引洮供水总干渠增湿黄土隧洞的动力特性分析

黄旭斌, 许健

黄旭斌, 许健. 2015: 引洮供水总干渠增湿黄土隧洞的动力特性分析. 地震学报, 37(5): 875-882. DOI: 10.11939/jass.2015.05.015
引用本文: 黄旭斌, 许健. 2015: 引洮供水总干渠增湿黄土隧洞的动力特性分析. 地震学报, 37(5): 875-882. DOI: 10.11939/jass.2015.05.015
Huang Xubin, Xu Jian. 2015: Dynamic characteristics analysis of moistening loess tunnel of Yintao water supply main channel. Acta Seismologica Sinica, 37(5): 875-882. DOI: 10.11939/jass.2015.05.015
Citation: Huang Xubin, Xu Jian. 2015: Dynamic characteristics analysis of moistening loess tunnel of Yintao water supply main channel. Acta Seismologica Sinica, 37(5): 875-882. DOI: 10.11939/jass.2015.05.015

引洮供水总干渠增湿黄土隧洞的动力特性分析

基金项目: 

甘肃引洮供水一期总干渠7#、 9#隧洞TBM施工定额研究项目 041031067

详细信息
    通讯作者:

    许健, e-mail: xujian@gsau.edu.cn

  • 中图分类号: P315.9, TV312

Dynamic characteristics analysis of moistening loess tunnel of Yintao water supply main channel

  • 摘要: 为了得到增湿后黄土围岩隧洞在地震作用下的动力特性, 基于初始弹性模量和抗剪强度指标与含水量的关系, 采用时程分析法, 对增湿情况下的黄土围岩-隧洞结构进行地震动力分析. 数值计算结果表明: 随着含水量的增加, 隧洞衬砌各部位主应力绝对值减小, 自振圆频率减小, 自振周期相应增大; 与输入的地震加速度峰值相比, 当黄土隧洞围岩含水量小于临界含水量时, 隧洞顶部加速度峰值大于输入地震加速度峰值, 大于临界含水量时则出现相反的结果; 同一含水量下, 隧洞衬砌对称部位最大、 最小主应力交替出现, 使隧洞衬砌材料发生疲劳损伤, 是隧洞衬砌破坏的主要原因. 本文研究结果可以为在不同含水量情况下黄土围岩-隧洞结构的抗震分析提供参考.
    Abstract: In order to obtain the dynamic characteristics of tunnel in loess surrounding rock under seismic action after moistening, the seismic dynamics of the loess surrounding rock with moistening and tunnel structure had been analyzed with the time-history method, basing on the relationship between initial elastic modulus, the shear strength parameters and the water content. The numerical computation results showed that, with the water content of the loess surrounding rock increasing, the absolute value of principal stress and the autooscillation circular frequency all decreased relatively, while the period of free vibration increased correspondingly. When the water content was less than its critical value, the peak acceleration of the tunnel roof was larger than the original seismic peak acceleration. Otherwise, it was opposite. Under the same water content, the maximum and minimum principal stress appeared alterna-tely, making the tunnel lining material fatigue damage, which was the main reason for the tunnel lining damage. The results can provide a reference for the seismic analysis on the different water content conditions of loess surrounding rock and tunnel structure.
  • 图  1   黄土隧洞计算模型

    Figure  1.   The calculation model of the loess tunnel

    图  2   El-Centro地震波加速度示意图

    Figure  2.   Schematic diagram of El-Centro seismic wave acceleration

    图  3   黄土隧洞顶部地震峰值加速度随含水量的变化

    Figure  3.   Variation of seismic peak acceleration with water content of the loess tunnel roof

    图  4   左拱肩(a)和右拱肩(b)主应力图

    Figure  4.   The principal stress of left- (a) and right-spandrel (b)

    表  1   黄土隧洞围岩计算参数

    Table  1   The calculation parameters of tunnel in loess surrounding rock

    wγ/(kN·m-3)E/MPac/kPaφμξ
    7.42%1.6413057.824.10.30.12
    9.36%1.6111839.525.20.30.12
    11.95%1.5910031.026.00.30.12
    13.25%1.569720.226.50.30.12
    15.10%1.549317.227.10.30.12
    注: w为含水量(下同), γ为容量, E为初始弹性模量, c为黏聚力, φ为内摩擦角, μ为泊松比, ξ为阻尼比.
    下载: 导出CSV

    表  2   黄土隧洞围岩含水量与圆频率关系表

    Table  2   The relationship between water content and circular frequency of tunnel in loess surrounding rock

    wω1ω2ω3ω4ω5ω6ω7ω8
    7.42%0.689981.55692.07022.46392.70833.31173.44903.4992
    9.36%0.663581.49741.99082.36952.60483.18513.31723.3648
    11.95%0.614901.38761.84462.19552.41392.95143.07413.1172
    13.25%0.611421.37981.83412.18312.40032.93483.05683.0994
    15.10%0.602591.35991.80762.15162.36572.89253.01283.0545
    注: ω1ω8分别为第1—8阶圆频率.
    下载: 导出CSV

    表  3   黄土隧洞围岩含水量与阻尼系数关系表

    Table  3   The relationship between water content and damping coefficients of tunnel in loess surrounding rock

    wηλ
    7.42%0.1370.060
    9.36%0.1320.062
    11.95%0.1220.067
    13.25%0.1210.068
    15.10%0.1200.069
    注: η为质量阻尼系数, λ为刚度阻尼系数.
    下载: 导出CSV

    表  4   黄土隧洞顶部含水量与地震峰值加速度关系表

    Table  4   The relationship between water content and seismic peak acceleration of the loess tunnel roof

    wt/sA/(m·s-2)
    7.42%2.222.029
    9.36%2.221.978
    11.95%2.221.943
    13.25%2.221.940
    15.10%2.221.933
    注: A为地震峰值加速度.
    下载: 导出CSV

    表  5   黄土隧洞衬砌主应力及最大位移

    Table  5   The principal stress and maximum displacement of the loess tunnel lining

    w衬砌位置σmax/MPaσmin/MPas/cm
    7.42%左拱肩3.02-2.642.72
    右拱肩2.64-3.022.70
    左拱脚2.60-2.972.69
    右拱脚2.96-2.612.67
    9.36%左拱肩2.97-2.632.95
    右拱肩2.62-3.002.92
    左拱脚2.58-2.942.91
    右拱脚2.92-2.582.89
    11.95%左拱肩2.75-2.553.52
    右拱肩2.52-2.823.50
    左拱脚2.46-2.573.48
    右拱脚2.56-2.473.46
    13.25%左拱肩2.09-1.883.90
    右拱肩1.80-2.163.87
    左拱脚1.73-2.103.85
    右拱脚2.02-1.833.83
    15.10%左拱肩1.92-1.674.12
    右拱肩1.58-1.994.10
    左拱脚1.51-1.844.08
    右拱脚1.84-1.624.06
    注:σmax为最大主应力,σmin为最小主应力,s为最大位移.
    下载: 导出CSV
  • 林斌. 2005. 考虑损伤效应的黄土流变模型研究[D]. 西安: 长安大学地质工程与测绘学院: 22-45.

    Lin B. 2005. Research on Rheological Model of Loess in Considering of Damage Effect[D]. Xi’an: School of Geology Engineering and Geomatics, Chang’an University: 22-45 (in Chinese).

    田瑞瑞. 2012. 粘弹性边界条件下方家湾黄土隧道结构的地震动稳定研究[D]. 兰州: 兰州理工大学土木工程学院: 19-38.

    Tian R R. 2012. The Study on Seismic Stability of Fangjiawan Loess Tunnel Structure Under Viscoelastic Boundary Condition[D]. Lanzhou: School of Civil Engineering, Lanzhou University of Technology: 19-38 (in Chinese).

    翁祝梅, 毛丽华. 2006. 抗震[M]. 北京: 知识产权出版社: 204-222.

    Weng Z M, Mao L H. 2006. Anti-Seismic[M]. Beijing: Intellectual Property Publishing House: 204-222 (in Chinese).

图(4)  /  表(5)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  206
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-03
  • 修回日期:  2015-03-21
  • 发布日期:  2015-08-31

目录

    /

    返回文章
    返回