旋转弹性椭球地球模型的固体潮理论值计算

吴庆鹏

吴庆鹏. 1990: 旋转弹性椭球地球模型的固体潮理论值计算. 地震学报, 12(3): 282-291.
引用本文: 吴庆鹏. 1990: 旋转弹性椭球地球模型的固体潮理论值计算. 地震学报, 12(3): 282-291.
1990: CALCULATION OF THE THEORETICAL EARTH TIDES OF A ROTATING ELLIPTICAL ELASTIC EARTH MODEL. Acta Seismologica Sinica, 12(3): 282-291.
Citation: 1990: CALCULATION OF THE THEORETICAL EARTH TIDES OF A ROTATING ELLIPTICAL ELASTIC EARTH MODEL. Acta Seismologica Sinica, 12(3): 282-291.

旋转弹性椭球地球模型的固体潮理论值计算

CALCULATION OF THE THEORETICAL EARTH TIDES OF A ROTATING ELLIPTICAL ELASTIC EARTH MODEL

  • 摘要: 根据Wahr 1981年提出的理论,导出了计算旋转弹性地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮的公式,并在此基础上编写出相应的计算程序.为了显示旋转和扁度对地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮的影响,计算了东经120°不同纬度处的旋转弹性椭球地球模型(1066A模型)和G-B地球模型的重力固体潮、地倾斜固体潮和地面应变固体潮.计算结果表明,旋转和扁度对重力固体潮、地倾斜固体潮和地面应变固体潮的最大幅度分别为1.4×10-8 m/s2、0.2ms和0.5×10-9.
    Abstract: According to the theory proposed by Wahr in 1981,detailed formulas for calculation of the gravity,tilt and strain tides have been derived for a rotating elliptical,elastic earth model and on the basis of these formulas a computer program has been compiled. In order to reveal the influences of the rotation and ellipticity of the Earth on the gravity,tilt and strain tides,these values have been calculated for an elliptical,rotating,elastic earth model (1066 A) and G-B earth model for longitude 120°E and different latitudes. The calculated results show that the maximum influences of rotation and ellipticity on gravity,tilt and strain tides are resplcti-vely: 1.4×10-8 m/s2
    , 0.2 ms and 0.5×10-9.
  • [1] Wahr, John M., 1981. Body tides on an elliptical,,rotating, elastic and oceanless earth. Geophys. J. R.astr. Soc., 64, 677—703.

    [2] Beaumont, C.& Bergen J., 1974. Earthquake prediction: modification of the earth tide tilts and strains by dilatancy. Geophys. J. R. astr. Soc., 39, 111—121.

    [3] Melchior, P., 1982. The Tides of  the Planet Earth, 10—35. Pergamon Press, Oxford.

    [4] Munk, W. H.& Cartwright, D. E., 1966. Tidal spectroscopy and prediction. Phil. Trans. Roy. Soc. Lodon, A, 259, 53—581.

    [5] Tamura Yosiaki, 1982. A computer program for calculating the tide—generating force. Publications of the ILO of Mizusawa, 16, 1, 1—20.

    [6] Farrell W. E., 1972. Deformation of the earth by surface loads. Rev. Geophys. Space Phys., 10, 761—797.

    [1] Wahr, John M., 1981. Body tides on an elliptical,,rotating, elastic and oceanless earth. Geophys. J. R.astr. Soc., 64, 677——703.

    [2] Beaumont, C.&Bergen J., 1974. Earthquake prediction: modification of the earth tide tilts and strains by dilatancy. Geophys. J. R. astr. Sac., 39, 111——121.

    [3] Melchior, P., 1982. Tlae Tides of the Planet Earth, 10——35. Pergamon Press, Oxford.

    [4] Munk, W. H.&Cartwright, D. E., 1966. Tidal spectroscopy and prediction. Phil. Trans. Roy. Soc.Lodon, A, 259, 53——581.

    [5] Tamura Yosiaki, 1982. A computer program for calculating the tide——generating force. Publications of the ILO of Misusawa, 16, 1, 1——20.

    [6] Farrell W. E., 1972. Deformation of the earth by surface loads. Rev. Geophys. Space Phys., 10, 761——797.

计量
  • 文章访问数:  1906
  • HTML全文浏览量:  15
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 发布日期:  2011-09-01

目录

    /

    返回文章
    返回