Crustal 2-D QS tomography in Longtan reservoir,Guangxi region
-
摘要: 本文收集了广西龙滩水库地震监测台网2006年9月至2016年12月精定位后的3 382次ML≥0地震的数字波形资料,采用二维衰减成像技术获得了龙滩水库库区的QS二维分布图像。结果显示:龙滩水库库区QS的横向不均匀变化明显,QS低值区围绕着库区近似呈环形分布;在QS低值分布区附近,大多为河流与断裂带的交汇处;QS低值分布主要对应于透水性较强的岩性地区。以上现象表明QS低值分布受水、断裂、岩性等3种因素的影响,由此初步推断库水可能沿着断裂上的岩石破碎带及节理、裂隙发育地区和具有较强透水性岩层区域向下渗透,使得岩石孔隙中充满流体,内摩擦增大,地震波剧烈衰减,从而使QS值大幅下降。结果还表明:大多数地震发生在QS高、低值过渡区域,这种“软”、“硬”介质的交界处,容易积累应变能,孕育地震。这是由于当QS高、低值过渡区域受到水的加载作用及其对裂隙边界的润滑作用,发震断层的抗剪强度降低,使滑动容易产生,从而诱发地震。Abstract: In this study, we collected digital waveform records of 3 382 seismic events with ML≥0 recorded by Longtan reservoir induced-earthquake monitoring network in Guangxi region from September of 2006 to December of 2016 and these data have been precisely located. By using 2-D attenuation tomography technique, we extracted the 2-D QS tomography of Longtan reservoir area. The result show that there is a significant lateral heterogeneity in QS distribution in Longtan reservoir area. Approximately, there are low QS value annular regions surrounding the reservoir, and most of the low QS value regions are located at the intersections of rivers and fault zones. From the point of view of lithology, the main distribution of the low QS value corresponds to the lithologic area with strong permeability. All the above phenomena may indicate that the low QS value regions are affected by reservoir water, fault zones, and the lithology. The preliminary conclusion is: the reservoir water infiltrates through rock fracture zones, joints and crack regions of faults, as well as the regions of rock stratum with strong permeability, filling with fluid in the rock pores, increasing the internal friction, and causing significant attenuation of seismic wave, resulting in the decline of QS value. The result also shows that most of the earthquakes occurred at the transitional edge regions of high and low QS. This is perhaps a result of accumulation of strain energy in the transitional regions of hard and weak medium zones. Due to the loading effect of water mass and the lubrication effect on the crack boundary of the water in the high and low QS transition region, the shear strength of the seismogenic faults is decreased, leading to the relative sliding easily and inducing earthquakes.
-
Keywords:
- Longtan reservoir /
- Q value /
- source spectra /
- 2-D QS tomography
-
-
图 1 龙滩水库地质构造
F1:罗甸—望谟断裂;F2:高圩—八茂断裂;F3:凤亭—下老断裂;F4:马耳—拉浪断裂;F5:达恒—达良断裂;F6:党明—桂花断裂;F7:望谟—逻西断裂;F8:长里—八南断裂;F9:龙凤—八腊断裂,下同
Figure 1. Structural outlines of Longtan reservoir
F1:Luodian-Wangmo fault;F2:Gaoyu-Bamao fault;F3:Fengting-Xialao fault;F4:Maer-Lalang fault; F5:Daheng-Daliang fault;F6:Dangming-Guihua fault;F7:Wangmo-Luoxi fault;F8:Changli-Banan fault;F9:Longfeng-Bala fault. The same below
图 4 仁顶台记录到的2007年12月10日5时44分贵州罗甸ML1.0地震的两个水平分量波形(a)及其合成位移谱和噪声谱 (b). 图(b)中观测谱和拟合谱均未作几何扩散校正
Figure 4. Two horizontal seismic waveforms of a ML1.0 earthquake recorded by Rending station (a),and the synthesize displacement spectra and noise spectra (b)
The earthquake occurred in Luodian city,Guizhou Province,at 5:44 on December 10,2007. In Fig. (b) the geometrical spreading corrections were conducted neither for the observed spectrum nor the fitted spectrum of S wave
图 5 S波走时t、衰减算子t*与震源距Δ的关系
(a) S波走时t与震源距Δ的关系;(b) 衰减算子t*与震源距Δ的关系;(c) 根据一倍均方根准则筛选出的衰减算子t*与震源距Δ的关系
Figure 5. The travel times t and attenuation operator t* of S wave versus hypocentral distances Δ
(a) The relationship between the travel times t of S wave and hypocentral distances Δ;(b) The relationship between the attenuation operator t* and hypocentral distances Δ;(c) The selected t* based on one-root-mean-square criterion varied with hypocentral distances Δ
-
陈翰林,赵翠萍,修济刚,陈章立. 2009a. 龙滩水库地震精定位及活动特征研究[J]. 地球物理学报,52(8):2035–2043. Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009a. Study on precise relocation of Longtan reservoir earthquakes and its seismic activity[J]. Chinese Journal of Geophysics,52(8):2035–2043 (in Chinese).
陈翰林,赵翠萍,修济刚,陈章立. 2009b. 龙滩库区水库地震震源机制及应力场特征[J]. 地震地质,31(4):686–698. Chen H L,Zhao C P,Xiu J G,Chen Z L. 2009a. Study on the characteristics of focal mechanisms of reservoir induced earthquakes and stress field in the Longtan reservoir area[J]. Seismology and Geology,31(4):686–698 (in Chinese).
陈颙, 黄庭芳, 刘恩儒. 2009. 岩石物理学[M]. 合肥: 中国科学技术大学出版社: 64–77. Chen Y, Huang T F, Liu E R. 2009. Rock Physics[M]. Hefei: China Science and Technology University Press: 64–77 (in Chinese).
郭培兰,姚宏,袁媛. 2006. 龙滩水库地震危险性分析[J]. 高原地震,18(4):17–23. doi: 10.3969/j.issn.1005-586X.2006.04.003 Guo P L,Yao H,Yuan Y. 2006. Analysis on potential seismic risk in Longtan reservoir[J]. Plateau Earthquake Research,18(4):17–23 (in Chinese).
何静,吴庆举,李永华,雷建设. 2017. 天然地震Lg波衰减研究进展及其在中国大陆地区的应用[J]. 地球物理学进展,32(2):466–475. He J,Wu Q J,Li Y H,Lei J S. 2017. Developments of earthquake Lg-wave attenuation study and its application in the continental China[J]. Progress in Geophysics,32(2):466–475 (in Chinese).
华卫. 2007. 中小地震震源参数定标关系研究[D]. 北京: 中国地震局地球物理研究所: 62–63. Hua W. 2007. Study on Scaling Relations of Source Parameters for Moderate and Small Earthquakes[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 62–63 (in Chinese).
华卫,赵翠萍,陈章立,郑斯华. 2009. 龙滩水库地区P波、S波和尾波衰减[J]. 地震学报,31(6):620–628. doi: 10.3321/j.issn:0253-3782.2009.06.003 Hua W,Zhao C P,Chen Z L,Zheng S H. 2009. Attenuation of P,S and coda waves in Longtan reservoir region[J]. Acta Seismologica Sinica,31(6):620–628 (in Chinese).
华卫,陈章立,郑斯华,晏纯清. 2012. 水库诱发地震与构造地震震源参数特征差异性研究:以龙滩水库为例[J]. 地球物理学进展,27(3):924–935. Hua W,Chen Z L,Zheng S H,Yan C Q. 2012. Differences existing in characteristics of source parameters between reservoir induced seismicity and tectonic earthquake:A case study of Longtan reservoir[J]. Progress in Geophysics,27(3):924–935 (in Chinese).
黄玉龙,郑斯华,刘杰,赵兴权,康英. 2003. 广东地区地震动衰减和场地响应的研究[J]. 地球物理学报,46(1):54–61. doi: 10.3321/j.issn:0001-5733.2003.01.009 Huang Y L,Zheng S H,Liu J,Zhao X Q,Kang Y. 2003. Attenuation of ground motion and site response in Guangdong region[J]. Chinese Journal of Geophysics,46(1):54–61 (in Chinese).
蒋海昆, 张晓东, 单新建. 2014. 中国大陆水库地震统计特征及预测方法研究[M]. 北京: 地震出版社: 12–15. Jiang H K, Zhang X D, Shan X J. 2014. Study on the Statistical Characteristics of Reservoir-Induced Earthquakes and Prediction Methods in China Mainland[M]. Beijing: Seismological Press: 12–15 (in Chinese).
刘耀炜,许丽卿,杨多兴. 2011. 龙滩水库诱发地震的孔隙压力扩散特征[J]. 地球物理学报,54(4):1028–1037. doi: 10.3969/j.issn.0001-5733.2011.04.017 Liu Y W,Xu L Q,Yang D X. 2011. Pore pressure diffusion characteristics of Longtan reservoir-induced-earthquake[J]. Chinese Journal of Geophysics,54(4):1028–1037 (in Chinese).
陆丽娟,黄树生,张帆,周斌,阎春恒. 2015. 广西龙滩库区地震拐角频率的时空差异性特征[J]. 地震研究,38(3):352–358. doi: 10.3969/j.issn.1000-0666.2015.03.003 Lu L J,Huang S S,Zhang F,Zhou B,Yan C H. 2015. Characteristic of temporal and spatial differences of corner frequency of the earthquake in Longtan reservoir of Guangxi[J]. Journal of Seismological Research,38(3):352–358 (in Chinese).
马宏生,汪素云,裴顺平,刘杰,华卫,周龙泉. 2007. 川滇及其周边地区地壳横波衰减的成像研究[J]. 地球物理学报,50(2):465–471. doi: 10.3321/j.issn:0001-5733.2007.02.018 Ma H S,Wang S Y,Pei S P,Liu J,Hua W,Zhou L Q. 2007. Q0 tomography of S wave attenuation in Sichuan-Yunnan and adjacent regions[J]. Chinese Journal of Geophysics,50(2):465–471 (in Chinese). doi: 10.1002/cjg2.v50.2
潘建雄. 1989. 红水河龙滩水库诱发地震地质条件的探讨[J]. 地震地质,11(4):91–99. Pan J X. 1989. The geological environment for induced earthquake in Longtan reservoir of Hongshui River[J]. Seismology and Geology,11(4):91–99 (in Chinese).
裴顺平,刘杰,马宏生,高星,苏金蓉. 2010. 川滇地区横波Q值动态变化[J]. 地球物理学报,53(7):1639–1652. doi: 10.3969/j.issn.0001-5733.2010.07.015 Pei S P,Liu J,Ma H S,Gao X,Su J R. 2010. Dynamic variation of S-wave Q value beneath Sichuan-Yunnan,China[J]. Chinese Journal of Geophysics,53(7):1639–1652 (in Chinese).
苏有锦,刘杰,郑斯华,刘丽芳,付虹,徐彦. 2006. 云南地区S波非弹性衰减Q值研究[J]. 地震学报,28(2):206–212. doi: 10.3321/j.issn:0253-3782.2006.02.012 Su Y J,Liu J,Zheng S H,Liu L F,Fu H,Xu Y. 2006. Q value of anelastic S wave attenuation in Yunnan region[J]. Acta Seismologica Sinica,28(2):206–212 (in Chinese).
王慧琳,张晓东,周龙泉,徐晓枫,杨志高,卢显,李智蓉. 2012. 紫坪铺水库区域地壳QS成像及其与渗透性关系研究[J]. 地球物理学报,55(2):526–537. Wang H L,Zhang X D,Zhou L Q,Xu X F,Yang Z G,Lu X,Li Z R. 2012. Study on the relationship between fluid infiltration and QS tomography of the crust in Zipingpu Reservoir area[J]. Chinese Journal of Geophysics,55(2):526–537 (in Chinese).
汪素云,裴顺平,许忠淮,张国明,俞言祥,潘华. 2007. 利用ML振幅研究地壳横波Q值Ⅰ:不同构造区的衰减特征[J]. 地球物理学报,50(6):1740–1747. doi: 10.3321/j.issn:0001-5733.2007.06.014 Wang S Y,Pei S P,Xu Z H,Zhang G M,Yu Y X,Pan H. 2007. Crustal S-wave Q estimated from ML amplitudeⅠ:Attenuation in different tectonic regions of China[J]. Chinese Journal of Geophysics,50(6):1740–1747 (in Chinese).
汪素云,裴顺平,Thomas M Hearn,许忠淮,James F Ni,俞言祥. 2008. 利用ML振幅研究地壳横波Q值Ⅱ:Q横向变化特征[J]. 地球物理学报,51(1):133–139. doi: 10.3321/j.issn:0001-5733.2008.01.017 Wang S Y,Pei S P,Hearn T M,Xu Z H,Ni J F,Yu Y X. 2008. Crustal S-waveQ estimated from ML amplitudeⅡ:Q lateral variation in China[J]. Chinese Journal of Geophysics,51(1):133–139 (in Chinese).
吴海波,王杰,杜承宸,申学林,陈俊华. 2016. 三峡库区上地壳S波衰减成像研究[J]. 地震学报,38(2):188–198. Wu H B,Wang J,Du C C,Shen X L,Chen J H. 2016. Tomography of the S wave attenuation in the upper crust of Three Gorges Reservoir region[J]. Acta Seismologica Sinica,38(2):188–198 (in Chinese).
阎春恒,周斌,卢丽娟,孙学军,文翔. 2015. 龙滩水库蓄水后库区中小地震震源机制[J]. 地球物理学报,58(11):4207–4222. Yan C H,Zhou B,Lu L J,Sun X J,Wen X. 2015. Focal mechanisms of moderate and small earthquake occurred after reservoir recharge in the Longtan reservoir region[J]. Chinese Journal of Geophysics,58(11):4207–4222 (in Chinese).
阎春恒,周斌,郭培兰,孙学军,文翔. 2016. 结合波形互相关技术的龙滩水库地震双差定位[J]. 地震研究,39(3):427–435. doi: 10.3969/j.issn.1000-0666.2016.03.010 Yan C H,Zhou B,Guo P L,Sun X J,Wen X. 2016. Double-difference relocation of earthquakes in Longtan reservoir combined with waveform cross-correlation technique[J]. Journal of Seismological Research,39(3):427–435 (in Chinese).
杨超英,姚宏. 2010. 龙滩水电工程地震台网设计与建设[J]. 地震地磁观测与研究,31(3):95–101. doi: 10.3969/j.issn.1003-3246.2010.03.016 Yang C Y,Yao H. 2010. Design and construction of seismic network for Longtan hydropower project[J]. Seismological and Geomagnetic Observation and Research,31(3):95–101 (in Chinese).
姚宏,陈鑫,黄树生,龙政强. 2008a. 龙滩水电工程数字遥测地震台网监测能力检验[J]. 地震地磁观测与研究,29(4):62–66. Yao H,Chen X,Huang S S,Long Z Q. 2008a. The inspection of monitoring capability of the digital telemetry seismography network in Longtan hydropower project[J]. Seismological and Geomagnetic Observation and Research,29(4):62–66 (in Chinese).
姚宏,孙学军,杨超英. 2008b. 龙滩水电工程数字遥测地震台网技术系统[J]. 华南地震,28(4):53–62. Yao H,Sun X J,Yang C Y. 2008b. Technical system of Longtan hydropower project digital telemetry seismic network[J]. South China Journal of Seismology,28(4):53–62 (in Chinese).
叶庆东,丁志峰,王生文,余大新,郑晨. 2017. 汶川地震科学钻探3号井孔附近微震震源参数确定及其意义[J]. 地球物理学报,60(7):2716–2732. Ye Q D,Ding Z F,Wang S W,Yu D X,Zheng C. 2017. Determining the source parameters of the microearthquakes near the third borehole of the Wenchuan Earthquake Fault Scientific Drilling (WFSD-3) and its implications[J]. Chinese Journal of Geophysics,60(7):2716–2732 (in Chinese).
詹艳,王立凤,肖骑彬,莫青云,高鹏飞,张远韩,韦永福. 2012. 龙滩库区库水加卸载过程深部电阻率变化与水库地震[J]. 地球物理学报,55(8):2625–2635. Zhan Y,Wang L F,Xiao Q B,Mo Q Y,Gao P F,Zhang Y H,Wei Y F. 2012. The deep resistivity variation during water loading and unloading and induced earthquake in the Longtan reservoir[J]. Chinese Journal of Geophysics,55(8):2625–2635 (in Chinese).
周斌,孙峰,阎春恒,薛世峰,史水平. 2014. 龙潭水库诱发地震三维孔隙弹性有限元数值模拟[J]. 地球物理学报,57(9):2846–2868. Zhou B,Sun F,Yan C H,Xue S F,Shi S P. 2014. 3D-poroelastic finite element numerical simulation of Longtan reservoir-induced seismicity[J]. Chinese Journal of Geophysics,57(9):2846–2868 (in Chinese).
周龙泉,刘杰,苏有锦,马宏生,周俊杰. 2009. 利用S波高频衰减参数对云南地区地壳Q值成像[J]. 地球物理学报,52(6):1500–1507. doi: 10.3969/j.issn.0001-5733.2009.06.011 Zhou L Q,Liu J,Su Y J,Ma H S,Zhou J J. 2009. Tomography for Q of Yunnan region from high-frequency attenuation of S wave[J]. Chinese Journal of Geophysics,52(6):1500–1507 (in Chinese).
Adams D,Abercrombie R. 1998. Seimsic attenuation above 10 Hz in southern California from coda waves recorded in the Cajon Pass borehole[J]. J Geophys Res,103(B10):24257–24270. doi: 10.1029/98JB01757
Aki K,Chouet B. 1975. Origin of coda waves:Source,attenuation,and scattering effects[J]. J Geophys Res,80:3322–3342. doi: 10.1029/JB080i023p03322
Atkinson G,Mereu R. 1992. The shape of ground motion attenuation curves in southeastern Canada[J]. Bull Seism Soc Am,82(5):2014–2031.
Brodsky E E,Kanamori H. 2001. Elastohydrodynamic lubrication of faults[J]. J Geophys Res,106(B8):16357–16374. doi: 10.1029/2001JB000430
Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res,75(26):4997–5009. doi: 10.1029/JB075i026p04997
He J,Sandvol E,Wu Q J,Gao M T,Gallegos A,Ulziibat M,Demberel S. 2017. Attenuation of regional seimic phase (Lg and Sn) in eastern Mongolia[J]. Geophys J Int,211:1001–1011.
Hoshiba M,Rietbrock A,Scherbaum F,Nakahara H,Haberland C. 2001. Scattering attenuation and intrinsic absorption using uniform and depth dependent model:Application to full seismogram envelope recorded in Northern Chile[J]. Journal of Seismology,5(2):157–179. doi: 10.1023/A:1011478202750
Waldhauser F,Ellsworth W L. 2000. A double difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Zhou L Q,Zhao C P,Zheng X,Chen Z L,Zheng S H. 2011. Inferring water infiltration in the Longtan reservoir area by three-dimensional attenuation tomography[J]. Geophys J Int,186(3):1045–1063. doi: 10.1111/j.1365-246X.2011.05124.x
Zhou L Q,Zhao C P,Chen Z L,Zheng S H. 2012. Three-dimensional vP and vP/vS structure in the Longtan reservoir area by local earthquake tomography[J]. Pure Appl Geophys,169(1):123–139.