天津王3井水位异常机理

王熠熙, 孙小龙, 邵永新, 刘双庆, 李悦, 李赫, 王喜龙, 龚永俭

王熠熙, 孙小龙, 邵永新, 刘双庆, 李悦, 李赫, 王喜龙, 龚永俭. 2019: 天津王3井水位异常机理. 地震学报, 41(6): 757-768. DOI: 10.11939/jass.20190065
引用本文: 王熠熙, 孙小龙, 邵永新, 刘双庆, 李悦, 李赫, 王喜龙, 龚永俭. 2019: 天津王3井水位异常机理. 地震学报, 41(6): 757-768. DOI: 10.11939/jass.20190065
Wang Yixi, Sun Xiaolong, Shao Yongxin, Liu Shuangqing, Li Yue, Li He, Wang Xilong, Gong Yongjian. 2019: Mechanism of abnormal water level changes in the Wang 3 well of Tianjin. Acta Seismologica Sinica, 41(6): 757-768. DOI: 10.11939/jass.20190065
Citation: Wang Yixi, Sun Xiaolong, Shao Yongxin, Liu Shuangqing, Li Yue, Li He, Wang Xilong, Gong Yongjian. 2019: Mechanism of abnormal water level changes in the Wang 3 well of Tianjin. Acta Seismologica Sinica, 41(6): 757-768. DOI: 10.11939/jass.20190065

天津王3井水位异常机理

基金项目: 国家自然科学基金(41972253,U1602233)、地震科技星火项目(XH20003Y,XH19005Y,XH19007Y)和中国地震局震情跟踪任务(2019010304,2019010103)共同资助
详细信息
    通讯作者:

    孙小龙: e-mail:xlsun04@163.com

  • 中图分类号: P315.72

Mechanism of abnormal water level changes in the Wang 3 well of Tianjin

  • 摘要: 本文针对2016年6—9月天津王3井出现的井水位高值异常现象进行了异常机理分析。首先,利用频谱分析法提取了水位年动态并与区域降水量进行相关分析,排除降水的影响;其次,采用三阶多项式拟合计算了水位多年动态,定量地识别出王3井的水位年变异常,并取王3井及周边水源进行了水化学分析,结果显示,王3井所处局部区域的地下水主要成因为大气降水,存在一定的水岩作用,与周边水源之间无明显水力联系;最后,结合首都圈地震台站的波速比推测天津王3井所处的局部构造区域内可能存在一次短期应力积累过程。2016年9月10日发生的唐山MS4.2地震缓解了此次局部应力积累,使得王3井内水位逐渐恢复正常年变特征。
    Abstract: Water level in the Wang 3 well of Tianjin was higher than its normal annual values during June to September 2016. The possible mechanisms of the abnormal water level changes were analyzed in this study. Firstly, the normal annual variation of water level was extracted using spectral analysis method, and the influence of precipitation was corrected according to the relationship between the well water level and the local precipitation. Secondly, the multi-year values of water level were calculated by using the third-order polynomial fitting, and the abnormal water level in the Wang 3 well was identified quantitatively. Then, the hydrochemical analyses in the well and its surrounding water sources were made. The result shows that the groundwater in the well is mainly derived from the local precipitation, which indicates that there was some water-rock interaction rather than obvious hydraulic relationship between well water and surrounding water sources. Finally, from the wave velocity ratio in Beijing area, it is deduced that there may be a short-term stress accumulation around the Wang 3 well, which is verified by the local stress relief resulted from the Tangshan MS4.2 earthquake on September 10, 2016, and the water level of Wang 3 well gradually returned to its normal annual values.
  • 图  1   2011—2016年王3井水位日均值观测曲线

    Figure  1.   Daily mean water levels of Wang 3 well from 2011 to 2016

    图  2   王3井的构造位置示意图(a)和井孔柱状图(b)

    Figure  2.   Diagrammatic sketch for tectonic position (a) and histogram (b) of the Wang 3 well

    图  3   王3井水位与宝坻区降水量之间的相关性分析

    (a) 王3井水位;(b) 宝坻区降水量;(c) 王3井水位年变化与宝坻区月平均降水量的相关性分析;(d) 王3井实测水位与校正水位对比;(e) 去趋势水位与受降水影响的模拟水位对比

    Figure  3.   Correlativity between observed water lever of Wang 3 well and precipitation in Baodi

    (a) Water level of Wang 3 well;(b) The precipitation of Baodi;(c) Correlativity between monthly mean water level of Wang 3 well and monthly mean precipitation in Baodi;(d) Comparison of the actual water level with the corrected water level of Wang 3 well;(e) Comparison of the water level in which trending has been removed with that calculated by precipitation fitting

    图  4   宝坻区用水量(a)与王3井水位(b)的比对

    Figure  4.   Comparison between water supply in Baodi (a) and water lever of Wang 3 well (b)

    图  5   王3井水位年变异常识别

    Figure  5.   Identification of annual dynamic anomaly of water level in Wang 3 well

    图  6   地下水Piper三线图

    Figure  6.   The diagram of groundwater Piper

    图  7   地下水Na-K-Mg三角图

    Figure  7.   The triangle diagram of Na-K-Mg

    图  8   各采样点δ2H和δ18O 与大气降水线的关系

    Figure  8.   Hydrogen and oxygen isotopes of sampling points

    图  9   首都圈地区地震台站波速比vP/vS误差分析(a)和王3井应力分析示意图(b)

    图(a)中蓝色虚线代表波速比标准线,误差棒代表2倍标准差

    Figure  9.   The vP/vS ratio of the stations in capital area (a) and the schematic diagram of the stress accumulation in Wang 3 well (b)

    In Fig.(a) blue dashed lines represent the vP/vS ratio standard line,red line represents the vP/vS ratio,error bars represents double standard deviation

    表  1   王3井水位、水温与氦气预报效能评估结果

    Table  1   Prediction and evaluation results of water level,water temperature and helium for Wang 3 well

    评估项基础资料
    (满分20分)
    观测质量
    (满分45分)
    影响因素
    (满分10分)
    震例评估
    (满分25分)
    总分
    (满分100分)
    评估等级
    水位203861579A
    水温203410064B
    氦气2030101575B
    下载: 导出CSV
  • 车用太,鱼金子,张大维. 1993. 降雨对深井水位动态的影响[J]. 地震,13(4):8–15.

    Che Y T,Yu J Z,Zhang D W. 1993. Influence of precipitation of behavior of water level in deep wells[J]. Earthquake,13(4):8–15 (in Chinese).

    丁风和,哈媛媛,王勇,魏建民,韩晓雷. 2015. 基于数字化水位的张渤带地区构造应力场时序特征分析[J]. 地震,35(2):133–138. doi: 10.3969/j.issn.1000-3274.2015.02.014

    Ding F H,Ha Y Y,Wang Y,Wei J M,Han X L. 2015. Temporal characteristics of the tectonic stress field of Zhangbo belt area based on digital water level[J]. Earthquake,35(2):133–138 (in Chinese).

    范雪芳,张淑亮,王吉易. 2002. 地下流体中期和中短期前兆异常的四种判定方法[J]. 地震,22(4):136–139. doi: 10.3969/j.issn.1000-3274.2002.04.021

    Fan X F,Zhang S L,Wang J Y. 2002. Four kinds of judge methods for medium term and medium-short term precursory anomaly of ground fluid[J]. Earthquake,22(4):136–139 (in Chinese).

    付虹,邬成栋,赵小艳,王庆良. 2014. 云南开远井水位异常分析[J]. 地震学报,36(2):292–298. doi: 10.3969/j.issn.0253-3782.2014.02.013

    Fu H,Wu C D,Zhao X Y,Wang Q L. 2014. Analysis on the anomaly of water level in Kaiyuan well,Yunnan[J]. Acta Seismologica Sinica,36(2):292–298 (in Chinese).

    顾申宜,张慧,解晓静,刘阳. 2010. 海南井水位中期和中短期异常信息的提取方法及其特征分析[J]. 地震地质,32(4):638–646. doi: 10.3969/j.issn.0253-4967.2010.04.011

    Gu S Y,Zhang H,Xie X J,Liu Y. 2010. Study on the medium and medium-short term characteristics of anomalies of underground water level in Hainan Province[J]. Seismology and Geology,32(4):638–646 (in Chinese).

    顾慰祖. 2011. 同位素水文学[M]. 北京: 科学出版社: 116−118.

    Gu W Z. 2011. Isotope Hydrology[M]. Beijing: Science Press: 116−118 (in Chinese).

    胡小静,付虹,李琼. 2018. 滇南地区近期水位趋势上升异常机理初探[J]. 地震学报,40(5):620–631. doi: 10.11939/jass.20170213

    Hu X J,Fu H,Li Q. 2018. Preliminary study on abnormal mechanism of groundwater level rising in southern Yunnan[J]. Acta Seismologica Sinica,40(5):620–631 (in Chinese). doi: 10.11939/jass.20170213(inChinese)

    贾化周, 张炜, 董守玉, 王吉易. 1995. 地震地下水手册[M]. 北京: 地震出版社: 135−229.

    Jia H Z, Zhang W, Dong S Y, Wang J Y. 1995. Earthquake Groundwater Manual[M]. Beijing: Seismological Press: 135−229 (in Chinese).

    李学礼, 孙占学, 刘金辉. 2010. 水文地球化学[M]. 3版. 北京: 原子能出版社: 94−97.

    Li X L, Sun Z X, Liu J H. 2010. Hydrogeochemistry[M]. 3rd ed. Beijing: Atomic Energy Press: 94−97 (in Chinese).

    刘琦,张晶. 2011. S变换在汶川地震前后应变变化分析中的应用[J]. 大地测量与地球动力学,31(4):6–9.

    Liu Q,Zhang J. 2011. Application of S transform in analysis of strain changes before and after Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics,31(4):6–9 (in Chinese).

    刘学领. 2013. 地热异常区不同含水层水化学组分差异[J]. 地震地磁观测与研究,34(5):188–192. doi: 10.3969/j.issn.1003-3246.2013.05/06.033

    Liu X L. 2013. Analysis on difference of water chemical compositions of different aquifer in geothermal anomaly area[J]. Seismological and Geomagnetic Observation and Research,34(5):188–192 (in Chinese). doi: 10.3969/j.issn.1003-3246.2013.05/06.033(inChinese)

    刘耀炜. 2009. 动力加载作用与地下水物理动态过程研究[D]. 北京: 中国地质大学: 14−16.

    Liu Y W. 2009. Dynamic Loading and Physical Dynamics Process of Groundwater[D]. Beijing: Chinese University of Geosciences: 14−16 (in Chinese).

    陆明勇,范雪芳,周伟,房宗绯,赵丽葵. 2010. 华北强震前地下流体长趋势变化特征及其产生机理的研究[J]. 西北地震学报,32(2):129–138.

    Lu M Y,Fan X F,Zhou W,Fang Z F,Zhao L K. 2010. Study on characteristics of long-time trend change of subsurface fluid before strong earthquake in North China and its mechanism[J]. Northwestern Seismological Journal,32(2):129–138 (in Chinese).

    梅世蓉. 1995. 地震前兆场物理模式及前兆分布特征与机制研究进展[J]. 地震,(增刊1):2–22.

    Mei S R. 1995. Development of research on the physical model of earthquake precursor field and the mechanism of precursors time-space distribution[J]. Earthquake,(S1):2–22 (in Chinese).

    邱泽华,唐磊,张宝红,宋茉. 2012. 用小波−超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报,55(2):538–546. doi: 10.6038/j.issn.0001-5733.2012.02.016

    Qiu Z H,Tang L,Zhang B H,Song M. 2012. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of wavelet-overrun rate analysis[J]. Chinese Journal of Geophysics,55(2):538–546 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.02.016(inChinese)

    天津市地震局. 2013. 天津市地震监测志[M]. 北京: 地震出版社: 366−367.

    Tianjin Earthquake Agency. 2013. Tianjin Earthquake Monitoring[M]. Beijing: Seismological Press: 366−367 (in Chinese).

    杨永江,庞海,靳宝珍,刘九龙,钱洪强,刘斐. 2010. 天津周良庄地质构造背景和地热成因探讨[J]. 世界地质,29(4):646–657.

    Yang Y J,Pang H,Jin B Z,Liu J L,Qian H Q,Liu F. 2010. Discussion on the geological tectonic setting and geothermal origin in Zhouliangzhuang area of Tianjin[J]. Global Geology,29(4):646–657 (in Chinese).

    张伯崇,邬慧敏,刘长义,韩风,马元春. 1991. 应力对岩石中孔隙流体压力的影响和地下水位震前异常变化机理[J]. 地震学报,13(1):88–95.

    Zhang B C,Wu H M,Liu C Y,Han F,Ma Y C. 1991. The effect of stress on pore pressure in rocks and the mechanism of water table anomaly before earthquakes[J]. Acta Seismologica Sinica,13(1):88–95 (in Chinese).

    张百鸣,王心义,林建旺. 2006. 天津地热田地热水的同位素特征分析[J]. 西部探矿工程,119(3):85–88. doi: 10.3969/j.issn.1004-5716.2006.03.042

    Zhang B M,Wang X Y,Lin J W. 2006. Isotopic characteristics of hot water in Tianjin geothermal fields[J]. West China Exploration Engineering,119(3):85–88 (in Chinese).

    张昭栋,耿杰,高玉斌,张铸钢. 1993. 井水位降雨影响的定量改正[J]. 地震学报,15(2):202–207.

    Zhang Z D,Geng J,Gao Y B,Zhang Z G. 1993. Quantitative correction of the influence of the rainfall to well water level[J]. Acta Seismologica Sinica,15(2):202–207 (in Chinese).

    赵利飞,尹京苑,韩风银. 2002. 应力调整改变介质渗透性对水位的影响[J]. 地震,22(1):55–60.

    Zhao L F,Yin J Y,Han F Y. 2002. Influence of change in osmosis due to stress field adjustment on water level[J]. Earthquake,22(1):55–60 (in Chinese).

    Claesson L,Skelton A,Graham C,Dietl C,Mörth M,Torssander P,Kockum I. 2004. Hydrogeochemical changes before and after a major earthquake[J]. Geology,32(8):641–644. doi: 10.1130/G20542.1

    Claesson L,Skelton A,Graham C,Mörth C M. 2007. The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake[J]. Geofluids,7(4):427–440. doi: 10.1111/j.1468-8123.2007.00197.x

图(10)  /  表(1)
计量
  • 文章访问数:  1689
  • HTML全文浏览量:  465
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-09-19
  • 网络出版日期:  2020-02-20
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回