分体式海底地震仪及其在北冰洋加克洋中脊的试验

虞嘉辉, 牛雄伟, 金子迪, 牛领辉, 阮爱国, 丁巍伟, 朱小毅, 刘张聚, 刘博文, 庄灿涛, 李家彪

虞嘉辉,牛雄伟,金子迪,牛领辉,阮爱国,丁巍伟,朱小毅,刘张聚,刘博文,庄灿涛,李家彪. 2025. 分体式海底地震仪及其在北冰洋加克洋中脊的试验. 地震学报,47(2):284−296. DOI: 10.11939/jass.20230152
引用本文: 虞嘉辉,牛雄伟,金子迪,牛领辉,阮爱国,丁巍伟,朱小毅,刘张聚,刘博文,庄灿涛,李家彪. 2025. 分体式海底地震仪及其在北冰洋加克洋中脊的试验. 地震学报,47(2):284−296. DOI: 10.11939/jass.20230152
Yu J H,Niu X W,Jin Z D,Niu L H,Ruan A G,Ding W W,Zhu X Y,Liu Z J,Liu B W,Zhuang C T,Li J B. 2025. The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean. Acta Seismologica Sinica47(2):284−296. DOI: 10.11939/jass.20230152
Citation: Yu J H,Niu X W,Jin Z D,Niu L H,Ruan A G,Ding W W,Zhu X Y,Liu Z J,Liu B W,Zhuang C T,Li J B. 2025. The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean. Acta Seismologica Sinica47(2):284−296. DOI: 10.11939/jass.20230152

分体式海底地震仪及其在北冰洋加克洋中脊的试验

基金项目: 中央级公益性科研院所基本科研业务费专项资金(JG2204)、浙江省自然科学基金(LZ23D060004)和国家自然科学基金(42276064)共同资助
详细信息
    作者简介:

    虞嘉辉,在读硕士研究生,主要从事海洋地球物理主动源地震探测方面的研究,e-mail:1030463178@qq.com

    通讯作者:

    牛雄伟,博士,研究员,主要从事海底地震与深部结构探测研究,e-mail:xwniu@sio.org.cn

  • 中图分类号: P315.62

The seismometer-detached ocean bottom seismograph and its experiments in the Gakkel Ridge,Arctic Ocean

  • 摘要:

    中国第十二次北极科学考察在密集浮冰覆盖的北冰洋加克洋中脊完成了国际首次大规模主动源海底地震仪探测,成功回收了43台海底地震仪中的42台,其中5台分体式海底地震仪均成功回收。本文介绍了针对该航次中面临的海底地震仪回收定位难题研发的一款新型分体式海底地震仪,其主要特点为:① 集成超短基线信标和声学应答系统,实现双重定位保障;② 使用分体式结构增强地震计与海底的耦合,有效提高信噪比;③ 选用国产地震计和浮力材料,实现核心部件国产化。分体式海底地震仪在北冰洋加克洋中脊的试验结果显示:地震背景噪声能量低,且记录的远震波形、两个近源微地震波形和三分量主动源地震记录均具有清晰可见的震相信息,表明该分体式海底地震仪能够满足冰下海底勘探需求。

    Abstract:

    The ocean bottom seismograph (OBS) is an indispensable instrument for investigating the deep crust-mantle structure. China’s 12th Arctic scientific expedition marked a significant milestone in marine seismic exploration by achieving the first large-scale active exploration along the challenging Gakkel Ridge in the Arctic Ocean, where ice coverage poses formidable obstacles. Impressively, the expedition successfully recovered 42 out of 43 deployed OBSs, with all five seismometer-detached OBSs retrieved intact. This paper introduces a seismometer-detached OBS specifically developed to overcome the unique challenges encountered during the expedition, particularly in terms of OBS recovery and positioning. Its main features include:

    1) The newly developed seismometer-detached OBS integrates cutting-edge technology to enhance its functionality and performance under harsh Arctic conditions. One of its key innovations is the combination of ultra-short baseline beacons and advanced acoustic response short baseline array positioning systems, which improves positioning accuracy through dual positioning technology. The positioning accuracy error of the short baseline array is within ±100 m, and the mature Sonardyne ultra-short baseline array loaded on the Xuelong-2 polar scientific research icebreaker can achieve a positioning accuracy up to one thousandth of the water depth. The use of such a dual positioning system can ensure accurate positioning of the instrument even in areas with dense ice layers. This ground-breaking design significantly improves the accuracy and efficiency of OBS recovery operations, enabling researchers to locate and recover instruments with unprecedented reliability and precision.

    2) Referencing the current status of seismometer-detached OBSs both domestically and internationally, a titanium alloy seismic instrument chamber with a buoyancy of 17 kg in water has been designed. This chamber is incorporated into the seismic instrument separation structure, independently installed inside the OBS hull via flexible cables. Upon reaching the seafloor, it is timed to release, optimizing the coupling between the seismic instrument and the seabed. This structure also serves to reduce the impact of bottom currents on the seismometer. By enhancing this coupling, the OBS effectively improves the signal-to-noise ratio for recording seismic data, thus minimizing ambient noise and interference. Consequently, researchers can obtain clearer and more accurate seismic records, thereby facilitating a deeper understanding of the Earth’s geological processes and tectonic activities.

    3) The OBS utilizes advanced domestic seismic instruments and buoyancy materials. On one hand, this provides new options for the materials used in OBS development, to some extent alleviating the problem of insufficient component production, which is advantageous for the large-scale production and industrialization. On the other hand, it enhances the flexibility of the OBS’s design, enabling the possibility of loading multi-functional modules onto the OBS. Additionally, using domestically produced seismometers makes it easier to optimize and develop hardware and software according to scientific research requirements. This signifies a significant step towards achieving self-sufficiency in marine instrument technology. This domestic production capacity not only enhances China’s scientific research capabilities, but also promotes innovation and technological advancement in the field of marine instruments, establishing independent intellectual property rights for key technologies of marine seismographs.

    China’s 12th Arctic scientific expedition has yielded promising results, with the seismometer-detached OBS demonstrating exceptional performance in recording seismic signals. It was capable of collecting seismic data in the low-level horizontal seismic ambient noise environment along the Gakkel Ridge of the Arctic Ocean. Notably, the OBSs have exhibited low horizontal seismic ambient noise levels, underscoring their suitability for seismic exploration in ice-covered marine environments. Additionally, these OBSs successfully collected the waveform records of a small teleseismic, two micro-earthquakes and three-component active seismic exploration. This validates to some extent the effectiveness of the seismometer-detached structure in improving the signal-to-noise ratio, indicating that this type of OBS can meet the requirements for submarine exploration under the ice.

    The successful development and application of the seismometer-detached OBS provide valuable experience for future submarine seismic exploration in extreme environments. Looking ahead, there are opportunities for further enhancement in various aspects such as real-time data transmission, longer battery life, and integration of more modularized sensors. The use of flexible buoyancy materials also liberates the submarine seismograph from the limitations imposed by traditional glass chambers. This enables the configuration of different types of modularized sensors, thus paving the way for the development of a versatile submarine observation platform with powerful functionality.

  • 2021年5月22日青海果洛州玛多县发生MS7.4地震,震中位于(34.59°N,98.34°E),其震源机制解显示该地震为高倾角走滑型(张喆,许立生,2021)。玛多地震的发震构造为昆仑山口—江错断裂,是东昆仑断裂的一条分支断裂(王未来等,2021)。玉树地震台位于甘孜—玉树断裂附近。玛多地震震中和玉树地震台均位于巴颜喀拉次级地块内,玉树地震台位于巴颜喀拉地块的南边界。此次地震震中处于玉树地震台的NE方向,距巴颜喀拉地块北边界85 km (图1)。

    图  1  研究区域地质构造
    Figure  1.  The geological structure of the studied area

    玛多地震前玉树地震台井水温呈现异常变化。2021年3月15日9时玉树地震台井水温出现突降,截止到16日0时,最大降幅约0.002 6 ℃,之后水温逐步回返恢复,总体呈不规则的“V”型变化(图2)。2021年5月22日青海果洛州玛多县发生MS7.4地震,异常测项距震中220 km。

    图  2  2021年玛多MS7.4地震前玉树地震台井水温整点值观测曲线
    Figure  2.  The observation curve of hourly well water temperature in Yushu seismic station before the 2021 Maduo MS7.4 earthquake

    玉树地震台水温观测井深105 m,井内套管下设深度100 m,水温观测仪器为SWY- Ⅰ 型数字水温仪,传感器到井口的距离为12.168 m,井孔岩芯为中生代侏罗纪浅成花岗岩。自2007年6月开始观测,数据稳定连续,高频波动明显,2012年至2013年间断性仪器故障,存在长时间的数据缺失(图3)。2017年11月仪器改造,更换为SZW- Ⅱ 型水温仪,数据连续稳定(图4)。

    图  3  2007—2017年玉树地震台井水温整点值观测曲线
    Figure  3.  The observation curves of hourly well water temperature in Yushu seismic station from 2007 to 2017
    图  4  2018年以来玉树地震台井水温整点值观测曲线
    Figure  4.  The observation curve of hourly well water temperature in Yushu seismic station since 2018

    2021年3月15日玉树地震台井水温出现异常变化后观测人员进行现场异常核实。现场调查可知:仪器工作状态正常,附近无施工和灌溉抽水情况,基本排除了人类活动和自然环境造成的干扰(孙小龙等,2020)。对观测井和距观测井20 m的饮用泉进行取样,与2018年的取样结果进行对比分析,结果(表1)显示:两次采样结果均在“未成熟水”范围内,水化学类型均属HCO3-Ca型(张磊等,2019);2021年饮用泉的${\rm{HCO}}_3^{-} $浓度较2018年显著增大,考虑其水体溶解的CO2含量增加,可能指示区域存在断裂活动的迹象(康来迅等,1999)。

    表  1  2018年与2021年玉树地震台水样结果对比
    Table  1.  Comparison of water sample results in Yushu seismic station in the year 2018 and 2021
    样品编号各组分浓度/(mg·L−1
    Ca2+Mg2+Na+K+HCO3${\rm{SO} }_4^{2 - }$Cl
    2021年观测井51.3122.923.094.52354.133.712.15
    2021年饮用泉72.8827.1622.074.51423.139.482.45
    2018年观测井67.1624.2526.569.9134645.569.95
    2018年饮用泉75.2923.6822.8410.07340.549.99.73
    下载: 导出CSV 
    | 显示表格

    玉树地震台井水温测项自2007年观测以来,一共出现7次异常,异常对应率为100%,对应于M5.0以上地震(图34),一般在异常出现后3个月内发震,地震分散在青藏高原内部(何案华等,2012王博等,2016杨晓霞等,2016)。为获得更为明确的时空强指示信息,以本次“突降—缓慢上升”的异常形态对震例进一步梳理,结果列于表2,可见:震例指示异常开始的三个月内青藏高原巴颜喀拉地块边界及其附近的M7.0以上地震(图5)(芦山MS7.0地震发生在观测数据断记期间,故未统计在内)。异常指标通过预报效能检验的R值评分为R=0.61,R0=0.45 (张国民等,2002)。因此在井水温异常上升恢复的过程中发生于2021年3月19日的西藏那曲MS6.1地震经研判认为非目标地震,异常仍需跟踪,而2021年5月22日玛多MS7.4满足异常所指示的时空强三要素特征。

    表  2  玉树地震台井水温震例统计
    Table  2.  Earthquake case statistics of water temperature in Yushu seismic station
    序号异常起始时间异常形态异常幅度/℃持续时间/d井震距km对应地震
    12008-03-15突降—上升0.022186432008年3月21日于田MS7.3,2008年5月12日汶川MS8.0
    22010-01-19突降—上升0.02924462010年4月14日青海玉树MS7.1
    32021-03-15突降上升0.002 636202021年5月22日玛多MS7.4
    下载: 导出CSV 
    | 显示表格
    图  5  玉树地震台对应于三次大地震的井水温异常整点值曲线
    Figure  5.  The anomalous hourly value curve of well water temperature in Yushu seismic station corresponding to the three major earthquakes

    在地震孕育过程中,区域应力应变状态发生改变,在应力加载作用下,含水层岩体变形、相应的孔隙压力发生变化,导致井-含水层系统的水动力条件改变,进而引起井水微温度场发生改变(车用太等,1996鱼金子等,1997孙小龙,刘耀炜,2006)。玛多MS7.4为左旋走滑型地震,玉树地震台井水温测项位于其主动盘一侧,在孕震后期临近发震时,应力加载作用显著增强,可能造成水温测项所在区域的短期应力加载,微破裂大量发育,使不同含水层的地下水串通混合,进而水温快速下降,之后井-含水层系统趋于稳定,水温缓慢上升恢复。

    综合异常核实和震例梳理结果显示,此次玉树地震台井水温异常信度较高,从时空强三要素较好地对应于2021年5月22日玛多MS7.4地震。通过对水温前兆异常的可能机理探讨分析,玉树地震台作为巴颜喀拉地块上地球物理场观测的构造敏感点,其井水温的异常变化对该地块上的地震孕震过程具有较好的短期指示意义,在未来震情跟踪过程中应予以重点关注。

  • 图  6   加克洋中脊分体式OBS15台站位置(a)及其记录的2021年海地MW5.8地震波形(b)

    波形图使用0.04—0.2 Hz带通滤波进行了处理。下行小图分别为可识别的初至P波和PcP,PKiKP,初至S波和SKS和ScS的放大图。使用IASP91模型对上述地震波到时进行了预测,见图中红色和蓝色实线

    Figure  6.   The location of the seismometer-detached OBS15 station in the Gakkel Ridge (a) and the waveforms (b) of the Haiti MW5.8 earthquake in 2021

    The waveforms were processed with bandpass filtering (0.04−0.2 Hz). The figures in the second row are enlarged views of identifiable P-wave and PcP,PKiKP,S-wave and SKS,ScS waveforms,respectively. The arrival times of these seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines in the figures

    图  1   新型宽频带分体式海底地震仪的结构模型

    (a) 外视图;(b) 内部透视图

    Figure  1.   The structural models of the broadband seismometer-detached ocean bottom seismograph

    (a) The external view;(b) The internal perspective view

    图  2   短基线阵及其定位结果

    (a) 短基线阵定位系统在雪龙2号月池车间的安装情况;(b) 短基线阵试验定位三维结果

    Figure  2.   The short baseline array and its positioning results

    (a) The installation of the short baseline array positioning system in the moon pool workshop of the Xuelong-2;(b) The three-dimensional results of the short baseline array experimental positioning

    图  3   超短基线在北冰洋加克洋中脊分体式海底地震仪回收过程中的三维实时定位结果

    图(a)和(b)分别为分体式海底地震仪OBS9和OBS15的上浮轨迹

    Figure  3.   The three-dimensional real-time positioning results during the recovery process of the seismometer-detached OBS with ultra-short baseline in the Gakkel Ridge of Arctic Ocean

    Figs. (a) and (b) show the ascending tracks of the seismometer-detached OBS9 and OBS15

    图  4   分体式海底地震仪及其在加克洋中脊的试验

    (a) 2021年中国第十二次北极科学考察布设和回收的海底地震仪位置和炸测位置示意图;(b) 分体式海底地震仪的投放;(c) 分体式海底地震仪的回收

    Figure  4.   The seismometer-detached OBS and its experiments in the Gakkel Ridge

    (a) The locations of OBS deployment and recovery and air-gun shooting lines during the Chinese 12th Arctic scientific expedition in 2021;(b) Deployment of the seismometer-detached OBS;(c) Recovery of the seismometer-detached OBS

    图  5   (a) 分体式OBS3垂直分量记录于2021年8月10—24日在北极加克洋中脊的功率谱密度分布;(b,c) 分体式OBS3两个水平分量的功率谱密度分布

    图中彩色细实线代表每小时记录对应的功率谱密度,不同颜色代表分布在不同能量区间的概率,黑色粗实线为平均值,灰色粗实线为Peterson (1993)提出的全球背景噪音模型参考线

    Figure  5.   (a) The vertical component records of the OBS3 in the Gakkel Ridge of the Arctic collected from August 10 to 24,2021 presented in terms of power spectral density probability density functions;(b,c) The power spectral density distribution of the two horizontal components of the OBS3

    In the figures color thin solid lines represent the power spectral density corresponding to each hourly record,with different colors indicating probability distribution in various energy ranges. The thick solid black line represents the average,and the thick solid gray lines serve as the reference lines for the global ambient noise models proposed by Peterson (1993

    图  7   加克洋中脊分体式OBS3 (a)和OBS17 (b)台站记录的微震信息

    图中波形已经带通滤波(3—12 Hz)处理,红色和蓝色实线标注了使用IASP91模型对上述地震波到时进行的预测

    Figure  7.   Microseismic information recorded by the seismometer-detached OBS3 (a) and OBS17 (b) along the Gakkel Ridge

    The waveforms have been bandpass filtered (3−12 Hz). The arrival times of the seismic waves were predicted using the IASP91 model,indicated by the red and blue solid lines

    图  8   布放在加克洋中脊的分体式OBS3台站主动源三分量地震记录的折合时间剖面(折合速度为6.0 km/s)

    (a) x分量;(b) y分量;(c) z分量

    Figure  8.   Active source three-component seismic record sections with reduced time of the OBS3deployed along the Gakkel Ridge of Arctic Ocean (The reduced velocity is 6.0 km/s)

    (a) x component;(b) y component;(c) z component

    图  9   布放在加克洋中脊的OBS15台站主动源三分量地震记录折合时间剖面

    (a) x分量;(b) y分量;(c) z分量

    Figure  9.   Active source three-component seismic record sections with reduced time of the OBS15 deployed along the Gakkel Ridge of Arctic Ocean

    (a) x component;(b) y component;(c) z component

    表  1   宽频带分体式海底地震仪组件及其技术参数

    Table  1   Components and technical parameters of the broadband seismometer-detached OBS

    地震计频带范围 60 s—50 Hz 标定信号DAC 16位
    地震计满量程 10 mm/s (单峰值) 标定信号类型 脉冲,正弦波可选,参数可设置
    地震计灵敏度 2000 V/(m/s)(双端) 标定信号启动方式 定时、指令
    ADC 24位 数据记录 32 GB×3
    数据采样率 50 sps,100 sps,200 sps,500 sps,
    每个采集通道可单独设定采样率
    电子罗盘动态精度 ±1o
    数字滤波器 线性相位FIR,最小相位FIR 电子罗盘调平范围 45°
    数据采集动态范围 >135 dB 数据通信接口 LAN以太网
    授时 GPS,北斗 数据通信协议 TCP,IP
    守时 芯片级原子钟 最大工作水深 6 km
    水听器频带范围 10—2000 Hz 工作时间 6个月—1年
    方位角精度 俯仰范围±30°±0.1°,±(30°—45°)±0.2° 磁场测量精度 10 nT
    下载: 导出CSV

    表  2   短基线阵和超短基线信标的技术参数

    Table  2   The technical parameters of short baseline arrays and ultra-short baseline beacons

    深度级频段收发机波束角测距精度
    短基线阵4000 m12 kHz半指向性100 m
    超短基线信标7000 m19—34 kHz半指向性<15 mm
    下载: 导出CSV
  • 郝天珧,游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,54(12):3352–3361.

    Hao T Y,You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics,54(12):3352–3361 (in Chinese).

    郝天珧,游庆瑜,王元,郭永刚,丘学林,黄松,徐亚,赵春蕾,张妍,徐锡强. 2022. 国产海底地震探测装备技术研发与应用[J]. 科学技术与工程,22(34):15020–15027.

    Hao T Y,You Q Y,Wang Y,Guo Y G,Qiu X L,Huang S,Xu Y,Zhao C L,Zhang Y,Xu X Q. 2022. Development technology and its application of Chinese ocean bottom seismometer[J]. Science Technology and Engineering,22(34):15020–15027 (in Chinese).

    李江,庄灿涛,薛兵,朱小毅,陈阳,朱杰,彭朝勇,叶鹏,梁鸿森,刘明辉,杨桂存,周银兴,林湛,李建飞. 2010. 宽频带海底地震仪的研制[J]. 地震学报,32(5):610–618.

    Li J,Zhuang C T,Xue B,Zhu X Y,Chen Y,Zhu J,Peng C Y,Ye P,Liang H S,Liu M H,Yang G C,Zhou Y X,Lin Z,Li J F. 2010. Development of broadband ocean bottom seismograph (OBS)[J]. Acta Seismologica Sinica,32(5):610–618 (in Chinese).

    李守军,包更生,吴水根. 2005. 水声定位技术的发展现状与展望[J]. 海洋技术,24(1):130–135.

    Li S J,Bao G S,Wu S G. 2005. A practical overview and prospect of acoustic positioning technology[J]. Journal of Ocean Technology,24(1):130–135 (in Chinese).

    刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572.

    Liu D,Yang T,Li B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).

    牛雄伟,王力,丁巍伟,黄松华,孔凡圣,冯海泓,谭平川,史淼奇,傅建华,陈尚国. 2022. 一种适用于冰区的短基线承载结构:中国,202111670786.4[P]. [2022−06−21]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.

    Niu X W,Wang L,Ding W W,Huang S H,Kong F S,Feng H H,Tan P C,Shi M Q,Fu J H,Chen S G. 2022. Short base line bearing structure suitable for ice region:CN,202111670786.4[P]. [2022−06−21] https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui (in Chinese).

    阮爱国,李家彪,冯占英,吴振利. 2004. 海底地震仪及其国内外发展现状[J]. 东海海洋,22(2):19–27.

    Ruan A G,Li J B,Feng Z Y,Wu Z L. 2004. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science,22(2):19–27 (in Chinese).

    阮爱国,牛雄伟,吴振利,吴招才,薛彬. 2009. 潮汕坳陷中生代沉积的折射波2D速度结构和密度[J]. 高校地质学报,15(4):522–528.

    Ruan A G,Niu X W,Wu Z L,Wu Z C,Xue B. 2009. The 2D velocity and density structure of the Mesozoic sediments in the Chaoshan depression[J]. Geological Journal of China Universities,15(4):522–528 (in Chinese).

    阮爱国,李家彪,陈永顺,丘学林,吴振利,赵明辉,牛雄伟,王春龙,王显光. 2010. 国产I-4C型OBS在西南印度洋中脊的试验[J]. 地球物理学报,53(4):1015–1018.

    Ruan A G,Li J B,Chen Y S,Qiu X L,Wu Z L,Zhao M H,Niu X W,Wang C L,Wang X G. 2010. The experiment of broad band I-4C type OBS in the Southwest India ridge[J]. Chinese Journal of Geophysics,53(4):1015–1018 (in Chinese).

    游庆瑜,刘福田,冉崇荣,王广福. 2003. 高频微功耗海底地震仪研制[J]. 地球物理学进展,18(1):173–176.

    You Q Y,Liu F T,Ran C R,Wang G F. 2003. High frequency micro-power ocean bottom seismograph[J]. Progress in Geophysics,18(1):173–176 (in Chinese).

    张同伟,王向鑫,唐嘉陵,秦升杰. 2018. 深海超短基线定位系统现状及展望[J]. 舰船电子工程,38(10):1–6. doi: 10.3969/j.issn.1672-9730.2018.10.001

    Zhang T W,Wang X X,Tang J L,Qin S J. 2018. Technical status and development trend of long range USBL[J]. Ship Electronic Engineering,38(10):1–6 (in Chinese).

    Beyreuther M,Barsch R,Krischer L,Megies T,Behr Y,Wassermann J. 2010. ObsPy:A Python toolbox for seismology[J]. Seismol Res Lett,81(3):530–533. doi: 10.1785/gssrl.81.3.530

    Christeson G L,Goff J A,Reece R S. 2019. Synthesis of oceanic crustal structure from two-dimensional seismic profiles[J]. Rev Geophys,57(2):504–529. doi: 10.1029/2019RG000641

    Crawford W C,Webb S C. 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data[J]. Bull Seismol Soc Am,90(4):952–963. doi: 10.1785/0119990121

    Ding W W,Niu X W,Zhang T,Chen S G,Liu S H,Tan P C,Kong F S,Jin Z D,Huang S H,Wei C H,Fang Y X,Sun Q C,Li J B. 2022. Submarine wide-angle seismic experiments in the high Arctic:The JASMInE expedition in the slowest spreading Gakkel Ridge[J]. Geosyst Geoenviron,1(3):100076. doi: 10.1016/j.geogeo.2022.100076

    Jokat W,Schmidt-Aursch M C. 2007. Geophysical characteristics of the ultraslow spreading Gakkel Ridge,Arctic Ocean[J]. Geophys J Int,168(3):983–998. doi: 10.1111/j.1365-246X.2006.03278.x

    Jokat W,Ritzmann O,Schmidt-Aursch M C,Drachev S,Gauger S,Snow J. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge[J]. Nature,423(6943):962–965. doi: 10.1038/nature01706

    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x

    Korger E I M,Schlindwein V. 2014. Seismicity and structure of the 85°E volcanic complex at the ultraslow spreading Gakkel Ridge from local earthquake tomography[J]. Geophys J Int,196(1):539–551. doi: 10.1093/gji/ggt390

    Koulakov I,Schlindwein V,Liu M Q,Gerya T,Jakovlev A,Ivanov A. 2022. Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge[J]. Nat Commun,13(1):3122. doi: 10.1038/s41467-022-30797-4

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35.

    McGuire J J,Collins J A,Gouédard P,Roland E,Lizarralde D,Boettcher M S,Behn M D,van der Hilst R D. 2012. Variations in earthquake rupture properties along the Gofar transform fault,East Pacific Rise[J]. Nat Geosci,5(5):336–341. doi: 10.1038/ngeo1454

    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001

    Minshull T A,Muller M R,White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:Seismic constraints[J]. Geophys J Int,166(1):135–147. doi: 10.1111/j.1365-246X.2006.03001.x

    Mosher D C,Chapman C B,Shimeld J,Jackson H R,Chian D,Verhoef J,Hutchinson D,Lebedeva-Ivanova N,Pederson R. 2013. High Arctic marine geophysical data acquisition[J]. Leading Edge,32(5):524–536. doi: 10.1190/tle32050524.1

    Niu X W,Minshull T A,Li J B,Ruan A G,Wu Z L,Wei X D,Wang W,Li Y,Bayrakci G,Dong C Z,Ding W W,Fang Y X,Zhang J. 2023. Shear wave velocity structure and crustal lithology beneath the ultraslow spreading Southwest Indian Ridge at 50°E[J]. Geophys J Int,233(2):1416–1428. doi: 10.1093/gji/ggac516

    Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque:U.S. Geol. Surv.:93−322.

    Rekant P V,Gusev E A. 2016. Sediments in the Gakkel Ridge rift zone (Arctic Ocean):Structure and history[J]. Russ Geol Geophys,57(9):1283–1287. doi: 10.1016/j.rgg.2016.08.013

    Schlindwein V,Müller C,Jokat W. 2007. Microseismicity of the ultraslow-spreading Gakkel Ridge,Arctic Ocean:A pilot study[J]. Geophys J Int,169(1):100–112. doi: 10.1111/j.1365-246X.2006.03308.x

    Seher T,Crawford W C,Singh S C,Cannat M,Combier V,Dusunur D. 2010. Crustal velocity structure of the Lucky Strike segment of the Mid-Atlantic Ridge at 37°N from seismic refraction measurements[J]. J Geophys Res:Solid Earth,115(B3):B03103.

    Stähler S C,Sigloch K,Hosseini K,Crawford W C,Barruol G,Schmidt-Aursch M C,Tsekhmistrenko M,Scholz J R,Mazzullo A,Deen M. 2016. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion,western Indian Ocean[J]. Adv Geosci,41:43–63. doi: 10.5194/adgeo-41-43-2016

    Sutton G H,Duennebier F K. 1987. Optimum design of ocean bottom seismometers[J]. Mar Geophys Res,9(1):47–65. doi: 10.1007/BF00338250

    USGS. 2021. Earthquake lists,maps,and statistics[EB/OL]. [2023−08−18]. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics.

    Webb S C. 1988. Long-period acoustic and seismic measurements and ocean floor currents[J]. IEEE J Oceanic Eng,13(4):263–270. doi: 10.1109/48.9239

  • 期刊类型引用(15)

    1. 字承柱,张翔,张源,杨树锋. 洱源滇20井水温异常特征分析与机理研究. 华南地震. 2025(01): 59-67 . 百度学术
    2. 朱玉娟,车濛琪,方震,朱厚林,吴婉楠. 安徽省流体观测井水温测项观测效能评价与分析. 科技资讯. 2024(16): 225-228 . 百度学术
    3. 何国龙,苏维刚,买振军. 基于多方法分析门源井水位巨幅异常变化及其机理. 煤炭工程. 2023(06): 119-122 . 百度学术
    4. 郭雨帆,杜晓辉,董磊,汤兰荣,赵爱平,王甘娇. 基于张衡一号卫星监测的2021年青海玛多7.4级地震前电离层效应. 地震. 2023(02): 85-102 . 百度学术
    5. 杜利峰,钟辉宗,王涛,李焱林. 青海玉树台井水位年变特征与固定干扰分析. 地震地磁观测与研究. 2023(S1): 166-168 . 百度学术
    6. 刘磊,余怀忠,李霞,赵玉红,冯丽丽,张朋涛. 2021年以来青海3次强震前地下流体重点异常特征分析. 地震地磁观测与研究. 2023(S1): 234-236 . 百度学术
    7. 刘磊,苏维刚,李霞,赵玉红,冯丽丽,张朋涛. 2022年1月8日门源M6.9地震前青海地区逸出气氡异常特征分析. 地震工程学报. 2022(02): 380-388 . 百度学术
    8. 刘磊,高小其,苏维刚,赵玉红,李霞,冯丽丽. 2022年1月8日门源M_S6.9地震前青海地区地下流体群体异常特征. 地震学报. 2022(02): 245-249 . 本站查看
    9. 芮雪莲,杨耀,官致君,杜方,薛乔文,龙锋,杨星,杨鹏. 四川理塘毛垭51泉水温在青藏高原东南缘中强地震前的异常特征及机理分析. 地震研究. 2022(02): 318-328 . 百度学术
    10. 苏维刚,刘磊,孙玺皓. 玛多7.4级地震和门源6.9级地震前佐署地下流体异常特征分析. 地震工程学报. 2022(03): 700-706+712 . 百度学术
    11. 冯丽丽,李霞,赵玉红,张朋涛. 2022年1月8日青海门源6.9级地震短临异常跟踪分析. 中国地震. 2022(01): 12-20 . 百度学术
    12. 刘磊,苏维刚,赵玉红,李霞,冯丽丽. 2022年1月8日门源M_S 6.9地震前乐都逸出气氡异常特征分析. 地震地磁观测与研究. 2022(S1): 453-455 . 百度学术
    13. 苏维刚,孙玺皓,刘磊. 2022年德令哈M_S 5.8、M_S 6.0地震前德令哈水温异常特征. 地震地磁观测与研究. 2022(S1): 456-459 . 百度学术
    14. 董超,陈斌,袁洁浩,王振东,王粲. 2021年5月22日玛多M_S7.4地震震前岩石圈磁场变化特征分析. 地震学报. 2021(04): 453-462+533 . 本站查看
    15. 钟骏,王博,周志华,晏锐. 2021年青海玛多M_S7.4地震前地下流体异常特征分析. 中国地震. 2021(03): 574-585 . 百度学术

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  18
  • PDF下载量:  51
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-02-19
  • 网络出版日期:  2025-01-22
  • 刊出日期:  2025-03-27

目录

    /

    返回文章
    返回