地电阻率交流观测中信号检测方法研究

马小溪, 张宇, 王兰炜, 张兴国

马小溪, 张宇, 王兰炜, 张兴国. 2015: 地电阻率交流观测中信号检测方法研究. 地震学报, 37(5): 853-864. DOI: 10.11939/jass.2015.05.013
引用本文: 马小溪, 张宇, 王兰炜, 张兴国. 2015: 地电阻率交流观测中信号检测方法研究. 地震学报, 37(5): 853-864. DOI: 10.11939/jass.2015.05.013
Ma Xiaoxi, Zhang Yu, Wang Lanwei, Zhang Xingguo. 2015: Signal detection method for AC geo-resistivity observation. Acta Seismologica Sinica, 37(5): 853-864. DOI: 10.11939/jass.2015.05.013
Citation: Ma Xiaoxi, Zhang Yu, Wang Lanwei, Zhang Xingguo. 2015: Signal detection method for AC geo-resistivity observation. Acta Seismologica Sinica, 37(5): 853-864. DOI: 10.11939/jass.2015.05.013

地电阻率交流观测中信号检测方法研究

基金项目: 

中国地震局地壳应力研究所基本科研业务专项 ZDJ2012-04

国家自然科学基金 41374127

详细信息
    通讯作者:

    张宇, e-mail: zyflyingfish@163.com

  • 中图分类号: P319.3+2

Signal detection method for AC geo-resistivity observation

  • 摘要: 目前我国地电阻率观测台站受地铁、 轻轨等干扰的情况越来越多, 严重影响地电阻率观测数据质量. 地电阻率交流观测方法被认为是一种可以解决此类干扰问题的有效方法. 本文首先介绍该观测方法的理论基础; 然后采用数值模拟方法对实际观测过程进行模拟, 给出在不同参数条件下, 分别采用数字滤波器法、 频谱分析法和相关检测法进行信号检测所得到的相对误差和相对均方差结果; 最后, 通过对3种信号检测方法进行比较和分析, 给出频谱分析法在地电阻率交流观测中可以作为最佳信号检测方法的建议, 为地电阻率交流观测系统的研制提供理论参考.
    Abstract: In the past ten or twenty years, more and more geo-resistivity observation stations are being faced with increasingly electromagnetic interference, such as subway and rail traffic system in urban area, which seriously affects the quality of observation data. The AC geo-resistivity observation method has been found to be effective to solve this problem and can be used for earthquake monitoring and prediction. This paper introduced firstly the theory of the AC observation method, and then three different signal detection methods, i.e., the digital filter method, the spectrum analysis method and the correlation detection method, are used in the simulation. The analysis results are obtained by simulating an actual work process of AC geo-resistivity observation method. Comparison of the relative error and relative standard deviation on the condition of different signal-noise ratio, sampling rate or sampling time shows that frequency spectra method can be taken as the best method for the signal observation, providing theoretical basis for developing the AC geo-resistivity observation system.
  • 图  1   地电阻率交流观测方法工作原理示意图

    AB为供电电极,MN为测量电极

    Figure  1.   Schematic diagram of principle for AC geo-resistivity method

    A and B are current-emitting electrodes, and M and N are measuring electrodes

    图  2   相关检测法的测量原理

    x(t)为含有噪声的信号,r1(t)和r2(t)为与x(t) 频率相同而相位不同的参考信号

    Figure  2.   Measuring principle of correlation detection method

    x(t) is the signals including the noise, r1(t) and r2(t) are the reference signals whose frequency are same as that of x(t) and whose phase are different from that of x(t)

    图  3   10万点高斯白噪声序列(均值为0.0071,方差为1.0051)

    Figure  3.   100000-point Gaussian white noise with mean 0.0071 and variance 1.0051

    图  4   信噪比为0 dB、信号频率为1 Hz的输入信号x(t)的波形

    Figure  4.   Signal with Gaussian white noise(SNR is 0 dB, signal frequency is 1 Hz)

    图  5   3种方法在不同频率条件下的相对误差(左)和相对均方差(右)随 信噪比的变化结果比较(采样率为10 Hz, 采样点数为2000)

    Figure  5.   Comparison of relative error (left) and relative standard deviation (right) with the variation of SNR on the condition of different frequency for three signal detection methods (sampling rate is 10 Hz, number of samples is 2000)

    表  1   信噪比与正弦信号振幅对应表

    Table  1   SNRs corresponding to sine signal amplitudes

    信噪比/dB正弦信号振幅/mV
    -100.5
    01.5
    104.5
    2015
    3045
    40141.5
    50447
    下载: 导出CSV

    表  2   本文仿真中使用的带通滤波器的性能参数

    Table  2   Bandpass filter performance parameters used in simulation

    滤波器序号中心频率/Hz采样率/Hz带宽/Hz通带波动/dB阻带衰减/dB阶数
    10.1100.020.0180837
    20.5100.020.0180837
    31.0100.0020.0180541
    40.1200.0020.01801068
    50.5200.0020.01801068
    61.0200.0020.01801014
    70.1300.0020.01801602
    80.5300.0020.01801602
    91.0300.0020.01801521
    下载: 导出CSV

    表  3   采样率为10 Hz,采样点数为2000,信号频率为0.1 Hz时的仿真结果

    Table  3   Simulation results of three signal detection methods on the condition of different SNR (sampling rate is 10 Hz, number of samples is 2000, signal frequency is 0.1 Hz)

    信噪比/dB方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.50.5370.0377.342%0.0448.138%
    -10相关检测法0.50.5070.0071.445%0.0458.837%
    频谱分析法0.50.5030.0030.643%0.0346.789%
    数字滤波器法1.51.5180.0181.179%0.0442.930%
    0相关检测法1.51.5060.0060.414%0.0452.988%
    频谱分析法1.51.5030.0030.175%0.0342.269%
    数字滤波器法4.54.5070.0070.156%0.0461.012%
    10相关检测法4.54.5060.0060.131%0.0451.000%
    频谱分析法4.54.5020.0020.054%0.0340.757%
    数字滤波器法1515.0010.0010.009%0.0460.305%
    20相关检测法1515.0060.0060.039%0.0450.300%
    频谱分析法1515.0020.0020.016%0.0340.227%
    数字滤波器法4544.986-0.0140.032%0.0460.102%
    30相关检测法4545.0060.0060.014%0.0450.100%
    频谱分析法4545.0020.0020.005%0.0340.076%
    数字滤波器法141.5141.435-0.0650.046%0.0460.032%
    40相关检测法141.5141.5070.0070.005%0.0450.032%
    频谱分析法141.5141.5020.0020.002%0.0340.024%
    数字滤波器法447446.776-0.2230.050%0.0460.010%
    50相关检测法447447.0100.0100.002%0.0450.010%
    频谱分析法447447.0020.0020.001%0.0340.008%
    下载: 导出CSV

    表  4   采样率为10 Hz, 采样点数为2000, 信号频率为0.5 Hz时的仿真结果

    Table  4   Simulation results of three signal detection methods on the condition of different SNR(sampling rate is 10 Hz, number of samples is 2000, signal frequency is 0.5 Hz)

    信噪比/dB方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.50.507 0.0071.371% 0.035 7.000%
    -10相关检测法0.50.497 -0.0030.502% 0.036 7.202%
    频谱分析法0.50.498 -0.0020.325% 0.028 5.629%
    数字滤波器法1.51.496 -0.0040.236% 0.036 2.434%
    0相关检测法1.51.496 -0.0040.240% 0.036 2.409%
    频谱分析法1.51.498 -0.0020.152% 0.028 1.864%
    数字滤波器法4.54.496 -0.0040.094% 0.036 0.809%
    10相关检测法4.54.496 -0.0040.087% 0.036 0.803%
    频谱分析法4.54.497 -0.0030.056% 0.028 0.619%
    数字滤波器法1514.995 -0.0050.034% 0.036 0.243%
    20相关检测法1514.996 -0.0040.026% 0.036 0.241%
    频谱分析法1514.997 -0.0030.017% 0.028 0.186%
    数字滤波器法4544.993 -0.0070.016% 0.036 0.081%
    30相关检测法4544.996 -0.0040.008% 0.036 0.080%
    频谱分析法4544.997 -0.0030.006% 0.028 0.062%
    数字滤波器法141.5141.486 -0.0140.010% 0.036 0.026%
    40相关检测法141.5141.497 -0.0030.002% 0.036 0.026%
    频谱分析法141.5141.497 -0.0030.002% 0.028 0.020%
    数字滤波器法447446.963 -0.0370.008% 0.036 0.008%
    50相关检测法447447.000 -0.0000.000% 0.036 0.008%
    频谱分析法447446.997 -0.0030.001% 0.028 0.006%
    下载: 导出CSV

    表  5   采样率为10 Hz, 采样点数为2000, 信号频率为1 Hz时的仿真结果

    Table  5   Simulation results of three signal detection methods on the condition of different SNR(sampling rate is 10 Hz, number of samples is 2000, signal frequency is 1 Hz)

    信噪比/dB方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.50.514 0.0142.743%0.048 9.317%
    -10相关检测法0.50.502 0.0020.489%0.053 10.529%
    频谱分析法0.50.500 0.0000.037%0.033 6.576%
    数字滤波器法1.51.505 0.0050.334%0.049 3.278%
    0相关检测法1.51.501 0.0010.059%0.053 3.527%
    频谱分析法1.51.500 0.0000.031%0.033 2.189%
    数字滤波器法4.54.505 0.0050.111%0.049 1.095%
    10相关检测法4.54.500 0.0000.009%0.053 1.176%
    频谱分析法4.54.499 -0.0010.015%0.033 0.729%
    数字滤波器法1515.005 0.0050.033%0.049 0.329%
    20相关检测法1515.000 0.0000.002%0.053 0.353%
    频谱分析法1514.999 -0.0010.005%0.033 0.219%
    数字滤波器法4545.005 0.0050.011%0.049 0.110%
    30相关检测法4545.001 0.0010.001%0.053 0.118%
    频谱分析法4544.999 -0.0010.002%0.033 0.073%
    数字滤波器法141.5141.505 0.0050.004%0.049 0.035%
    40相关检测法141.5141.501 0.0010.001%0.053 0.037%
    频谱分析法141.5141.499 -0.0010.001%0.033 0.023%
    数字滤波器法447447.005 0.0050.001%0.049 0.011%
    50相关检测法447447.004 0.0040.001%0.053 0.012%
    频谱分析法447446.999 -0.0010.000%0.033 0.007%
    下载: 导出CSV

    表  6   采样时间为200 s,信噪比为-10 dB,信号频率为0.1 Hz时的仿真结果

    Table  6   Simulation results of three signal detection methods on the condition of different sampling rate (SNR is -10 dB, sampling time is 200 s, signal frequency is 0.1 Hz)

    采样率/Hz方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.5 0.516 0.0163.269%0.040 7.702%
    10相关检测法0.50.509 0.0091.832%0.041 8.052%
    频谱分析法0.50.501 0.0010.170%0.025 5.004%
    数字滤波器法0.5 0.509 0.0091.716%0.025 4.849%
    20相关检测法0.50.503 0.0030.544%0.026 5.150%
    频谱分析法0.50.499 -0.0010.153%0.025 4.994%
    数字滤波器法0.5 0.507 0.0071.374%0.020 4.010%
    30相关检测法0.50.503 0.0030.696%0.020 4.057%
    频谱分析法0.50.502 0.0020.392%0.020 3.982%
    下载: 导出CSV

    表  7   采样时间为200 s,信噪比为-10 dB,信号频率为1 Hz时的仿真结果

    Table  7   Simulation results of three signal detection methods on the condition of different sampling rate (SNR is -10 dB, sampling time is 200 s, signal frequency is 1 Hz)

    采样率/Hz方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.5 0.537 0.0377.342% 0.044 8.138%
    10相关检测法0.50.507 0.0071.445% 0.045 8.837%
    频谱分析法0.50.503 0.0030.643%0.034 6.789%
    数字滤波器法0.5 0.517 0.0173.440%0.028 5.491%
    20相关检测法0.50.500 0.0000.040%0.027 5.400%
    频谱分析法0.50.500 0.0000.029%0.025 5.011%
    数字滤波器法0.5 0.516 0.0163.173%0.022 4.329%
    30相关检测法0.50.506 0.0061.276%0.025 4.891%
    频谱分析法0.50.504 0.0040.854%0.025 5.016%
    下载: 导出CSV

    表  8   采样率为10 Hz,信噪比为-10 dB, 信号频率为0.1 Hz时的仿真结果

    Table  8   Simulation results of three signal detection methods on the condition of different sampling number (SNR is -10 dB, sampling rate is 10 Hz, signal frequency is 0.1 Hz)

    采样点数方法 信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.5 0.537 0.0377.342% 0.044 8.138%
    2000相关检测法0.5 0.507 0.0071.445%0.045 8.837%
    频谱分析法0.5 0.503 0.0030.643%0.034 6.789%
    数字滤波器法0.5 0.532 0.0326.371%0.023 4.345%
    4000相关检测法0.5 0.501 0.0010.211%0.023 4.495%
    频谱分析法0.5 0.503 0.0030.539%0.021 4.128%
    数字滤波器法0.5 0.534 0.0346.857%0.022 4.114%
    5000相关检测法0.5 0.504 0.0040.739%0.021 4.202%
    频谱分析法0.5 0.503 0.0030.516%0.019 3.688%
    数字滤波器法0.5 0.531 0.0316.227%0.018 3.384%
    8000相关检测法0.5 0.501 0.0010.103%0.017 3.383%
    频谱分析法0.5 0.502 0.0020.429%0.017 3.332%
    数字滤波器法0.5 0.534 0.0346.746%0.016 2.996%
    10000相关检测法0.5 0.503 0.0030.560%0.015 2.940%
    频谱分析法0.5 0.502 0.0020.490%0.014 2.839%
    下载: 导出CSV

    表  9   样率为10 Hz,信噪比为-10 dB、 信号频率为1 Hz时的仿真结果

    Table  9   Simulation results of three signal detection methods on the condition of different sampling number (SNR is -10 dB, sampling rate is 10 Hz, signal frequency is 1 Hz)

    采样点数方法信号振幅/mV检测均值/mV差值/mV相对误差均方差相对均方差
    数字滤波器法0.5 0.514 0.0142.743%0.048 9.317%
    2000相关检测法0.5 0.502 0.0020.489%0.053 10.529%
    频谱分析法0.5 0.5 0.0000.037%0.033 6.576%
    数字滤波器法0.5 0.508 0.0081.695%0.027 5.363%
    4000相关检测法0.5 0.499 -0.0010.269%0.029 5.789%
    频谱分析法0.5 0.5 0.0000.060%0.025 4.965%
    数字滤波器法0.5 0.507 0.0071.323%0.021 4.166%
    5000相关检测法0.5 0.499 -0.0010.263%0.020 4.097%
    频谱分析法0.5 0.5 0.0000.072%0.020 3.903%
    数字滤波器法0.5 0.507 0.0071.309%0.024 4.832%
    8000相关检测法0.5 0.497 -0.0030.541%0.025 5.024%
    频谱分析法0.5 0.498 -0.0020.319%0.020 4.104%
    数字滤波器法0.5 0.509 0.0091.750%0.014 2.748%
    10000相关检测法0.5 0.5 0.0000.058%0.014 2.791%
    频谱分析法0.5 0.499 -0.0010.123%0.014 2.713%
    下载: 导出CSV
  • 门爱东, 苏菲, 王雷, 王海婴, 李江军. 2009. 数字信号处理[M]. 第二版. 北京: 科学出版社: 75-136.

    Men A D, Su F, Wang L, Wang H Y, Li J J. 2009. Digital Signal Processing[M]. 2nd ed. Beijing: Science Press: 75-136 (in Chinese).

    万永革. 2012. 数字信号处理的MATLAB实现[M]. 第二版. 北京: 科学出版社: 86-132.

    Wan Y G. 2012. Implementation of Digital Signal Processing Based on MATLAB[M]. 2nd ed. Beijing: Science Press: 86-132 (in Chinese).

    张国民, 傅征祥, 桂燮泰. 2001. 地震预报引论[M]. 北京: 科学出版社: 241-246.

    Zhang G M, Fu Z X, Gui X T. 2001. Introduction to Earthquake Prediction[M]. Beijing: Science Press: 241-246 (in Chinese).

    中国地震局. 2009. 地震标准汇编[M]. 北京: 地震出版社: 1214-1220.

    China Earthquake Administration. 2009. Seismic Standards Compilation[M]. Beijing: Seismological Press: 1214-1220 (in Chinese).

  • 期刊类型引用(4)

    1. 马小溪,王兰炜,朱涛,张宇,张兴国. 地电阻率交流观测中的电感性耦合效应特征模拟和分析. 地球物理学报. 2023(01): 289-300 . 百度学术
    2. 王同利,崔博闻,徐化超,韩孔艳,乔永军,朱石军. 延庆台井下小极距地电阻率观测系统分析. 地震. 2020(04): 156-168 . 百度学术
    3. 王兰炜,张宇,张兴国,胡哲,王子影,马小溪. 地震地电阻率交流观测方法及观测实验. 大地测量与地球动力学. 2019(07): 738-742 . 百度学术
    4. 张宇,张兴国,王兰炜,马小溪,赵庆福,袁慎杰,王子影. 新型地电阻率交流观测系统研究及江宁台观测试验. 地震学报. 2016(05): 807-810 . 本站查看

    其他类型引用(1)

图(5)  /  表(9)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  263
  • PDF下载量:  16
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-12-06
  • 修回日期:  2015-04-02
  • 发布日期:  2015-08-31

目录

    /

    返回文章
    返回