南地区流动台阵(三角形)分布图

    Figure  1.   Location of portable array(triangles)in the southeastern Gansu region

    图  2   经过12个月叠加的噪声互相关函数波形图

    实线与虚线之间为信号窗口;时间轴上正负分支分别表示同一路径上沿相反方向传播的面波延时

    Figure  2.   The 12-month stacked cross-correlation function waveforms in the periods of 5-10 s and 10-20 s

    Signal window is marked by the solid line and the dashed line; the positive and negative lags present surface wave lapse time along the same path in the opposite direction,respectively

    图  3   5—10 s(a)和10—20 s(b)周期内台站对信噪比方位的冬季(左)和夏季(右)分布图

    Figure  3.   Azimuth distribution of SNRs for the station-pairs in the winter(left)and in the summer(right)in the periods of 5—10 s(a)and 10—20 s(b)

    图  4   5—10 s(a)和10—20 s(b)周期内背景噪声能量的优势方位及强度随时间的演化图

    Figure  4.   The azimuth distribution and the variation of the strength of ambient seismic noise in the periods of 5—10 s(a)and 10—20 s(b)

  • 房立华, 吴建平, 吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报, 52(3): 663-671. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903010.htm

    Fang L H, Wu J P, Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics, 52(3): 663-671 (in Chinese). doi: 10.1002/cjg2.v52.3

    房立华, 吴建平, 王未来, 王长在, 杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报, 56(7): 2268-2279. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307013.htm

    Fang L H, Wu J P, Wang W L, Wang C Z, Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics, 56(7): 2268-2279 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307013.htm

    高见, 张元生, 郭飚, 刘旭宙. 2013. 甘东南流动台阵微震监测结果[J]. 地震工程学报, 35(1): 177-182. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301027.htm

    Gao J, Zhang Y S, Guo B, Liu X Z. 2013. Microearthquake location determined by portable seismic array data in southeast Gansu Province[J]. China Earthquake Engineering Journal, 35(1): 177-182 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301027.htm

    李玲利, 王伟涛, 朱良保, 陈浩朋, 王清东, 缪鹏, 王俊. 2014. 从背景噪声提取瑞利面波频散曲线: 方法与应用实例[J]. 地震, 34(3): 108-116. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201403010.htm

    Li L L, Wang W T, Zhu L B, Chen H P, Wang Q D, Miao P, Wang J. 2014. Processing seismic ambient noise data to obtain reliable surface wave dispersion measurements[J]. Earthquake, 34(3): 108-116 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201403010.htm

    刘旭宙, 张元生, 李顺成. 2014. 流动地震观测台阵数据快速整合研究[J]. 地震学报, 36(4): 730-737. http://www.dzxb.org/stat/ShowHtml?ContentID=28999

    Liu X Z, Zhang Y S, Li S C. 2014. Data rapid integration of mobile seismic array[J]. Acta Seismologica Sinica, 36(4): 730-737 (in Chinese). http://www.dzxb.org/stat/ShowHtml?ContentID=28999

    刘志坤, 黄金莉. 2010. 利用背景噪声互相关研究汶川地震震源区地震波速度变化[J]. 地球物理学报, 53(4): 853-863. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004011.htm

    Liu Z K, Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation[J]. Chinese Journal of Geophysics, 53(4): 853-863 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004011.htm

    鲁来玉, 何正勤, 丁志峰, 王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 57(3): 822-836. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403012.htm

    Lu L Y, He Z Q, Ding Z F, Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 57(3): 822-836 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403012.htm

    马小军, 马禾青, 李军, 许晓庆, 曾宪伟, 罗国富. 2014. 青藏高原东北缘背景噪声特征分析[J]. 地震研究, 37(4): 607-613. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201404018.htm

    Ma X J, Ma H Q, Li J, Xu X Q, Zeng X W, Luo G F. 2014. Characteristic of ambient seismic noise of the northeastern margin of Tibetan Plateau[J]. Journal of Seismological Research, 37(4): 607-613 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201404018.htm

    齐诚, 陈棋福, 陈颙. 2007. 利用背景噪声进行地震成像的新方法[J]. 地球物理学进展, 22(3): 771-777. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703016.htm

    Qi C, Chen Q F, Chen Y. 2007. A new method for seismic imaging from a ambient seismic noise[J]. Progress in Geophysics, 22(3): 771-777 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703016.htm

    王伟涛, 倪四道, 王宝善. 2011a. 云南地区地脉动噪声特征分析研究[J]. 地震, 31(4): 58-67. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104006.htm

    Wang W T, Ni S D, Wang B S. 2011a. Study on the characteristics of microseisms in the Yunnan region, China[J]. Earthquake, 31(4): 58-67 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104006.htm

    王伟涛, 杨润海, 郑定昌, 倪四道, 王宝善. 2011b. 云南地区背景噪声互相关函数中体波信号来源初探[J]. 地震研究, 34(3): 350-357. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201103017.htm

    Wang W T, Yang R H, Zheng D C, Ni S D, Wang B S. 2011b. Study on the origin of the body wave extracted from ambient seismic noise cross-correlation function in Yunnan[J]. Journal of Seismological Research, 34(3): 350-357 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201103017.htm

    张辉, 王熠熙, 冯建刚. 2011. 甘东南地区地壳介质各向异性特征[J]. 西北地震学报, 33(2): 111-116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102003.htm

    Zhang H, Wang Y X, Feng J G. 2011. Seismic anisotropy in the crust in southeastern area of Gansu Province[J]. Northwestern Seismological Journal, 33(2): 111-116 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102003.htm

    Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. 2007. Proces-sing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int, 169(3): 1239-1260. doi: 10.1111/gji.2007.169.issue-3

    Frontera T, Ugalde A, Olivera C, Jara J A, Goula X. 2010. Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (northeastern Iberian Peninsula)[J]. Seismol Res Lett, 81(5): 740-749. doi: 10.1785/gssrl.81.5.740

    Hasselmann K A. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys, 1(2): 177-210. doi: 10.1029/RG001i002p00177

    Koper K D, de Foy B. 2008. Seasonal anisotropy in short-period seismic noise recorded in South Asia[J]. Bull Seismol Soc Am, 98(6): 3033-3045. doi: 10.1785/0120080082

    Larose E, Derode A, Campillo M, Fink M. 2004. Imaging from one-bit correlations of wideband diffuse wave fields[J]. J Appl Phys, 95(12): 8393-8399. doi: 10.1063/1.1739529

    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophys J Int, 173(1): 281-298. doi: 10.1111/gji.2008.173.issue-1

    Lobkis O I, Weaver R L. 2001. On the emergence of the Green’s function in the correlations of a diffuse field[J]. J Acoust Soc Am, 110(6): 3011-3017. doi: 10.1121/1.1417528

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc London A, 243(857): 1-35. doi: 10.1098/rsta.1950.0012

    Malcolm A E, Scales J A, van Tiggelen B A. 2004. Extracting the Green function from diffuse, equipartitioned waves[J]. Phys Rev E, 70(2): 015601. doi: 10.1103/PhysRevE.70.015601.

    Pedersen H A, Krüger F. 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield[J]. Geophys J Int, 168(1): 197-210. doi: 10.1111/gji.2007.168.issue-1

    Peterson J R. 1993. Observation and Modeling of Seismic Background Noise[R]. Albuquerque, New Mexico: US Geol Sur Tech Rept: 93-322.

    Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir moni-toring[J]. Leading Edge, 18(8): 957-960. doi: 10.1190/1.1438420

    Roux P, Kuperman W A, the NPAL Group. 2004. Extracting coherent wave fronts from acoustic ambient noise in the ocean[J]. J Acoust Soc Am, 116(4): 1995-2003. doi: 10.1121/1.1797754

    Roux P, Sabra K G, Gerstoft P, Kuperman W A, Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett, 32(19): L19303. doi: 10.1029/2005GL023803.

    Sabra K G, Roux P, Kuperman W A. 2005. Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide[J]. J Acoust Soc Am, 117(1): 164-174. doi: 10.1121/1.1835507

    Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339

    Stehly L, Campillo M, Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res, 111(B10): B10306. doi: 10.1029/2005JB004237

    Weaver R L. 2005. Information from seismic noise[J]. Science, 307(5715): 1568-1569. doi: 10.1126/science.1109834

    Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies[J]. Phys Rev Lett, 87(13): 134301. doi: 10.1103/PhysRevLett.87.134301

    Wessel P, Smith W H F. 1998. New, improved version of the generic mapping tools released[J]. Eos Trans AGU, 79(47): 579. doi: 10.1029/98EO00426.

    Yang Y J, Ritzwoller M H, Levshin A L, Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophys J Int, 168(1): 259-274. doi: 10.1111/gji.2007.168.issue-1

    Yang Y J, Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst, 9(2): Q02008. http://cn.bing.com/academic/profile?id=1583639331&encoded=0&v=paper_preview&mkt=zh-cn

图(4)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  249
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-29
  • 修回日期:  2016-03-20
  • 发布日期:  2016-08-31

目录

    /

    返回文章
    返回