2015年尼泊尔MS8.1地震引起的井水位与井水温同震效应及其相关性分析

张彬 刘耀炜 高小其 杨选辉 任宏微 李旖雯

张彬, 刘耀炜, 高小其, 杨选辉, 任宏微, 李旖雯. 2015: 2015年尼泊尔MS8.1地震引起的井水位与井水温同震效应及其相关性分析. 地震学报, 37(4): 533-540. doi: 10.11939/jass.2015.04.001
引用本文: 张彬, 刘耀炜, 高小其, 杨选辉, 任宏微, 李旖雯. 2015: 2015年尼泊尔MS8.1地震引起的井水位与井水温同震效应及其相关性分析. 地震学报, 37(4): 533-540. doi: 10.11939/jass.2015.04.001
Zhang Bin, Liu Yaowei, Gao Xiaoqi, Yang Xuanhui, Ren Hongwei, Li Yiwen. 2015: Correlation analysis on co-seismic response between well water level and temperature caused by the Nepal MS8.1 earthquake. Acta Seismologica Sinica, 37(4): 533-540. doi: 10.11939/jass.2015.04.001
Citation: Zhang Bin, Liu Yaowei, Gao Xiaoqi, Yang Xuanhui, Ren Hongwei, Li Yiwen. 2015: Correlation analysis on co-seismic response between well water level and temperature caused by the Nepal MS8.1 earthquake. Acta Seismologica Sinica, 37(4): 533-540. doi: 10.11939/jass.2015.04.001

2015年尼泊尔MS8.1地震引起的井水位与井水温同震效应及其相关性分析

doi: 10.11939/jass.2015.04.001
基金项目: 

中央级公益性科研院所基本科研业务专项 ZDJ2012-23

中央级公益性科研院所基本科研业务专项 ZDJ2012-08

国家自然科学基金项目 41404036

详细信息
    通讯作者:

    张彬, e-mail: zhangbin150006@163.com

  • 中图分类号: P315.72+3

Correlation analysis on co-seismic response between well water level and temperature caused by the Nepal MS8.1 earthquake

  • 摘要: 尼泊尔MS8.1地震引起中国大陆大量地震观测井水位和水温的同震响应. 从宏观结果看, 在54个同时存在水位和水温同震效应的观测井中, 有51口观测井的变化类型为水位上升-水温上升、 水位下降-水温下降、 水位振荡-水温上升或下降(以下降为主), 井水位与井水温同震效应表现出良好的相关性, 这可能与地下水动力学作用有关; 有3口观测井的水位变化与水温变化方向相反, 且水温变化均为震后效应. 另外, 有1口观测井水位无变化而水温同震效应明显. 这些不同类型的同震变化与井孔条件、 水温梯度、 传感器位置及水位埋深等多种因素有关. 从微观结果看, 井水位同震效应出现的时间及变化幅度与井水温同震效应出现的时间及变化幅度之间的关联性比较复杂, 这与井孔条件和温度梯度等因素有关.

     

  • 图  1  尼泊尔MS8.1地震引起的中国大陆井水位和井水温同震响应井的空间分布图

    Figure  1.  Spatial distribution of the wells with co-seismic response of water level and temperature in Chinese mainland caused by the Nepal MS8.1 earthquake

    图  2  尼泊尔MS8.1地震引起的延庆五里营井(a)和沙河台(b)水位和水温同震效应

    Figure  2.  The co-seismic response of well water level and temperature at the stations Yanqing (a) and Shahe (b) caused by the Nepal MS8.1 earthquake

    图  3  昌平地震台西1井井孔地层柱状图及水温仪探头位置

    ① SZW-1水温仪探头(浅);② ZKGD3000地下水数据监测系统;③ SZW-1水温仪探头(深,放置底部,现已深埋泥中)

    Figure  3.  Borehole stratigraphic column and water temperature analyzer probe position of the west 1 well at the seismic station Changping

    ①SZW-1 water temperature probes (shallow); ② ZKGD3000 groundwater data monitoring system; ③ SZW-1 water temperature probes(deep,buried in the bottom mud now)

    图  4  2015年4月25日昌平地震台西1井井水温和井水位记录曲线图

    (a) SZW-1水温曲线(浅); (b) ZKGD3000地下水数据监测系统水温曲线; (c) SZW-1水温曲线(深);(d)SWY-Ⅱ水位曲线;(e)ZKGD3000地下水数据监测系统水位曲线

    Figure  4.  The curves of water temperature and water level in the west 1 well at the seismic station Changping on 25 April 2015

    (a) The curve of SZW-1 water temperature (shallow); (b) The water temperature curve of ZKGD3000 groundwater data monitoring system; (c) The curve of SZW-1 water temperature (deep); (d) The curve of SWY-Ⅱ water level; (e) The water level curve of ZKGD3000 groundwater data monitoring system

    图  5  山东蒙阴台井水位和井水温同震响应

    Figure  5.  The co-seismic response of well water level and water temperature at the station Mengyin in Shandong Province

    图  6  重庆北碚柳荫台井水位和井水温同震响应

    Figure  6.  The co-seismic response of well water level and water temperature at the station Liuyin in Beibei district, Chongqing

    表  1  尼泊尔MS8.1地震引起的中国大陆井水位和井水温同震效应统计表

    Table  1.   Statistics of simultaneous co-seismic step change of well water level and temperature in Chinese mainland caused by the Nepal MS8.1 earthquake

    所在地区台站名水位水温
    变化形态变化幅度/m变化形态变化幅度/℃
    北京五里营上升0.041上升0.014
    安徽巢湖台下降0.085下降0.003
    北京左家庄上升0.019上升0.002
    福建福清江兜上升0.001上升0.002
    甘肃平凉柳湖下降0.107下降0.005
    广西桂平上升0.150上升-
    海南文昌上升0.010上升0.004
    河南焦作上升0.009上升0.001
    黑龙江黑河上升0.007上升0.011
    湖北黄梅独山下降0.014下降0.025
    湖南长沙上升0.017上升0.028
    辽宁瓦房店上升0.250上升0.006
    辽宁丹东变电上升0.047上升0.008
    辽宁沈家台上升0.016上升0.0005
    山东聊城上升0.115上升-
    山东蒙阴下降0.010上升-
    山西祁县上升0.180上升0.020
    山西沁县漫水下降0.058下降0.003
    山西孝义下降0.033下降0.010
    四川南溪上升0.072上升0.005
    四川邛崃上升0.010上升0.003
    四川泸沽湖下降0.136下降0.002
    四川西昌川32井下降0.022下降0.092
    四川德阳下降0.005下降0.002
    天津宝坻新台下降0.192上升0.020
    西藏拉萨地磁台下降0.0244下降0.005
    北京沙河下降0.131下降0.017
    云南弥勒局上升0.624上升0.012
    云南普洱大寨上升0.140上升0.010
    云南丽江局下降0.008下降0.009
    云南元谋下降0.004下降0.001
    重庆北碚柳荫上升0.037下降-
    重庆荣昌华江上升0.074上升0.003
    注:"-"代表震后效应.
    下载: 导出CSV
  • 刘耀炜. 2009. 动力加载作用与地下水物理动态过程研究[D]. 北京: 中国地质大学(北京): 68-73.

    Liu Y W. 2009. Dynamic Loading and Physical Dynamics Process of Groundwater[D]. Beijing: China University of Geosciences (Beijing): 68-73 (in Chinese).
    杨竹转. 2011. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所: 70-73.

    Yang Z Z. 2011. Variations of Well Water Level and Temperature Caused by Earthquakes and Their Generation Mechanism[D]. Beijing: Institute of Geology, China Earthquake Administration: 70-73 (in Chinese).
    尹宝军. 2010. 唐山井地下水动态特征的研究[D]. 北京: 中国地震局地球物理研究所: 145-150.

    Yin B J. 2010. Study on the Fluctuant Characteristic of Underground Water at Tangshan Well[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 145-150 (in Chinese).
    Wang C Y, Manga M. 2014. Earthquake and water[G]//Encyclopedia of Complexity and System Science.New York: Springer: 1-18.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  235
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-08
  • 修回日期:  2015-06-08
  • 刊出日期:  2015-07-01

目录

    /

    返回文章
    返回