基于改进两步差法的玛多MS7.4地震微波异常研究

刘善军, 纪美仪, 宋丽美, 魏恋欢

刘善军,纪美仪,宋丽美,魏恋欢. 2023. 基于改进两步差法的玛多MS7.4地震微波异常研究. 地震学报,45(2):328−340. DOI: 10.11939/jass.20210193
引用本文: 刘善军,纪美仪,宋丽美,魏恋欢. 2023. 基于改进两步差法的玛多MS7.4地震微波异常研究. 地震学报,45(2):328−340. DOI: 10.11939/jass.20210193
Liu S J,Ji M Y,Song L M,Wei L H. 2023. Microwave anomaly of Maduo MS7.4 earthquake derived by improved two-step difference method. Acta Seismologica Sinica45(2):328−340. DOI: 10.11939/jass.20210193
Citation: Liu S J,Ji M Y,Song L M,Wei L H. 2023. Microwave anomaly of Maduo MS7.4 earthquake derived by improved two-step difference method. Acta Seismologica Sinica45(2):328−340. DOI: 10.11939/jass.20210193

基于改进两步差法的玛多MS7.4地震微波异常研究

基金项目: 国家重点研发计划(2019YFC1509202)、国家自然科学基金重点项目(41930108)和国家自然科学基金面上项目(42071453)共同资助
详细信息
    作者简介:

    刘善军,博士,教授,主要从事遥感-岩石力学、矿山环境遥感、灾害遥感及3S技术在地质及矿业中的应用等方面的研究,e-mail:liusjdr@126.com

  • 中图分类号: P315.72

Microwave anomaly of Maduo MS7.4 earthquake derived by improved two-step difference method

  • 摘要: 针对2011年提出的两步差法在地震微波异常提取中的不足,提出了改进两步差法,该方法通过使用层次聚类和小波分析两种算法,克服了原方法中未考虑不同地物类型引起的亮温差异、亮温背景场不够稳健等问题,从而使异常结果在空间形态和异常幅度上更加合理,并将该方法应用于2021年5月22日青海省玛多县MS7.4地震的微波异常提取。结果显示,玛多地震前三个月出现了一条长约900 km、增温幅值达12 K的NE向亮温增温条带,与2010年4月14日MS7.1玉树地震前异常特征在空间分布和演化特征上均有很高的相似性。此外,异常出现的时间和幅度与震级有一定相关性,震级较大的玛多地震出现异常时间较早,幅度较大;而震级较小的玉树地震出现异常时间较晚,幅度较小,且两次地震的微波亮温增温幅值均达8 K以上。初步的机理分析认为,地震前的微波异常条带与该区域的NE向张性断裂和张性断陷带在空间上分布一致,异常的出现可能与地震前该断陷带的地热活动以及地表岩石的发射率变化有关。
    Abstract: In response to the shortcomings of the two-step difference method for extracting seismic microwave anomalies proposed in 2011, an improved two-step difference method which incorporates hierarchical clustering and wavelet analysis is proposed to overcome the problems resulted from ignoring the brightness temperature differences caused by ground cover types and the lack of robustness of the brightness temperature background field in the original method, thus making the anomaly results more reasonable in terms of spatial pattern and anomaly amplitude. The method is applied to the microwave anomaly extraction of the MS7.4 earthquake in Maduo County, Qinghai Province on May 22, 2021. The results show that a NE-trending brightness temperature increase strip with a length of about 900 km and an amplitude of 12 K appeared three months before the Maduo earthquake, which has high similarity in spatial distribution and evolution characteristics with the anomaly characteristics of the MS7.1 Yushu earthquake on April 14, 2010. Furthermore, the appearing time and magnitude of the anomalies are related to the magnitude of the earthquakes. The anomalies of MS7.4 Maduo earthquake appeared earlier than MS7.1 Yushu earthquake with larger scale, and the temperatureincrease of microwave brightness due to both earthquakes reached more than 8 K. Preliminary mechanism analysis suggests that the pre-earthquake microwave anomaly stripes are consistent with the spatial distribution of NEward tensional fractures and extensional fracture zones in the region, and the appearance of the anomalies may be related to the geothermal activity of the fracture zones and the emissivity changes of surface rocks before the earthquakes.
  • 强震发生后的地震破裂过程的研究一直受到国内外地震学家的关注和重视,主要从以下两个方面进行研究:通过波形反演对强震破裂过程进行研究(Chen et al,1996许力生,陈运泰,19971999);或者对强震的余震序列进行重新定位,根据精定位结果研究强震的破裂过程(Ohnaka,Kuwahara,1990Ohnaka,1992Hurukawa,1998陈学忠等,2001ab2008李艳娥等,2015)。

    2018年5月28日1时50分,吉林省松原市宁江区发生MS5.7地震,根据中国地震台网正式给出的结果,震中位置为(45.27°N,124.71°E)。松原MS5.7地震附近的主要断裂有NW向的第二松花江断裂和NE向的扶余—肇东断裂,根据区域地震台网测定的地震序列结果,尚难以确定其发震断层面。

    历史上,松原MS5.7地震震区鲜有强震发生。自公元624年以来,曾于1119年在松原MS5.7地震以南不远处发生前郭卡拉木MS6.8地震,2006年3月31日在其西南约85 km处的乾安县查干花镇发生MS5.0地震,2013年10月至11月间发生5次MS≥5.0地震,最大震级为MS5.8。该地区强震震后趋势判定的经验不多,所以研究2018年5月28日松原MS5.7地震的发震断层,对于该地震的震后趋势判定以及该地区构造活动情况的分析有着非常重要的意义。

    为了讨论松原MS5.7地震的破裂面,本文拟利用主地震相对定位法,对2017年7月18日—2018年7月15日期间发生在松原MS5.7地震序列区域内的地震进行重新定位,利用重新定位后地震的时空分布特征对本次地震可能的破裂面进行分析。

    本文使用的相对定位法又称为主地震定位法。以震源位置定位较好的地震作为主地震(参考地震),计算其它地震相对于主地震(参考地震)的位置,最终得到待定地震的重新定位位置。相对定位法对所假设的地壳模型的依赖较小(周仕勇等,1999),该方法利用余震分布对震源破裂过程进行研究,主要分析地震相对位置的变化,因此,相对定位法在地震序列的破裂过程研究中具有独特的优势。

    本文收集了中国地震台网中心2017年7月18日—2018年7月15日正式震相报告中的Pg,Sg和部分Pn震相,对发生在(45.1°N—45.4°N,124.6°E—124.9°E)范围之内的地震开展重定位工作,所用台站的空间分布如图1所示。选择被4个以上台站记录到的地震,共计118次,最小震级为ML1.4。在观测报告中共记录到ML≥1.4地震176次,4个以上台站记录到的地震占67%。观测报告中记录到ML≥2.0地震共100次,4个以上台站记录到的地震有96次,其中能重新定位的有90次,占90%,其余6次地震的定位残差太大,结果不可靠,需要舍去。因此,绝大多数ML≥2.0地震被重新定位,以此来确保其分析结果的可靠性。

    图  1  松原MS5.7地震周边区域构造背景及用于重定位台站和MS≥5.0地震的分布
    震源机制解引自USGS (2018). F1:第二松花江断裂;F2:扶余—肇东断裂;F3:孤店断裂;F4:查干花断裂;F5:大安断裂
    Figure  1.  The tectonic background as well as distribution of the stations used for relocation and the earthquakes with MS≥5.0 around the epicenter of the Songyuan MS5.7 earthquake
    The focal mechanism solution shown in the figure is obtained from the result of USGS (2018). F1:The second Songhuajiang fault;F2:Fuyu-Zhaodong fault;F3:Gudian fault;F4:Chaganhua fault;F5:Da’an fault

    重定位过程中以MS5.7主震为参考地震,即主地震,观测报告中给出的震中位置为(45.26°N,124.71°E),震源深度为10 km。图2为地震序列重新定位后的M-t图,地震序列中重新定位后的地震空间分布如图3所示.

    图  2  松原MS5.7地震序列重新定位地震的M-t
    Figure  2.  The M-t diagram of the relocated earthquakes of the Songyuan MS5.7 earthquake sequence
    图  3  2017年7月18日—2018年5月27日(蓝色圆圈)和2018年5月28日—2018年7月14日(红色圆圈)松原MS5.7地震序列重新定位前 (左)、后 (右) ML≥2.0 (a)和ML≥3.3 (b)地震震中分布
    Figure  3.  The distribution of the epicenters of the Songyuan MS5.7 earthquake sequence before (left) and after (right) relocation which occurred from 18 July 2017 to 27 May 2018 (blue circles) and those occurred from 28 May 2018 to 14 July 2018 (red circles) with ML≥2.0 (a) and ML≥3.3 (b)

    对于ML≥2.0地震,经度定位误差范围为0.042—0.61 km,平均约为0.06 km;纬度定位误差范围为0.049—0.44 km,平均约为0.069 km (表1)。对有3个及以上台站首波资料的34次地震进行震源深度计算,结果显示,震源深度的定位误差平均为2.47 km,最大为4.46 km,最小为0.002 km。

    表  1  ML≥2.0地震震相数、定位误差与震源深度
    Table  1.  Number of seismic phases,location error and focal depth for ML≥2.0 earthquakes
    序号发震日期ML台站数震相数定位误差震源深度
    /km
    残差均方根
    /s
    PnPgSg纬度/km经度/km深度/km
    12018−07−142.3 6 1 6 60.3230.2180.417
    22018−07−112.5 5 1 5 50.4400.6140.225
    32018−07−102.713 113130.1610.1280.173
    42018−07−102.712 212120.1480.1120.231
    52018−07−082.0 4 0 4 40.1520.1130.265
    62018−07−062.610 010100.1530.1150.265
    72018−06−282.210 110100.1230.1080.238
    82018−06−212.5 8 0 8 80.1290.0990.273
    92018−06−212.612 212120.1180.0990.255
    102018−06−173.013 513130.0810.0641.1912.90.146
    112018−06−152.2 9 2 9 90.0830.0640.147
    122018−06−122.510 210100.0780.0650.117
    132018−06−122.612 512120.0830.0600.4536.40.125
    142018−06−053.4231423230.0540.0492.2764.60.115
    152018−06−043.219 919190.0530.0451.5574.20.111
    162018−0−6032.715 215150.0540.0460.127
    172018−06−012.5 8 1 8 80.0540.0450.181
    182018−05−313.7181118180.0530.0472.7796.30.195
    192018−05−314.1221622220.0510.0503.1617.60.173
    202018−05−312.1 4 0 4 40.0520.0500.209
    212018−05−302.2 8 0 8 80.0520.0500.303
    222018−05−302.2 6 0 6 60.0520.0490.172
    232018−05−302.0 5 0 5 50.0520.0490.084
    242018−05−292.2 4 0 4 40.0520.0500.213
    252018−05−292.5 6 0 6 60.0520.0490.396
    262018−05−292.410 310100.0520.0494.4626.50.169
    272018−05−292.713 413130.0510.0482.0215.00.173
    282018−05−292.6 6 1 6 60.0520.0480.260
    292018−05−292.2 5 0 5 50.0520.0480.217
    302018−05−294.2181118180.0510.0442.1996.00.136
    312018−05−292.1 7 0 7 70.0510.0440.333
    322018−05−292.617 517170.0490.0452.9235.50.157
    332018−05−292.410 310100.0490.0450.0029.10.131
    342018−05−283.3211621210.0510.0462.9827.30.145
    352018−05−282.511 011110.0520.0470.157
    362018−05−282.210 110100.0530.0460.146
    372018−05−282.615 015150.0520.0440.120
    382018−05−282.310 010100.0520.0440.253
    392018−05−282.311 211110.0540.0470.215
    402018−05−282.1 7 0 7 70.0540.0460.330
    412018−05−282.0 9 0 9 90.0540.0450.185
    422018−05−282.412 012120.0520.0450.229
    432018−05−092.5 8 1 8 80.0540.0480.164
    442018−04−234.0211421210.0560.0483.8128.10.133
    452018−04−202.0 6 0 6 60.0580.0470.384
    下载: 导出CSV 
    | 显示表格

    从研究范围内ML≥2.0地震重新定位前后的地震空间分布(图3a)可见,重新定位后的地震更集中分布在第二松花江断裂附近。而从ML≥3.3地震的空间分布对比图(图3b)可知:原始定位中,ML≥3.3地震沿NE (AA1)和NW (BB1)两个方向分布;重新定位结果显示,ML≥3.3地震似乎更集中于NE (AA1)方向,走向大约为NE62°,与松原MS5.7地震震源机制解结果中节面I的走向具有一致性(表2)。以0.02°×0.02°的矩形区域为空间窗统计地震频次,将空间窗口以0.001°的步长分别沿经度和纬度方向滑动,统计每个空间窗内的地震数目,由此得到地震频次的空间分布(图4)。图4给出的是0.02°×0.02°的矩形区域内地震频次大于或等于10的空间分布图像,该图清楚地显示出了地震沿NE−SW方向展布的特征。

    表  2  松原MS5.7地震的断层面参数
    Table  2.  Nodal plane parameters for the Songyuan MS5.7 main shock
    来源节面Ⅰ节面Ⅱ
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
     中国地震局地球物理研究所21686172307824
     中国地震局地震预测所(李君等,2019220791623147212
     中国地震台网中心(杨文等,201821887−14912659−4
     美国地质调查局(USGS,20184768−16931380−22
    下载: 导出CSV 
    | 显示表格
    图  4  ML≥2.0地震频次空间扫描结果
    Figure  4.  The spatial distribution of the seismic frequency of ML≥2.0 earthquakes

    图5为地震序列原始定位在深度方向的剖面图,图5a图5b分别为沿图3中截面AA1和垂直于该截面的剖面图。图6为重新定位结果中震源深度较为可靠的34次地震在深度方向的剖面图,图6a图6b分别为沿图3中截面AA1和垂直于该截面的剖面图。根据原始定位结果,地震主要发生在深度为4—14 km的范围内,主震上方和下方均有地震发生,无明显差异特征。重新定位之后,地震分布在4—9 km的深度范围内,主要位于主震上方,主震位于分布区下方边缘。这说明松原MS5.7地震发生之后,破裂可能朝地表扩展。图6b显示,破裂面倾角较陡,倾向NW,与表1中前3个结果的节面I基本一致。

    图  5  松原MS5.7地震序列重新定位前沿截面AA1方向(a)和垂直于AA1方向(b)的震源深度剖面图
    Figure  5.  Focal depth profiles of the Songyuan MS5.7 earthquake sequence before relocation along the direction of the section AA1 (a) and that perpendicular to the section AA1 (b)
    图  6  松原MS5.7地震序列重新定位后沿截面AA1方向(a)和垂直于AA1方向(b)的震源深度剖面图
    Figure  6.  Focal depth profiles of the relocated earthquakes of the Songyuan MS5.7 earthquake sequence along the direction of the section AA1 (a) and that perpendicular to the section AA1 (b)

    图6中的地震按时间先后进行排序,然后按序号将地震的震源深度绘制在图上,得到图7。图中在序号坐标刻度值下方同时标明了发震时间.从图中可以看到,前7个地震清楚地显示出震源深度逐渐加深的过程,表明破裂从浅部向深部传播,具有前震特征(陈学忠等,2001ab)。松原MS5.7地震发生后,震源深度逐渐减小,破裂从深部向浅部传播。

    图  7  松原MS5.7地震序列重新定位后震源深度随地震序号的变化
    Figure  7.  Focal depth versus number of relocated earthquakes of the Songyuan MS5.7 earthquake sequence

    根据上述对松原MS5.7地震前后发生的地震进行重新定位,得到以下结论:

    1) 2018年松原MS5.7地震的主破裂面为NE向。无论是ML≥3.3地震的震中分布,或者地震频次的空间分布结果,均显示地震序列沿NE向分布的特征。

    2) 破裂面倾角较陡,近乎直立,倾向NW,与震源机制解结果基本一致.

    3) 松原MS5.7地震前后发生的地震活动主要发生在主震上方区域,震源深度大部分小于主震深度。

    4) 松原MS5.7地震前发生的地震显示出了震源深度逐渐加深的过程,震后,震源深度则逐渐减小。

    根据上述结果,松原MS5.7地震的破裂面应为走向NE,近乎直立,倾向NW的断层面. 在松原MS5.7地震震中附近有第二松花江断裂、扶余—肇东断裂西段(又称扶余北断裂)和孤店断裂3条断裂。第二松花江断裂是一条规模较大的NW走向断裂,倾向NE或SW,倾角较陡(杨清福等,2010)。扶余北断裂走向近EW,倾向S,视倾角约为60°—80°,部分位置倾角近似垂直,孤店断裂北段走向NE,南段走向NW,总体走向近SN,倾向E,展布呈东倾的弓形(刘权锋等,2017). 显然,松原MS5.7地震的发震断层面与这3条断裂的走向均不一致。 古成志(1993)的结果显示,在松辽平原中部的大安、肇源间有一宽达80—90 km的NE−SW向线性构造密集带,相互平行,对湖泊起着一定的控制作用,方向稳定,是隐伏断层的明显标志。因此本文推测,松原MS5.7地震的破裂面很可能与大安、肇源间存在的一条NE−SW向的隐伏断层有关。

    本文所使用程序来源于北京大学地球物理系周仕勇教授课题组,文章撰写过程中审稿专家提出了宝贵的修改意见,作者在此一并表示衷心的感谢。

  • 图  1   改进两步差法流程图

    Figure  1.   Flowchart of the improved two-step difference method

    图  2   青藏高原中东部主要地貌

    Figure  2.   Landforms of the central and eastern Qinghai-Tibet Plateau

    图  3   2021年2月6日至3月23日微波亮温原始数据

    Figure  3.   Microwave brightness temperature data from February 6 to March 23,2021

    图  4   玛多地震前的微波亮温异常时空演化图

    Figure  4.   Spatio-temporal evolution of the microwave brightness temperature anomaly prior to the Maduo earthquake

    图  5   玉树地震微波亮温异常时空演化图

    Figure  5.   Spatio-temporal evolution of the microwave brightness temperature anomaly prior to the Yushu earthquake

    图  6   玉树地震震前利用两步差法(a−c)和改进两步差法(d−f)提取的微波异常结果对比

    Figure  6.   Comparison between the microwave anomalies derived by two-step difference (a−c) and the improved two-step difference method (d−f)

  • 陈顺云,马瑾,刘培洵,刘力强,陈国强. 2004. 中国地表亮度温度年变基准场[J]. 地震地质,26(3):528–538. doi: 10.3969/j.issn.0253-4967.2004.03.017

    Chen S Y,Ma J,Liu P X,Liu L Q,Chen G Q. 2004. Normal annual variation field of land surface brightness temperature in China[J]. Seismology and Geology,26(3):528–538 (in Chinese).

    陈顺云,刘培洵,刘力强,马瑾,陈国强. 2006. 地表热红外辐射的小波分析及其在现今构造活动研究中的意义[J]. 地球物理学报,49(3):824–830. doi: 10.3321/j.issn:0001-5733.2006.03.026

    Chen S Y,Liu P X,Liu L Q,Ma J,Chen G Q. 2006. Wavelet analysis of thermal infrared radiation of land surface and its implication in the study of current tectonic activities[J]. Chinese Journal of Geophysics,49(3):824–830 (in Chinese).

    胡同喜,赵天杰,施建成,谷金枝. 2016. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用,31(5):919–924.

    Hu T X,Zhao T J,Shi J C,Gu J Z. 2016. Inter-calibration of AMSR-E and AMSR2 brightness temperature[J]. Remote Sensing Technology and Application,31(5):919–924 (in Chinese).

    金旭峰,吴莹,钱博. 2020. 基于AMSR2数据的青藏高原地表温度反演[J]. 地球物理学进展,35(4):1269–1275. doi: 10.6038/pg2020DD0102

    Jin X F,Wu Y,Qian B. 2020. Retrieval of land surface temperature from AMSR2 data over the Qinghai−Tibetan Plateau[J]. Progress in Geophysics,35(4):1269–1275 (in Chinese).

    荆凤,申旭辉,康春丽,熊攀,孙珂. 2012. 2010年新西兰M7.1地震前的长波辐射变化特征[J]. 地球科学进展,27(9):979–986.

    Jing F,Shen X H,Kang C L,Xiong P,Sun K. 2012. Variation of outgoing longwave radiation around the time of New Zealand earthquake M7.1,2010[J]. Advances in Earth Science,27(9):979–986 (in Chinese).

    刘云华,单新建,屈春燕,张桂芳. 2010. 青海玉树MS7.1级地震地表形变场特征研究[J]. 中国科学:地球科学,40(10):1310–1320.

    Liu Y H,Shan X J,Qu C Y,Zhang G F. 2011. Earthquake deformation field characteristics associated with the 2010 Yushu MS7.1 earthquake[J]. Science China Earth Science,54(4):571–580. doi: 10.1007/s11430-010-4116-7

    孟亚飞,孟庆岩,张颖,周世健,刘文宝. 2021. 基于夜间多时相遥感数据的热异常与地震的相关性[J]. 地震学报,43(1):124–135. doi: 10.11939/jass.20200009

    Meng Y F,Meng Q Y,Zhang Y,Zhou S J,Liu W B. 2021. Correlation between thermal anomalies and earthquakes based on nighttime multi-temporal remote sensing data[J]. Acta Seismologica Sinica,43(1):124–135 (in Chinese).

    屈春燕,单新建,马瑾. 2006. 卫星热红外遥感在火山活动性监测中的应用[J]. 地震地质,28(1):99–110. doi: 10.3969/j.issn.0253-4967.2006.01.010

    Qu C Y,Shan X J,Ma J. 2006. Application of satellite thermal infrared remote sensing in detection of volcano activity[J]. Seismology and Geology,28(1):99–110 (in Chinese).

    宋冬梅,臧琳,单新建,袁媛,崔建勇,邵红梅,沈晨,时洪涛. 2016. 基于LST年趋势背景场的地震热异常提取算法[J]. 地震地质,38(3):680–695. doi: 10.3969/j.issn.0253-4967.2016.03.014

    Song D M,Zang L,Shan X J,Yuan Y,Cui J Y,Shao H M,Shen C,Shi H T. 2016. A study on the algorithm for extracting earthquake thermal infrared anomalies based on the yearly trend of LST[J]. Seismology and Geology,38(3):680–695 (in Chinese).

    王鹏,陈晓宏,沈立成,肖琼,吴孝情. 2016. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质,43(4):1429–1438.

    Wang P,Chen X H,Shen L C,Xiao Q,Wu X Q. 2016. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China,43(4):1429–1438 (in Chinese).

    王未来,房立华,吴建平,屠泓为,陈立艺,来贵娟,张龙. 2021. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学:地球科学,51(7):1193–1202.

    Wang W L,Fang L H,Wu J P,Tu H W,Chen L Y,Lai G J,Zhang L. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake,Qinghai,China[J]. Science China Earth Sciences,64(8):1371–1380. doi: 10.1007/s11430-021-9803-3

    王亚丽,陈桂华,康春丽,张倩. 2008. 利用小波包分析进行地震相关热红外辐射异常信息检测[J]. 地球物理学进展,23(2):368–374.

    Wang Y L,Chen G H,Kang C L,Zhang Q. 2008. Earthquake-related thermal-infrared abnormity detection with wavelet packet decomposition[J]. Progress in Geophysics,23(2):368–374 (in Chinese).

    魏从信,张元生,王莹. 2018. 日本MW9.1地震对区域热辐射背景场影响的时频分析[J]. 地震学报,40(2):205–214.

    Wei C X,Zhang Y S,Wang Y. 2018. Time-frequency analysis of the influence of Japan MW9.1 earthquake on regional thermal radiation background field[J]. Acta Seismologica Sinica,40(2):205–214 (in Chinese).

    吴立新,齐源,毛文飞,刘善军,丁逸凡,荆凤,申旭辉. 2022. 多波段多极化被动微波遥感地震应用研究进展与前沿方向探索[J]. 测绘学报,51(7):1356–1371.

    Wu L X,Qi Y,Mao W F,Liu S J,Ding Y F,Jing F,Shen X H. 2022. Progresses and possible frontiers in the study on seismic applications of multi-frequency and multi-polarization passive microwave remote sensing[J]. Acta Geodaetica et Cartographica Sinica,51(7):1356–1371 (in Chinese).

    解滔,郑晓东,康春丽,马未宇,卢军. 2015. 2013年4月20日芦山MS7.0地震前热红外亮温异常分析[J]. 地震地质,37(1):149–161. doi: 10.3969/j.issn.0253-4967.2015.01.012

    Xie T,Zheng X D,Kang C L,Ma W Y,Lu J. 2015. Possible thermal brightness temperature anomalies associated with the Lushan (China) MS7.0 earthquake on 20 April 2013[J]. Seismology and Geology,37(1):149–161 (in Chinese).

    徐纪人,赵志新,石川有三. 2005. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制[J]. 地球物理学报,48(4):861–869. doi: 10.3321/j.issn:0001-5733.2005.04.018

    Xu J R,Zhao Z X,Ishikawa Y. 2005. Extensional stress field in the central and southern Qinghai-Tibetan Plateau and dynamic mechanism of geothermic anomaly in the Yangbajain area[J]. Chinese Journal of Geophysics,48(4):861–869 (in Chinese).

    袁伏全,张超美,孙世瑞,罗宾生. 2017. 青海地区地震与地热的分布特征[J]. 高原地震,29(2):1–6. doi: 10.3969/j.issn.1005-586X.2017.02.001

    Yuan F Q,Zhang C M,Sun S R,Luo B S. 2017. Study on spatial relationship between earthquakes and geothermal in Qinghai Province[J]. Plateau Earthquake Research,29(2):1–6 (in Chinese).

    臧琳,宋冬梅,单新建,崔建勇,邵红梅,沈晨,时洪涛,宋先月. 2016. 基于被动微波与时空联合算法的云下像元LST重建[J]. 遥感技术与应用,31(4):764–772.

    Zang L,Song D M,Shan X J,Cui J Y,Shao H M,Shen C,Shi H T,Song X Y. 2016. Reconstruction of LST under the cloud based on passive microwave remote sensing and spatio-temporal domain algorithm[J]. Remote Sensing Technology and Application,31(4):764–772 (in Chinese).

    张宾,秦凯,吴涛,石铁伟,樊文智. 2018. 地震前卫星遥感微波辐射异常统计分析:以堪察加半岛为例[J]. 地震学报,40(1):98–107. doi: 10.11939/jass.20170089

    Zhang B,Qin K,Wu T,Shi T W,Fan W Z. 2018. Statistical analysis of microwave radiation anomaly before earthquake:A case study of Kamchatka Peninsula[J]. Acta Seismologica Sinica,40(1):98–107.

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24.

    张勇攀,蒋玲梅,邱玉宝,武胜利,施建成,张立新. 2010. 不同地物类型微波发射率特征分析[J]. 光谱学与光谱分析,30(6):1446–1451. doi: 10.3964/j.issn1000-0593(2010)06-1446-06

    Zhang Y P,Jiang L M,Qiu Y B,Wu S L,Shi J C,Zhang L X. 2010. Study of the microwave emissivity characteristics over different land cover types[J]. Spectroscopy and Spectral Analysis,30(6):1446–1451 (in Chinese).

    赵平,谢鄂军,多吉,金建,胡先才,杜少平,姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报,18(4):539–550.

    Zhao P,Xie E J,Dor J,Jin J,Hu X C,Du S P,Yao Z H. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica,18(4):539–550 (in Chinese).

    郑度,赵东升. 2017. 青藏高原的自然环境特征[J]. 科技导报,35(6):13–22.

    Zheng D,Zhao D S. 2017. Characteristics of natural environment of the Tibetan Plateau[J]. Science &Technology Review,35(6):13–22 (in Chinese).

    Boggess A, Narcowich F J. 2010. A First Course in Wavelets With Fourier Analysis[M]. New Jerseya: Wiley: 173–207.

    Chui C K. 1992. An Introduction to Wavelets[M]. San Diego: Academic Press: 1–333.

    Han J W, Micheline K, Pei J. 2011. Data Mining: Concepts and Techniques[M]. San Francisco: Morgan Kaufmann Publisher: 288–321.

    Jing F,Singh R P,Sun K,Shen X H. 2018. Passive microwave response associated with two main earthquakes in Tibetan Plateau,China[J]. Adv Space Res,62(7):1675–1689. doi: 10.1016/j.asr.2018.06.030

    Jing F,Singh R P,Cui Y J,Sun K. 2020. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan Province,China[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,13:513–522. doi: 10.1109/JSTARS.2020.2968568

    Liu S J, Ma Y T, Wu L X. 2011. Microwave radiation anomaly of Wenchuan earthquake and its mechanism[C]//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver B C: IEEE: 2500–2503.

    Liu S J, Liu X, Ma Y T, Wu L X. 2012. Microwave radiation anomaly of Yushu earthquake and its mechanism[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE: 1192–1195.

    Liu S J,Xu Z Y,Wei J L,Huang J W,Wu L X. 2016. Experimental study on microwave radiation from deforming and fracturing rock under loading outdoor[J]. IEEE Trans Geosci Remote Sens,54(9):5578–5587. doi: 10.1109/TGRS.2016.2569419

    Ma Y T,Liu S J,Wu L X,Xu Z Y. 2011. Two-step method to extract seismic microwave radiation anomaly:Case study of MS8.0 Wenchuan earthquake[J]. Earthquake Science,24(6):577–582. doi: 10.1007/s11589-011-0819-x

    Maeda T, Takano T. 2009. Detection of microwave signals associated with rock failures in an earthquake from satellite-borne microwave radiometer data[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE: Ⅲ-61–Ⅲ-64.

    Piroddi L,Ranieri G. 2012. Night thermal gradient:A new potential tool for earthquake precursors studies:An application to the seismic area of L’Aquila (Central Italy)[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,5(1):307–312. doi: 10.1109/JSTARS.2011.2177962

    Qi Y, Wu L X, Mao W F, He M. 2019. Mining seismic anomaly from satellite microwave big data: Methodology and case studies[C]//2019 Photonics & Electromagnetics Research Symposium-Fall PIERS-Fall. Xiamen: IEEE: 1819–1823.

    Qi Y,Wu L X,He M,Mao W F. 2020. Spatio-temporally weighted two-step method for retrieving seismic MBT anomaly:May 2008 Wenchuan earthquake sequence being a case[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,13:382–391. doi: 10.1109/JSTARS.2019.2962719

    Qi Y,Miao Z L,Wu L X,Ding Y F. 2021a. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images:Ideas and limits[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,14:6792–6806. doi: 10.1109/JSTARS.2021.3093819

    Qi Y,Wu L X,Ding Y F,Liu Y J,Chen S,Wang X,Mao W F. 2021b. Extraction and discrimination of MBT anomalies possibly associated with the MW7.3 Maduo (Qinghai,China) earthquake on 21 May 2021[J]. Remote Sens,13(22):4726. doi: 10.3390/rs13224726

    Qi Y,Wu L X,Mao W F,Ding Y F,He M. 2021c. Discriminating possible causes of microwave brightness temperature positive anomalies related with May 2008 Wenchuan earthquake sequence[J]. IEEE Trans Geosci Remote Sens,59(3):1903–1916. doi: 10.1109/TGRS.2020.3004404

    Qiang Z J,Xu X D,Dian C G. 1997. Thermal infrared anomaly precursor of impending earthquakes[J]. Pure Appl Geophys,149(1):159–171. doi: 10.1007/BF00945166

    Singh R P,Mehdi W,Gautam R,Kumar J S,Zlotnicki J,Kafatos M. 2010. Precursory signals using satellite and ground data associated with the Wenchuan earthquake of 12 May 2008[J]. Int J Remote Sens,31(13):3341–3354. doi: 10.1080/01431161.2010.487503

    Takano T,Maeda T. 2009. Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite[J]. IEEE Geosci Remote Sens Lett,6(1):107–111. doi: 10.1109/LGRS.2008.2005735

    Tronin A A. 1996. Satellite thermal survey:A new tool for the study of seismoactive regions[J]. Int J Remote Sens,17(8):1439–1455. doi: 10.1080/01431169608948716

    Wu L X,Qin K,Liu S J. 2012. GEOSS-based thermal parameters analysis for earthquake anomaly recognition[J]. Proc IEEE,100(10):2891–2907. doi: 10.1109/JPROC.2012.2184789

    Xie T,Kang C L,Ma W Y. 2013. Thermal infrared brightness temperature anomalies associated with the Yushu (China) MS=7.1 earthquake on 14 April 2010[J]. Nat Hazards Earth Syst Sci,13(4):1105–1111. doi: 10.5194/nhess-13-1105-2013

    Xiong P,Shen X H,Gu X F,Meng Q Y,Zhao L M,Zhao Y H,Li Y,Dong J T. 2015. Seismic infrared anomalies detection in the case of the Wenchuan earthquake using bi-angular advanced along-track scanning radiometer data[J]. Ann Geophys,58(2):S0217.

    Yang J,Guo G M. 2013. Preliminary analysis of thermal anomalies before the 2010 Baja California M7.2 earthquake[J]. Atmósfera,26(4):473–477.

  • 期刊类型引用(5)

    1. 刘文玉,程正璞,年秀清,陈闫,胡钰铃,覃祖建,邵明正. 基于三维剩余密度结构的松原地震成因. 地震地质. 2024(02): 462-476 . 百度学术
    2. 阮庆丰,刘俊清,田有,刘财,张宇,蔡宏雷. 松原地区地震发震机制与迁移特点研究. 地球物理学报. 2022(09): 3309-3321 . 百度学术
    3. Yu TANG,Aihua WENG,Yue YANG,Shiwen LI,Jianjun NIU,Yanhui ZHANG,Yabin LI,Jianping LI. Connection between earthquakes and deep fluids revealed by magnetotelluric imaging in Songyuan, China. Science China(Earth Sciences). 2021(01): 161-176 . 必应学术
    4. 唐裕,翁爱华,杨悦,李世文,牛建军,张艳辉,李亚彬,李建平. 松原地震与流体作用联系的大地电磁证据. 中国科学:地球科学. 2021(01): 134-149 . 百度学术
    5. 王婷,延军平,李双双,万佳,张玉凤. 帕米尔高原Mw≥6.6级地震时间韵律特征. 高原地震. 2020(04): 6-16 . 百度学术

    其他类型引用(4)

图(6)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  137
  • PDF下载量:  84
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-02-23
  • 网络出版日期:  2023-03-30
  • 发布日期:  2023-03-14

目录

/

返回文章
返回